首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To establish the agent(s) responsible for the activity of the lactoperoxidase (LPO)/SCN-/H2O2 system, the oxidation of thiocyanate with hydrogen peroxide, catalyzed by lactoperoxidase, has been studied by 15N NMR and optical spectroscopy at different concentrations of thiocyanate and hydrogen peroxide and at different pHs. The formation of hypothiocyanite ion (OSCN-) as one of the oxidation products correlated well with the activity of the LPO/SCN-/H2O2 system and was maximum when the concentrations of the H2O2 and SCN- were nearly the same and the pH was less than 6.0. At [H2O2]/[SCN-] = 1, OSCN- decomposed very slowly back to thiocyanate. When the ratio [H2O2]/[SCN-] was above 2, formation of CN- was observed, which was confirmed by 15N NMR and also by changes in the optical spectrum of LPO. The oxidation of thiocyanate by H2O2 in the presence of LPO does not take place at pH greater than 8.0. Since thiocyanate does not bind to LPO above this pH, the binding of thiocyanate to LPO is considered to be prerequisite for the oxidation of thiocyanate. Maximum inhibition of oxygen uptake by Streptococcus cremoris 972 bacteria was observed when hydrogen peroxide and thiocyanate were present in equimolar amounts and the pH was below 6.0.  相似文献   

2.
Periodate treatments of apo human serum transferrin (HST), and apo chicken ovotransferrin (COT) were previously reported to cause a rapid loss of Fe+3 binding capacity, with a loss of 3 to 5 tyrosine residues [P. AZARI AND J. L. PHILLIPS (1970) Arch. Biochem. Biophys. 138, 32-38; K. F. GEOGHEGAN, J. L. DALLAS, AND R. E. FEENEY (1980) J. Biol. Chem. 255, 11429-11434]. The effects of periodate and hydrogen peroxide on human lactotransferrin (HLT), HST, and COT have been compared. All three apotransferrins were rapidly inactivated and lost approximately 4 to 5 tyrosine residues by 5 mM periodate treatment; their iron complexes had little or no inactivation and losses of approximately 1 to 2 tyrosine residues. All three iron transferrins were highly resistant to inactivation by 5 mM periodate in bicarbonate, with or without the addition of phosphate, while in phosphate (with ambient carbonate) Fe2HLT was highly resistant, Fe2COT slightly less resistant, and Fe2HST much less resistant. Similar oxidations of methionines to the sulfoxides were found in both the apo and iron forms. After 150 min of 5 mM periodate treatment HST lost approximately 3 (apo 3.1, iron 2.8) of 9, HLT approximately 3 (apo 2.6, iron 2.9) of 6, and COT approximately 7 (apo 7.2, iron 7.2) of 11 methionines per mole of protein. In the presence of 8 M urea HST had essentially all of its methionine residues oxidized by periodate, but only lost part of its activity on renaturation. Treatment of all apo transferrins with 300 mM hydrogen peroxide resulted in little or no losses (less than 10%) in activity. HST lost approximately one-third of its methionines and no tyrosines during the 300 mM hydrogen peroxide treatment. Therefore the essentiality of tyrosines for all three transferrins was confirmed and the nonessentiality of methionines was demonstrated.  相似文献   

3.
Lactoperoxidase (LPO) is found in mucosal surfaces and exocrine secretions including milk, tears, and saliva and has physiological significance in antimicrobial defense which involves (pseudo-)halide oxidation. LPO compound III (a ferrous-dioxygen complex) is known to be formed rapidly by an excess of hydrogen peroxide and could participate in the observed catalase-like activity of LPO. The present anaerobic stopped-flow kinetic analysis was performed in order to elucidate the catalytic mechanism of LPO and the kinetics of compound III formation by probing the reactivity of ferrous LPO with hydrogen peroxide and molecular oxygen. It is shown that ferrous LPO heterolytically cleaves hydrogen peroxide forming water and oxyferryl LPO (compound II). The two-electron oxidation reaction follows second-order kinetics with the apparent bimolecular rate constant being (7.2+/-0.3) x 10(4) M(-1) s(-1) at pH 7.0 and 25 degrees C. The H2O2-mediated conversion of compound II to compound III follows also second-order kinetics (220 M(-1) s(-1) at pH 7.0 and 25 degrees C). Alternatively, compound III is also formed by dioxygen binding to ferrous LPO at an apparent bimolecular rate constant of (1.8+/-0.2) x 10(5) M(-1) s(-1). Dioxygen binding is reversible and at pH 7.0 the dissociation constant (K(D)) of the oxyferrous form is 6 microM. The rate constant of dioxygen dissociation from compound III is higher than conversion of compound III to ferric LPO, which is not affected by the oxygen concentration and follows a biphasic kinetics. A reaction cycle including the redox intermediates compound II, compound III, and ferrous LPO is proposed, which explains the observed (pseudo-)catalase activity of LPO in the absence of one-electron donors. The relevance of these findings in LPO catalysis is discussed.  相似文献   

4.
Continuous measurements were realized in rat corpus cavernosum using microvoltammetric captor. After inhibition of endothelial NO-synthase by L-NMA vasodilatation was induced by intracavernous injection of acetylcholine. Blood flow of rat penis was monitored by laser Doppler. A new peak appeared in reduction. It was identified as hydrogen peroxide by its peak potential, by intracavernous injection of hydrogen peroxide or catalase. Intracavernous injection of various pharmacological agents permitted to demonstrate that its origin was due to endothelial NAD(P)H oxidases. DPI inhibited its synthesis; NADH and NADPH enhanced it. Intracavernous injection of diethyldithiocarbamic acid gave the disappearance of hydrogen peroxide peak and appearance of the superoxide peak. This preliminary study showed that when the L-arginine pathway was inhibited, the NAD(P)H oxidase pathway functioned in rat corpus cavernosum for vasodilatation.  相似文献   

5.
The antimicrobial effect of the lactoperoxidase (LPO) system (enzyme with the thiocyanate ion and hydrogen peroxide) on Streptococcus mutans NCTC 10449 (serotype c) was significantly enhanced when the system was combined with secretory IgA. Similar enhancement was observed with LPO-myeloma IgA1 or IgA2 combinations. This enhancement of the antimicrobial efficiency was not dependent on the presence of specific antibodies to S. mutans in the IgA preparation, but seemed to require binding between LPO and immunoglobulin. However, neither human polyclonal nor myeloma IgG or IgM nor rabbit IgG enhanced the antibacterial activity of the LPO system. None of the immunoglobulins, when added alone, produced antimicrobial effects. LPO was shown to bind to colostral secretory IgA, myeloma IgA1, IgA2, and to a lesser degree to monoclonal and polyclonal IgG and monoclonal IgM. This binding had a stabilizing effect on the enzyme activity. Our results suggest that IgA significantly enhances the antibacterial efficiency of one of the innate immune factors--the LPO system.  相似文献   

6.
Horseradish peroxidase-catalysed oxidation of thiocyanate by hydrogen peroxide has been studied by 15N-NMR and optical spectroscopy at different concentrations of thiocyanate and hydrogen peroxide and at different pH values. The extent of the oxidation and the identity of the oxidized product of the thiocyanate has been investigated in the SCN-/H2O2/HRP system and compared with the corresponding data on the SCN-/H2O2/LPO system. The NMR studies show that (SCN)2 is the oxidation product of thiocyanate in the SCN-/H2O2/HRP system, and its formation is maximum at pH less than or equal to 4 and that the oxidation does not take place at pH greater than or equal to 6. Since thiocyanate does not bind to HRP at pH greater than or equal to 6 (Modi et al. (1989) J. Biol. Chem. 264, 19677-19684), the binding of thiocyanate to HRP is considered to be a prerequisite for the oxidation of thiocyanate. It is further observed that at [H2O2]/[SCN-] = 4, (SCN)2 decomposes very slowly back to thiocyanate. The oxidation product of thiocyanate in the SCN-/H2O2/LPO system has been shown to be HOSCN/OSCN- which shows maximum inhibition of uptake by Streptococcus cremoris 972 bacteria when hydrogen peroxide and thiocyanate are present in equimolar amounts (Modi et al. (1991) Biochemistry 30, 118-124). However, in case of HRP no inhibition of oxygen uptake by this bacteria was observed. Since thiocyanate binds to LPO at the distal histidine while to HRP near 1- and 8-CH3 heme groups, the role of distal histidine in the activity of SCN-/H2O2/(LPO, HRP) systems is indicated.  相似文献   

7.
Survival of Bacteroides fragilis in the presence of oxygen was dependent on the ability of bacteria to synthesize new proteins, as determined by the inhibition of protein synthesis after oxygen exposure. The B. fragilis protein profile was significantly altered after either a shift from anaerobic to aerobic conditions with or without paraquat or the addition of exogenous hydrogen peroxide. As determined by autoradiography after two-dimensional gel electrophoresis, approximately 28 newly synthesized proteins were detected in response to oxidative conditions. These proteins were found to have a broad range of pI values (from 5.1 to 7.2) and molecular weights (from 12,000 to 79,000). The hydrogen peroxide- and paraquat-inducible responses were similar but not identical to that induced by oxygen as seen by two-dimensional gel protein profile. Eleven of the oxidative response proteins were closely related, with pI values and molecular weights from 5.1 to 5.8 and from 17,000 to 23,000, respectively. As a first step to understanding the resistance to oxygen, a catalase-deficient mutant was constructed by allelic gene exchange. The katB mutant was found to be more sensitive to the lethal effects of hydrogen peroxide than was the parent strain when the ferrous iron chelator bipyridyl was added to culture media. This suggests that the presence of ferrous iron in anaerobic culture media exacerbates the toxicity of hydrogen peroxide and that the presence of a functional catalase is important for survival in the presence of hydrogen peroxide. Further, the treatment of cultures with a sublethal concentration of hydrogen peroxide was necessary to induce resistance to higher concentrations of hydrogen peroxide in the parent strain, suggesting that this was an inducible response. This was confirmed when the bacterial culture, treated with chloramphenicol before the cells were exposed to a sublethal concentration of peroxide, completely lost viability. In contrast, cell viability was greatly preserved when protein synthesis inhibition occurred after peroxide induction. Complementation of catalase activity in the mutant restored the ability of the mutant strain to survive in the presence of hydrogen peroxide, showing that the catalase (KatB) may play a role in oxidative stress resistance in aerotolerant anaerobic bacteria.  相似文献   

8.
Commercially available human plasma-derived preparations of the serine protease inhibitor antithrombin (AT) were shown to contain low levels of oxidation, and we sought to determine whether oxidation might be a means of regulating the protein's inhibitory activity. A recombinant form of AT, with similarly low levels of oxidation as purified, was treated with hydrogen peroxide in order to study the effect of oxidation, specifically methionine oxidation, on the biochemical properties of this protein. AT contains two adjacent methionine residues near the reactive site loop cleaved by thrombin (Met314 and Met315) and two exposed methionines that border on the heparin binding region of AT (Met17 and Met20). In forced oxidations with hydrogen peroxide, the methionines at 314 and 315 were found to be the most susceptible to oxidation, but their oxidation did not affect either thrombin-inhibitory activity or heparin binding. Methionines at positions 17 and 20 were significantly oxidized only at higher concentrations of peroxide, at which point heparin affinity was decreased. However at saturating heparin concentrations, activity was only marginally decreased for these highly oxidized samples of AT. Structural studies indicate that highly oxidized AT is less able to undergo the complete conformational change induced by heparin, most probably due to oxidation of Met17. Since this does not occur in less oxidized, and presumably more physiologically relevant, forms of AT such as those found in plasma preparations, oxidation does not appear to be a means of controlling AT activity.  相似文献   

9.
This study demonstrates the ability of cigarette smoke condensate to generate hydrogen peroxide and to hydroxylate deoxyguanosine (dG) residues in isolated DNA to 8-hydroxydeoxyguanosine (8-OHdG). Both the formation of hydrogen peroxide and that of 8-OHdG in DNA was significantly decreased when catalase or tyrosinase was added to the smoke condensates, and this also occurred when pure hydroquinone or catechol, two major constitutes in cigarette smoke, was used instead of smoke condensate. Moreover, pure hydroquinone and catechol both caused dose-dependent formation of hydrogen peroxide and 8-OHdG, and there was good correlation between the amounts of hydrogen peroxide and 8-OHdG formed. These findings suggest that (i) hydroquinone and catechol may be responsible for the ability of cigarette smoke to cause 8-OHdG formation in DNA, (ii) this oxidative DNA-damage is due to the action of hydroxyl radicals formed during dissociation of hydrogen peroxide and (iii) the hydrogen peroxide in cigarette smoke is generated via autooxidation of hydroquinone and catechol.  相似文献   

10.
The use of hydrogen peroxide for the formation of disulfide bridges was studied in 15 peptides of various lengths and structures. The oxidation of peptide thiols by hydrogen peroxide was shown to proceed under mild conditions without noticeable side reactions of Trp, Tyr, and Met residues. Yields of the corresponding cyclic disulfides were high and mostly exceeded those obtained with other oxidative agents, in particular, iodine. It was established that the use of hydrogen peroxide in organic medium also provided sufficiently high yields when large-scale syntheses of oxytocin and octreotide (up to 10 g) were carried out. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2004, vol. 30, no. 2; see also http://www.maik.ru.  相似文献   

11.
Peroxidase, catechol, and hydrogen peroxide were shown to react with proteins, causing a decrease in lysine detectable after acid hydrolysis. The loss of lysine did not occur in the presence of benzenesulfinic acid which suggested that the quinones formed by peroxidase had oxidized some lysyl residues to lysyl aldehyde that formed a cyclic ninhydrin negative Shiff's base. When peroxidase treated protein was oxidized with performic acid prior to hydrolysis a new ninhydrin positive compound was found, which was shown by cochromatography and mass spectroscopy to be α-aminoadipic acid. The α-aminoadipic acid recovered accounted for (20–40)% of the lysine lost.  相似文献   

12.
AIMS: Transmission of microbial pathogens to patients from water in dental units is a concern. To reduce this risk, the decontaminating efficiency of hydrogen peroxide was evaluated. METHODS AND RESULTS: Three percent hydrogen peroxide diluted 1 : 4 in distilled water (contact time 15 min) was used daily to disinfect the waterlines of a pilot unit previously contaminated with Pseudomonas aeruginosa or Staphylococcus aureus. The behaviour of the test bacteria was seen to differ over time. Staph. aureus numbers slowly decreased until only low numbers were recovered, after which the levels remained stable. Ps. aeruginosa abatement was more rapid and the density of the bacteria reached a peak when the circuit was empty. CONCLUSIONS: Staph. aureus and Ps. aeruginosa treated with hydrogen peroxide fell from 6 to 4 log. SIGNIFICANCE AND IMPACT OF THE STUDY: Treatment of dental unit waterlines with hydrogen peroxide was seen to be able to keep the number of the bacteria under control, as long as the treatment was repeated daily.  相似文献   

13.
The Fenton or Fenton-type reaction between aqueous ferrous ion and hydrogen peroxide generates a highly oxidizing species, most often formulated as hydroxyl radical or ferryl ([Fe(IV)O](2+)). Intracellular Fenton-type chemistry can be lethal if not controlled. Nature has, therefore, evolved enzymes to scavenge superoxide and hydrogen peroxide, the reduced dioxygen species that initiate intracellular Fenton-type chemistry. Two such enzymes found predominantly in air-sensitive bacteria and archaea, superoxide reductase (SOR) and rubrerythrin (Rbr), functioning as a peroxidase (hydrogen peroxide reductase), contain non-heme iron. The iron coordination spheres in these enzymes contain five or six protein ligands from His and Glu residues, and, in the case of SOR, a Cys residue. SOR contains a mononuclear active site that is designed to protonate and rapidly expel peroxide generated as a product of the enzymatic reaction. The ferrous SOR reacts adventitiously but relatively slowly (several seconds to a few minutes) with exogenous hydrogen peroxide, presumably in a Fenton-type reaction. The diferrous active site of Rbr reacts more rapidly with hydrogen peroxide but can divert Fenton-type reactions towards the two-electron reduction of hydrogen peroxide to water. Proximal aromatic residues may function as radical sinks for Fenton-generated oxidants. Fenton-initiated damage to these iron active sites may become apparent only under extremely oxidizing intracellular conditions.  相似文献   

14.
The covalent heme attachment has been extensively studied by spectroscopic methods in myeloperoxidase and lactoperoxidase (LPO) but not in eosinophil peroxidase (EPO). We show that heme linkage to the heavy chain is invariably present, whereas heme linkage to the light chain of EPO is present in less than one-third of EPO molecules. Mass analysis of isolated heme bispeptides supports the hypothesis of a heme b linked through two esters to the polypeptide. Mass analysis of heme monopeptides reveals that >90% have a nonderivatized methyl group at the position of the light chain linkage. Apparently, an ester had not been formed during biosynthesis. The light chain linkage could be formed by incubation with hydrogen peroxide, in accordance with a recent hypothesis of autocatalytic heme attachment based on studies with LPO (DePillis, G. D., Ozaki, S., Kuo, J. M., Maltby, D. A., and Ortiz de Montellano P. R. (1997) J. Biol. Chem. 272, 8857-8860). By sequence analysis of isolated heme peptides after aminolysis, we unambiguously identified the acidic residues, Asp-93 of the light chain and Glu-241 of the heavy chain, that form esters with the heme group. This is the first biochemical support for ester linkage to two specific residues in eosinophil peroxidase. From a parallel study with LPO, we show that Asp-125 and Glu-275 are engaged in ester linkage. The species with a nonderivatized methyl group was not found among LPO peptides.  相似文献   

15.
Lactoperoxidase (LPO) is the major consumer of hydrogen peroxide (H(2)O(2)) in the airways through its ability to oxidize thiocyanate (SCN(-)) to produce hypothiocyanous acid, an antimicrobial agent. In nasal inflammatory diseases, such as cystic fibrosis, both LPO and myeloperoxidase (MPO), another mammalian peroxidase secreted by neutrophils, are known to co-localize. The aim of this study was to assess the interaction of LPO and hypochlorous acid (HOCl), the final product of MPO. Our rapid kinetic measurements revealed that HOCl binds rapidly and reversibly to LPO-Fe(III) to form the LPO-Fe(III)-OCl complex, which in turn decayed irreversibly to LPO Compound II through the formation of Compound I. The decay rate constant of Compound II decreased with increasing HOCl concentration with an inflection point at 100 μM HOCl, after which the decay rate increased. This point of inflection is the critical concentration of HOCl beyond which HOCl switches its role, from mediating destabilization of LPO Compound II to LPO heme destruction. Lactoperoxidase heme destruction was associated with protein aggregation, free iron release, and formation of a number of fluorescent heme degradation products. Similar results were obtained when LPO-Fe(II)-O(2), Compound III, was exposed to HOCl. Heme destruction can be partially or completely prevented in the presence of SCN(-). On the basis of the present results we concluded that a complex bi-directional relationship exists between LPO activity and HOCl levels at sites of inflammation; LPO serve as a catalytic sink for HOCl, while HOCl serves to modulate LPO catalytic activity, bioavailability, and function.  相似文献   

16.
Concentrated urine formation in the kidney is accompanied by conditions that favor the accumulation of reactive oxygen species (ROS). Under hyperosmotic conditions, medulla cells accumulate glycine betaine, which is an osmolyte synthesized by betaine aldehyde dehydrogenase (BADH, EC 1.2.1.8). All BADHs identified to date have a highly reactive cysteine residue at the active site, and this cysteine is susceptible to oxidation by hydrogen peroxide. Porcine kidney BADH incubated with H(2)O(2) (0-500 μM) lost 25% of its activity. However, pkBADH inactivation by hydrogen peroxide was limited, even after 120 min of incubation. The presence of coenzyme NAD(+) (10-50 μM) increased the extent of inactivation (60%) at 120 min of reaction, but the ligands betaine aldehyde (50 and 500 μM) and glycine betaine (100 mM) did not change the rate or extent of inactivation as compared to the reaction without ligand. 2-Mercaptoethanol and dithiothreitol, but not reduced glutathione, were able to restore enzyme activity. Mass spectrometry analysis of hydrogen peroxide inactivated BADH revealed oxidation of M278, M243, M241 and H335 in the absence and oxidation of M94, M327 and M278 in the presence of NAD(+). Molecular modeling of BADH revealed that the oxidized methionine and histidine residues are near the NAD(+) binding site. In the presence of the coenzyme, these oxidized residues are proximal to the betaine aldehyde binding site. None of the oxidized amino acid residues participates directly in catalysis. We suggest that pkBADH inactivation by hydrogen peroxide occurs via disulfide bond formation between vicinal catalytic cysteines (C288 and C289).  相似文献   

17.
The use of hydrogen peroxide for the formation of disulfide bridges was studied in 15 peptides of various lengths and structures. The oxidation of peptide thiols by hydrogen peroxide was shown to proceed under mild conditions without noticeable side reactions of Trp, Tyr, and Met residues. Yields of the corresponding cyclic disulfides were high and mostly exceeded those obtained with other oxidative agents, in particular, iodine. It was established that the use of hydrogen peroxide in organic medium also provided sufficiently high yields when large-scale syntheses of oxytocin and octreotide (up to 10 g) were carried out.  相似文献   

18.
It is shown that the inhibitor of catalase 3-amino-1,2,4-triazole (AT) at the concentration of 2 mM affected differently growth of tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) callus lines differing in the morphogenecity. In some cases, AT induced the death of a great fraction of non-morphogenic callus cells; in other cases, it inhibited growth and reduced viability of morphogenic callus. The death of non-morphogenic callus cells may be related to the accumulation of hydrogen peroxide and the development of oxidative stress. After morphogenic callus treatment with AT, we obtained a modified line 1?C8 AT tolerant to AT and differing from the original line in morphology, cell sizes, proliferative activity, and some biochemical characteristics. In the 1?C8 AT line, catalase was sensitive to this inhibitor action. In this case, catalase inactivation with AT did not increase the content of hydrogen peroxide in the cells, which may indicate the compensatory functioning of another/others mechanism(s) destroying hydrogen peroxide.  相似文献   

19.
Dark addition of hydrogen peroxide to intact spinach chloroplastsresulted in the inactivation of ascorbate peroxidase accompaniedby a decrease in ascorbate contents. This was also the casein reconstituted chloroplasts containing ascorbate, NADP+, NAD+and ferredoxin. The addition of hydrogen peroxide during light,however, showed little effect on ascorbate contents and ascorbateperoxidase activity in either the intact or reconstituted chloroplasts.In contrast to ascorbate peroxidase, the enzymes participatingin the regeneration of ascorbate in chloroplasts (monodehydroascorbatereductase, dehydroascorbate reductase and glutathione reductase)were not affected by the dark addition of hydrogen peroxide.Ascorbate contents increased again by illumination of the chloroplastsafter the dark addition of hydrogen peroxide. These resultsshow that the inactivation of the hydrogen peroxide scavengingsystem on dark addition of hydrogen peroxide [Anderson et al.(1983) Biochim. Biophys. Acta 724: 69, Asada and Badger (1984)Plant & Cell Physiol. 25: 1169] is caused by the loss ofascorbate peroxidase activity. Ascorbate peroxidase activitywas rapidly lost in ascorbate-depleted medium, and protectedby its electron donors, ascorbate, isoascorbate, guaiacol andpyrogallol, but not by GSH, NAD(P)H and ferredoxin. (Received June 14, 1984; Accepted August 15, 1984)  相似文献   

20.
Approximately one-half of the lignin and most of the hemicellulose present in agricultural residues such as wheat straw and corn stover are solubilized when the residue is treated at 25 degrees C in an alkaline solution of hydrogen peroxide. The delignification reaction is most efficient when the ratio of hydrogen peroxide to substrate is at least 0.25 (w/w) and the pH is 11.5. The supernatant fraction from a given pretreatment, after addition of makeup peroxide and readjustment of the pH, can be recycled to treat at least six additional batches of substrate, resulting in a substantial concentration of hemicellulose and soluble lignin degradation products. Hydrolysis of the insoluble fraction with Trichoderma reesei cellulase after alkaline peroxide treatment yields glucose with almost 100% efficiency, based upon the cellulose content of the residue before treatment. These data indicate that alkaline peroxide pretreatment is a simple and efficient method for enhancing the enzymatic digestibility of lignocellulosic crop residues to levels approaching the theoretical maximum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号