首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IL-18 time- and concentration-dependently upregulated the expression of intercellular adhesion molecule-1 (ICAM-1) in a monocyte population in human PBMC as determined by FACS analysis while the expression of CD11a, CD18, CD29, CD44, and CD62L in monocytes and that of ICAM-1, CD11a, CD18, CD29, CD44, and CD62L in T cells was not influenced by IL-18. IL-18 in the same concentration range stimulated the production of IL-12, TNF-alpha, and IFN-gamma in culture of PBMC; however, IL-18-induced expression of ICAM-1 in monocytes was not inhibited by anti-IL-12, anti-TNF-alpha, or anti-IFN-gamma Ab, suggesting the independence of the upregulating effect of IL-18 on endogenous IL-12, TNF-alpha, and IFN-gamma production. IL-18 also induced the aggregation of PBMC, which was prevented by anti-ICAM-1 and anti-LFA-1 Abs. On the other hand, anti-ICAM-1 and anti-LFA-1 Abs inhibited IL-18-induced production of three cytokines, IL-12, IFN-gamma, and TNF-alpha, by 60 and 40%, respectively. These results strongly suggested that the IL-18-induced upregulation of ICAM-1 and the subsequent adhesive interaction through ICAM-1 on monocytes and LFA-1 on T/NK cells generate an additional stimulatory signaling as well as an efficient paracrine environment for the IL-18-initiated cytokine cascade.  相似文献   

2.
Activation of T cells by Ag or stimulation of monocytes with inflammatory cytokines induces CD44 to bind to hyaluronan (HA), an adhesion event implicated in leukocyte-leukocyte, leukocyte-endothelial cell, and leukocyte-stromal cell interactions. We have previously shown that TNF-alpha induces CD44 sulfation in a leukemic cell line, which correlated with the induction of HA binding and CD44-mediated adhesion. In this study, we establish that TNF-alpha and IFN-gamma induce HA binding and the sulfation of CD44 in CD14(+) PBMC, whereas no induced HA binding or CD44 sulfation was observed in CD14(-) PBMC stimulated with TNF-alpha. Treatment of cells with NaClO(3), an inhibitor of sulfation, prevented HA binding in a significant percentage of CD14(+) PBMC induced by TNF-alpha, LPS, IL-1beta, or IFN-gamma. Furthermore, stimulation with TNF-alpha or IFN-gamma in the presence of NaClO(3) reduced the ability of isolated CD44H to bind HA, demonstrating a direct effect of CD44H sulfation on HA binding. In contrast, the transient induction of HA binding in T cells by PHA was not affected by NaClO(3), suggesting that activated T cells do not use sulfation as a mechanism to regulate HA binding. Overall, these results demonstrate that inducible sulfation of CD44H is one mechanism used by CD14(+) peripheral blood monocytes to induce HA binding in response to inflammatory agents such as TNF-alpha and IFN-gamma.  相似文献   

3.
Mamoni RL  Blotta MH 《Cytokine》2006,35(3-4):207-216
Human infection with Paracoccidioides brasiliensis may result in three major outcomes: paracoccidioidomycosis-infection (PI), which is observed in healthy carriers living in endemic areas and the adult form (AF) and juvenile form (JF) of the disease. In this study we proposed to examine the intracellular expression of IFN-gamma, TNF-alpha, IL-2, IL-10, IL-12, CXCL8, CXCL9 and CXCL10 by peripheral blood mononuclear cells (PBMC) of patients with the JF and AF of the disease, as well as of PI individuals stimulated with PMA plus ionomycin, LPS or anti-CD3 plus anti-CD28, by flow cytometry. The results showed that PI individuals present a higher percentage of cells producing IFN-gamma, TNF-alpha, IL-2, CXCL9 and CXCL10 when compared to AF and JF patients. IFN-gamma was predominantly detected in CD3(+)CD8(+) T cells, whereas IL-2 and TNF-alpha were mainly expressed in CD3(+)CD4(+) cells. Monocytes of PI individuals also presented higher expression of CD80 and lower expression of CD86 when compared to JF and AF patients, and higher expression of HLA-DR, only when compared to JF patients. These results indicate that the differential production of cytokines and chemokines, as well as the expression of co-stimulatory molecules involved in antigen presentation, may influence the outcome of PCM infection.  相似文献   

4.
T cell-mediated liver diseases are associated with elevated serum levels of C-C chemokine ligand 2 (CCL2)/monocyte chemoattractant protein-1 (MCP-1). However, the extent to which the actions of CCL2/MCP-1 contribute to the pathogenesis of T cell-mediated hepatitis remains incompletely understood. Con A-induced hepatitis is a liver-specific inflammation mediated by activated T cells and is driven by an up-regulation of the hepatic expression of TNF-alpha, IFN-gamma, and IL-4. The present study examined the role of CCL2/MCP-1 in the pathogenesis of T cell-mediated hepatitis induced by Con A administration in the mouse. We demonstrate a novel hepatoprotective role for CCL2/MCP-1 during Con A-induced hepatitis, because CCL2/MCP-1 neutralization strikingly enhanced hepatic injury, both biochemically and histologically, after Con A administration. Furthermore, CCL2/MCP-1 neutralization was associated with a significant reduction in the hepatic levels of TNF-alpha and IFN-gamma, but with a significant increase in hepatic IL-4 levels. Moreover, IL-4 production and CCR2 expression by Con A-stimulated CD3(+)NK1.1(+) T cells was significantly reduced by rMCP-1 treatment in vitro. In summary, we propose that CCL2/MCP-1 fulfills a novel anti-inflammatory role in T cell-mediated hepatitis by inhibiting CD3(+)NK1.1(+) T cell-derived IL-4 production through direct stimulation of its specific receptor CCR2. These findings may have direct clinical relevance to T cell-mediated hepatitis.  相似文献   

5.
In order to discover novel immunomodulators for application in treating autoimmune diseases, a stable Jurkat transfectant was constructed in which luciferase reporter gene is driven by a full-length IL-2 promotor. A chemical library was screened to identify compounds that inhibited luciferase expression in Jurkat transfectants stimulated with PMA and ionomycin. A class of compounds (bis-trifluoromethyl pyrazole, BTPs) was identified from this screen. BTPs were shown to inhibit anti-CD3 and anti-CD28 antibody-induced IL-2 secretion, mixed lymphocyte reaction, and Con A-induced T cell proliferation in normal human peripheral blood T cells. In addition, mRNA levels of IL-4, IL-5, IL-9, IL-10, IL-13, IL-15, and IFN-gamma were markedly inhibited by BTPs in peripheral blood mononuclear cells stimulated by Con A as determined by multi-probe RNA protection assay. Furthermore, IL-2, IL-4, IL-5, and IFN-gamma secretion by Hut 78 cells or CD3(+) T cells stimulated with PMA plus ionomycin or anti-CD3 antibody plus PMA were inhibited in a concentration-dependent manner by BTPs. Therefore, BTPs inhibit a wide spectrum of cytokine production including TH1 and TH2 type cytokines. Taken together, these compounds may be useful for treating autoimmune diseases and organ transplant rejection.  相似文献   

6.
Mycobacterium tuberculosis bacilli readily activate CD4(+) and gammadelta T cells. CD4(+) and gammadelta T cells were compared for their ability to regulate IFN-gamma, TNF-alpha, and IL-10 production, cytokines with significant roles in the immune response to M. tuberculosis. PBMC from healthy tuberculin positive donors were stimulated with live M. tuberculosis-H37Ra. CD4(+) and gammadelta T cells were purified by negative selection and tested in response to autologous monocytes infected with M. tuberculosis. Both subsets produced equal amounts of secreted IFN-gamma. However, the precursor frequency of IFN-gamma secreting gammadelta T cells was half that of CD4(+) T cells, indicating that gammadelta T cells were more efficient producers of IFN-gamma than CD4(+) T cells. TNF-alpha production was markedly enhanced by addition of CD4(+) and gammadelta T cells to M. tuberculosis infected monocytes, and TNF-alpha was produced by both T cells and monocytes. No differences in TNF-alpha enhancement were noted between CD4(+) and gammadelta T cells. IL-10 production by M. tuberculosis infected monocytes was not modulated by CD4(+) or gammadelta T cells. Thus CD4(+) and gammadelta T cells had similar roles in differential regulation of IFN-gamma, TNF-alpha, and IL-10 secretion in response to M. tuberculosis infected monocytes. However, the interaction between T cells and infected monocytes differed for each cytokine. IFN-gamma production was dependent on antigen presentation and costimulators provided by monocytes. TNF-alpha levels were increased by addition of TNF-alpha produced by T cells and IL-10 production by monocytes was not modulated by CD4(+) or gammadelta T cells.  相似文献   

7.
We have developed culture conditions for the efficient expansion of cytotoxic effector cells from peripheral blood mononuclear cells (PBMC) by the timed addition of cytokine-rich supernatants collected from allogeneic PBMC cultures stimulated with anti-CD3 monoclonal antibody (mAb) (allogeneic CD3 supernatants; ACD3S). These cytotoxic effectors belonged primarily to CD56(+) natural killer (NK) cells, and the cell subset with the greatest cytotoxic activity was an otherwise rare population of CD3(+)CD56(+) cells (NKT cells) that expand dramatically under these conditions. CD3(+)CD56(+) cytotoxic effectors were generated from the PBMC of 16 patients with several types of cancer. The CD3(+)CD56(+) cell subset expanded significantly and efficiently lysed NK- as well as lymphokine-activated killer (LAK)-sensitive targets. More importantly, ACD3S-activated CD3(+)CD56(+) cells were capable of efficiently lysing autologous tumor cells including metastatic colorectal, ovarian, breast, lung and pancreatic tumor cells as well as melanoma cells. ACD3S-expanded CD3(+)CD56(+) cells exhibited increased levels of cytoplasmic interleukin-2 (IL-2), tumor necrosis factor-alpha (TNF-alpha), gamma-interferon (IFN-gamma) and perforin. CD3(+)CD56(+) cell-mediated cytotoxicity was not restricted by major histocompatibility complex (MHC) gene products, since it was not blocked by anti-MHC class I mAb but was highly inhibited in the presence of CD2- and CD18-specific mAb. These data suggest that CD3(+)CD56(+) cells expanded under the presence of ACD3S may be utilized in clinical protocols for cancer immunotherapy.  相似文献   

8.
Hyaluronan (HA) is a glycosaminoglycan composed of N-acetylglucosamine and glucuronic acid subunits. Previous studies have suggested that CD44 expressed by T cells bind exogenous HA for their proliferation. However, HA endogenously synthesized by T cells may participate in their autocrine proliferation. In this study, we examined the role of endogenous HA in T cell proliferation using the highly specific HA synthase inhibitor, 4-methylumbelliferone (4-MU). We found that 4-MU inhibited the mitogen-induced synthesis of HA by T cells. Moreover, 4-MU inhibited T cell proliferation in a dose-dependent manner when cells were cultured with different stimuli, including Con A, PMA/ionomycin, and allogeneic spleen cells. Furthermore, 4-MU inhibited mitogen-stimulated IL-2 secretion, suggesting that HA may play a role in the production of this cytokine. Addition of IL-2 to T cells treated with 4-MU and Con A reversed the block in cell proliferation, showing that impaired IL-2 production is a likely mechanism for the inhibited division of T cells. Surprisingly, an anti-CD44 Ab antagonistic for HA binding did not reduce IL-2 secretion or T cell proliferation. Importantly, 4-MU did not alter the surface expression of CD44 or the ability of CD44 to bind to HA. Thus, HA-mediated IL-2 production and T cell proliferation are CD44 independent. Our results strongly suggest that HA synthesized by T cells themselves is critical for their IL-2-mediated proliferation and have revealed a previously unrecognized role for endogenous HA in T cell biology.  相似文献   

9.
Autoreactive CD4(+) T cells play a major role in the pathogenesis of autoimmune diabetes in nonobese diabetic (NOD) mice. We recently showed that the non-MHC genetic background controlled enhanced entry into the IFN-gamma pathway by NOD vs B6.G7 T cells. In this study, we demonstrate that increased IFN-gamma, decreased IL-4, and decreased IL-10 production in NOD T cells is CD4 T cell intrinsic. NOD CD4(+) T cells purified and stimulated with anti-CD3/anti-CD28 Abs generated greater IFN-gamma, less IL-4, and less IL-10 than B6.G7 CD4(+) T cells. The same results were obtained in purified NOD.H2(b) vs B6 CD4(+) T cells, demonstrating that the non-MHC NOD genetic background controlled the cytokine phenotype. Moreover, the increased IFN-gamma:IL-4 cytokine ratio was independent of the genetic background of APCs, since NOD CD4(+) T cells generated increased IFN-gamma and decreased IL-4 compared with B6.G7 CD4(+) T cells, regardless of whether they were stimulated with NOD or B6.G7 APCs. Cell cycle analysis showed that the cytokine differences were not due to cycle/proliferative differences between NOD and B6.G7, since stimulated CD4(+) T cells from both strains showed quantitatively identical entry into subsequent cell divisions (shown by CFSE staining), although NOD cells showed greater numbers of IFN-gamma-positive cells with each subsequent cell division. Moreover, 7-aminoactinomycin D and 5-bromo-2'-deoxyuridine analysis showed indistinguishable entry into G(0)/G(1), S, and G(2)/M phases of the cell cycle for both NOD and B6.G7 CD4(+) cells, with both strains generating IFN-gamma predominantly in the S phase. Therefore, the NOD cytokine effector phenotype is CD4(+) T cell intrinsic, genetically controlled, and independent of cell cycle machinery.  相似文献   

10.
We previously showed that CD28 is expressed on human peripheral blood neutrophils and plays an important role in CXCR-1 expression and IL-8-induced neutrophil migration. In this work we demonstrate that Leishmania major infection of macrophages results in parasite dose-dependent IL-8 secretion in vitro and in IL-8-directed neutrophil migration, as blocked by both anti-IL-8 and anti-IL-8R Abs, toward the L. major-infected macrophages. In the neutrophil-macrophage cocultures, both CTLA4-Ig, a fusion protein that blocks CD28-CD80/CD86 interaction, and a neutralizing anti-IFN-gamma Ab inhibit the anti-leishmanial function of neutrophils, suggesting that the neutrophil-macrophage interaction via CD28-CD80/CD86 plays an important role in the IFN-gamma-dependent restriction of the parasite growth. Cross-linking of neutrophil-expressed CD28 by monoclonal anti-CD28 Ab or B7.1-Ig or B7.2-Ig results in phosphatidylinositol 3-kinase association with CD28 and in wortmannin-sensitive but cyclosporin A-resistant induction and secretion of IFN-gamma. Whereas the neutrophils secrete IFN-gamma with CD28 signal alone, the T cells do not secrete the cytokine in detectable amounts with the same signal. Thus, neutrophil-expressed CD28 modulates not only the granulocyte migration but also induction and secretion of IFN-gamma at the site of infection where it migrates from the circulation.  相似文献   

11.
Trypanosoma cruzi, which causes Chagas' disease, has been shown to cause polyclonal proliferation of lymphocytes after infection in vivo. This paper demonstrates that coculture of human PBMC with T. cruzi CL strain leads to proliferation of lymphocytes, which peaks on days 5 to 7 after infection. Approximately 15% of lymphocytes in culture undergo blast transformation. The proliferation of lymphoblasts can be measured by [3H]TdR incorporation, because the parasites incorporate little TdR. Parasites derived from autologous PBMC cultures or xenogeneic rat fibroblasts stimulate lymphocyte transformation similarly. By immunofluorescent cytometry, lymphoblasts from these cultures are 23 to 46% B cells (CD19+) and 39 to 64% T cells (CD3+), and approximately half of the T cells are CD4+ and half CD8+. A high percentage of lymphoblasts express MHC class II and IL-2R p55, suggesting both B and T lymphoblasts express these molecules. Anti-MHC class II and anti-IL-2R p55 mAb significantly inhibit the proliferative response of PBMC to T. cruzi. The mRNA for cytokines IL-1 beta, IL-2, IL-5, IL-6, IFN-gamma, and TNF-alpha are detected after T. cruzi coculture with PBMC, peaking on day 3. No IL-4 or IL-10 mRNA are detected. Large quantities of bioactive IL-1 and IL-6 are found in the supernatants of these PBMC. Monocytes, infected in the apparent absence of lymphocytes, assume activated morphology and accumulate mRNA for IL-1 beta, TNF-alpha, and IL-6. T cells require accessory cells to proliferate and produce cytokine mRNA. A trypsin-sensitive activity in lysates of T. cruzi stimulates lymphocyte proliferation. The data presented demonstrate that T. cruzi coculture with PBMC leads to lymphocyte proliferation, monocyte activation, and cytokine production.  相似文献   

12.
Immune deviation of cytolytic T cell function, induced by type 2 cytokines like IL-4, is an attractive concept to explain failure of the immune system in some diseases. However, this concept is challenged by previous conflicting results on whether type 2 cytokine-producing CD8(+) T cells are cytolytic. Therefore, we have analyzed the relationship between cytolytic activity and cytokine production among large numbers of primary CD8(+) T cell clones. Single murine CD8(+) T cells of naive phenotype were activated at high efficiency with immobilized Abs to CD3, CD8, and CD11a in the presence of IL-2 (neutral conditions) or IL-2, IL-4, and anti-IFN-gamma Ab (type 2-polarizing conditions) for 8-9 days. Under neutral conditions, most clones produced IFN-gamma without IL-4 and were cytolytic. Under type 2-polarizing conditions, most clones produced IFN-gamma and IL-4 but displayed variable cytolytic activity and CD8 expression. Separation on the basis of surface CD8 levels revealed that, compared with CD8(high) cells from the same cultures, CD8(low) cells were poorly cytolytic and expressed low levels of perforin mRNA and protein and granzyme A, B, and C mRNA. A similar, smaller population of noncytolytic CD8(low) cells was identified among CD8(+) T cells activated in mixed lymphocyte reaction with IL-4. Variable efficiency of generation of the noncytolytic cells may account for the differing results of earlier studies. We conclude that IL-4 promotes the development of a noncytolytic CD8(low) T cell phenotype that might be important in tumor- or pathogen-induced immune deviation.  相似文献   

13.
14.
15.
C57BL/6 mice chronically infected with an avirulent strain (ME-49) of Toxoplasma gondii were used to study the mechanisms by which T lymphocytes and IFN-gamma prevent reactivation of latent infection. Infected animals were treated with mAb, either anti-CD8, anti-CD4, anti-CD4 plus anti-CD8, anti-IFN-gamma, or anti-CD4 plus anti-IFN-gamma and the mice followed for survival, histopathology, cyst numbers, and spleen cell cytokine responses. In agreement with previously published findings, treatment with anti-IFN-gamma antibodies fully reactivated the asymptomatic infection, inducing massive necrotic areas in the brain with the appearance of free tachyzoites and death of all animals within 2 wk. Mice treated with the combination of anti-CD4 plus anti-CD8 antibodies showed augmented pathology and mortality nearly identical to the anti-IFN-gamma- treated animals. In contrast, treatment with anti-CD4 or anti-CD8 mAb alone failed to result in significantly enhanced brain pathology or mortality. In additional experiments, full reactivation of infection was observed in mice treated with anti-CD4 plus anti-IFN-gamma indicating that CD4+ lymphocytes are not required for the pathology resulting from IFN-gamma neutralization. Cytokine measurements on parasite Ag-stimulated spleen cells from mAb-treated mice indicated that both CD4+ and CD8+ cells produce IFN-gamma whereas only CD4+ cells contribute to parasite Ag-induced IL-2 synthesis. Together, these results suggest that CD4+ and CD8+ lymphocytes act additively or synergistically to prevent reactivation of chronic T. gondii infection probably through the production of IFN-gamma.  相似文献   

16.
To investigate the role of HLA-DQ molecules and/or CD4(+) T cells in the pathogenesis of allergic asthma, we generated HLA-DQ6 and HLA-DQ8 transgenic mice lacking endogenous class II (Abeta(null)) and CD4 genes and challenged them intranasally with short ragweed allergenic extract (SRW). We found that DQ6/CD4(null) mice developed a strong eosinophilic infiltration into the bronchoalveolar lavage and lung tissue, while DQ8/CD4(null) mice were normal. However, neither cytokines nor eosinophil peroxidase in the bronchoalveolar lavage of DQ6/CD4(null) mice was found. In addition, the airway reactivity to methacholine was elevated moderately in DQ6/CD4(null) mice compared with the high response in DQ/CD4(+) counterparts and was only partially augmented by CD4(+) T cell transfer. The DQ6/CD4(null) mice showed Th1/Th2-type cytokines and SRW-specific Abs in the immune sera in contrast to a direct Th2 response observed in DQ6/CD4(+) mice. The proliferative response of spleen mononuclear cells and peribronchial lymph node cells demonstrated that the response to SRW in DQ6/CD4(null) mice was mediated by HLA-DQ-restricted CD4(-)CD8(-)NK1.1(-) T cells. FACS analysis of PBMC and spleen mononuclear cells demonstrated an expansion of double-negative (DN) CD4(-)CD8(-)TCRalphabeta(+) T cells in SRW-treated DQ6/CD4(null) mice. These cells produced IL-4, IL-5, IL-13, and IFN-gamma when stimulated with immobilized anti-CD3. IL-5 ELISPOT assay revealed that DN T cells were the cellular origin of IL-5 in allergen-challenged DQ6/CD4(null) mice. Our study shows a role for HLA-DQ-restricted CD4(+) and DN T cells in the allergic response.  相似文献   

17.
In this study we report that the relative expression of 4-1BB (CD137) and CD28 molecules can differentially be modulated on CD8(+) T cells by combinations of various cytokines and anti-cytokine antibodies. During allostimulation of naive CD8(+) T cells in the presence of IL-2, IFN-gamma, IL-12, and anti-IL-4, they evolved into IL-2, IFN-gamma-producing Tc1 cells and showed inability to upregulate 4-1BB expression but not CD28. On the other hand, the Tc2 cells, generated in the presence of allogeneic APCs, IL-2, IL-10, IL-4, and anti-IFN-gamma, demonstrated intact and elevated 4-1BB and CD28 molecules. Activation of Tc1 and Tc2 cells with anti-CD3 and plate-bound anti-4-1BB and anti-CD28 mAbs revealed differential proliferative and cytokine secretory patterns. The 4-1BB signaling in the context of anti-CD3 as first signal led to the increased secretion of IL-4 by the Tc2 cells and not by Tc1 cells, while CD28 triggering produced IL-4 from Tc2 and IL-2 and IFN-gamma from Tc1 cells. Flow cytometric analysis of cell surface expression on Tc1 and Tc2 cells strengthened our observation that 4-1BB expression but not CD28 is poorly expressed on Tc1 cells. Both of the polarized CD8(+) T cell subsets exhibited comparable cytotoxic abilities and perforin and granzyme expression. The regeneration of 4-1BB expression is possible on Tc1 cells when back cultured in a Tc2 cytokine environment, but its expression could not be significantly altered on the Tc2 population unless IL-12 was included in the system.  相似文献   

18.
TL1A, a recently described TNF-like cytokine that interacts with DR3, costimulates T cells and augments anti-CD3 plus anti-CD28 IFN-gamma production. In the current study we show that TL1A or an agonistic anti-DR3 mAb synergize with IL-12/IL-18 to augment IFN-gamma production in human peripheral blood T cells and NK cells. TL1A also enhanced IFN-gamma production by IL-12/IL-18 stimulated CD56(+) T cells. When expressed as fold change, the synergistic effect of TL1A on cytokine-induced IFN-gamma production was more pronounced on CD4(+) and CD8(+) T cells than on CD56(+) T cells or NK cells. Intracellular cytokine staining showed that TL1A significantly enhanced both the percentage and the mean fluorescence intensity of IFN-gamma-producing T cells in response to IL-12/IL-18. The combination of IL-12 and IL-18 markedly up-regulated DR3 expression in NK cells, whereas it had minimal effect in T cells. Our data suggest that TL1A/DR3 pathway plays an important role in the augmentation of cytokine-induced IFN-gamma production in T cells and that DR3 expression is differentially regulated by IL-12/IL-18 in T cells and NK cells.  相似文献   

19.
In the present study, the authors compared the interleukin 17 (IL-17 expression of human naive and phenotypically defined memory T cells as well as its regulation by cAMP pathway. Our data showed that IL-17 mRNA was highly expressed in memory human peripheral CD8(+)45RO+T cells and CD4(+)45RO+T cells when peripheral blood mononuclear cells were first stimulated with ionomycin/PMA. IL-17 expression in memory CD8(+)T cells required accessory signals since culture of ionomycin/PMA-activated CD8(+)45RO+T cells alone did not result to IL-17 expression. In contrast, memory CD4(+)T cell population seems to be more independent. IL-17 and interferon gamma(IFN-gamma) mRNA were both inhibited in the presence of PGE2 or the cAMP analogue (dibutyryl-cAMP), while the anti-inflammatory cytokine IL-10 was highly increased. In contrast, naive CD45RA+T cells were unable to express IL-17 whatever the culture conditions. Naive CD4(+)and CD8(+)T cells were sensitive to the PKA regulatory pathway since they represent a significant source of IL-10 when PBMC were first cultured with ionomycin/PMA in the presence of either PGE2 or db-cAMP. The authors showed that naive cells are highly dependent to their microenvironment, since culture of ionomycin/PMA-activated CD45RA+T cells alone did not result in detectable levels of cytokines even in the presence of PGE2. Results also showed that PGE2 induced quite the same levels of intracellular cAMP in naive and memory cells suggesting that these cell populations are equally sensitive to PGE2. However, we suggest that PGE2 may be more efficient in blocking both IL-17 and IFN-gamma expression in already primed memory T cells, rather than in suppressing naive T cells that could represent a significant source of IL-10. Data suggest that PKA activation pathway plays a critical role in the regulation of cytokine profiles and consequently the functional properties of both human naive and memory CD4(+) and CD8(+)T cells during the immune and inflammatory processes.  相似文献   

20.
The interaction of activated CD44 with its ligand, low m.w. hyaluronan, is involved in inflammation, but no role has been identified for this interaction in the regulation of an immune response to infection. In these studies, infection of C57BL/6 mice with Toxoplasma gondii resulted in increased expression of CD44 on T cells, B cells, NK cells, and macrophages, and a small percentage of CD4(+) T cells express an activated form of CD44. Administration of anti-CD44 to infected mice prevented the development of a CD4(+) T cell-dependent, infection-induced inflammatory response in the small intestine characterized by the overproduction of IFN-gamma. The protective effect of anti-CD44 treatment was associated with reduced production of IFN-gamma, but not IL-12, in vivo and in vitro. Furthermore, the addition of low m.w. hyaluronan to cultures of splenocytes or purified CD4(+) T cells from infected mice resulted in the production of high levels of IFN-gamma, which was dependent on IL-12 and TCR stimulation. Together, these results identify a novel role for CD44 in the regulation of IFN-gamma production by CD4(+) T cells during infection and demonstrate a role for CD44 in the regulation of infection-induced immune pathology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号