首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bifidobacterium longum KCTC 3128 and HLC 3742 were independently immobilized (entrapped) in calcium alginate beads containing 2, 3, and 4% sodium alginate. When the bifidobacteria entrapped in calcium alginate beads were exposed to simulated gastric juices and a bile salt solution, the death rate of the cells in the beads decreased proportionally with an increase in both the alginate gel concentration and bead size. The initial cell numbers in the beads affected the numbers of survivors after exposure to these solutions; however, the death rates of the viable cells were not affected. Accordingly, a mathematical model was formulated which expressed the influences of several parameters (gel concentration, bead size, and initial cell numbers) on the survival of entrapped bifidobacteria after sequential exposure to simulated gastric juices followed by a bile salt solution. The model proposed in this paper may be useful for estimating the survival of bifidobacteria in beads and establishing optimal entrapment conditions.  相似文献   

2.
Summary Citric acid was produced with immobilized Yarrowia lipolytica yeast in repeated batch-shake-flask and air-lift fermentations. In active and passive immobilization methods calcium alginate, -carrageenan, polyurethane gel, nylon web and polyurethane foams were tested as carriers in repeated-batch fermentations. The highest citric acid productivity of 155 mg l–1 h–1 was reached with alginate-bead-immobilized cells in the first batch. A decrease in bead diameter from 5–6 mm to 2–3 mm increased the volumetric citric acid productivity threefold. In an air-lift bioreactor the highest citric acid productivity of 120 mg l–1 h–1 with a product concentration of 16.4 g l–1 was obtained with cells immobilized in -carrageenan beads. Offprint requests to: H. Kautola  相似文献   

3.
Thermomucor indicae-seudaticae was immobilized in alginate, κ-carrageenan, agarose, agar, polyacrylamide and loofah (Luffa cylindrica) sponge (as such or coated with alginate/starch/Emerson YpSs agar), and used for the production of glucoamylase in submerged fermentation. The mycelium developed from alginate-immobilized sporangiospores secreted higher glucoamylase titres (22.7 U ml−1) than those immobilized in other gel matrices and the freely growing mycelial pellets (18.5 U ml−1). Loofah network provided a good support for mycelial growth, but the enzyme production was lower than that attained with alginate beads. Glucoamylase production increased with inoculum density and the optimum levels were achieved when 40 calcium alginate beads (∼5 × 106 immobilized spores) were used to inoculate 50 ml production medium. The alginate bead inoculum displayed high storage stability at 4°C and produced comparable enzyme titres up to 120 days. The glucoamylase production by hyphae emerged from the immobilized sporangiospores was almost stable over eight batches of repeated fermentation. Scanning electron micrographs of alginate beads, after batch fermentation, revealed extensive mycelial growth inside and around the beads.  相似文献   

4.
A cell surface display system with metalbinding properties was previously developed using CS3 fimbriae, which are hollow tubes 20 nm-thick and 2 nm in diameter. In this study, hybrid CS3 pili were separated from recombinant Escherichia coli and entrapped in calcium alginate gel beads in order to improve their stabilization and also adsorption of heavy metals. The surface morphology of the gel beads containing pili was investigated by scanning electron microscopy (SEM). Immunofluorescence microscopy was employed to confirm the attachment of nanobiofibers to the alginate beads. The effects of three variables (sodium alginate concentration, protein to alginate mass ratio, and bead size) at two levels each on Cd2+ biosorption efficiency were investigated by full factorial experimental design. A second-order polynomial equation modeled the design space for the process response of cadmium removal capacity. The optimal values of the factors were obtained as follows: 1% sodium alginate concentration, 0.25 protein to alginate mass ratio, and a 6 mm bead size. Under these conditions, Cd2+ was adsorbed at 45.45 mg/g to the nanobiofiber. The results indicate that the immobilized recombinant hybrid CS3 pili may be an appropriate biosorbent for removal of heavy metals from polluted aquatic environments.  相似文献   

5.
Different factors which affect the stability of calcium alginate gel beads entrapping viable cells during fermentation were investigated. It was found that among others, the initial population of cells per ml of gel beads, the length of period of incubation in CaCl2 solution, and the concentration of sodium alginate used for the immobilization were the most important factors affecting the stability of the gel beads during fermentation. By using an initial cell population of about 105 cells per ml of 2.0% sodium alginate, and incubating the beads for at least 22 h in a CaCl2 solution after immobilization, the percentage of beads which developed cracks during fermentation was highly reduced. Also, without the addition of CaCl2 into the fermenting broth, the gel beads were stable for nine consecutive batch fermentations.  相似文献   

6.
Summary Lactococcus lactis ssp lactis bv diacetylactis, immobilized in calcium alginate beads, was grown in synthetic medium in a continuous flow reactor. Cell distribution inside the gel, as well as the activity of various enzymes, was measured after 30 h of operation. The included biomass tended to concentrate at the periphery of the bead along a section of radius about 100 m long. ATPase activity was maximal in this zone. The activity of NADH oxidase, alcohol dehydrogenase, diacetyl reductase and acetoin reductase, which are repressed in the presence of citrate, were higher in the deeper zones than at the surface of the beads. This result shows that only the peripheral zone of the bead is responsible for the bioconversion of citrate into flavour compounds (diacetyl and acetoin).  相似文献   

7.
Summary The performance of an external loop air-lift bioreactor was investigated by assessing the inter-relationships between various hydrodynamic properties and mass transfer. The feasibility of using this bioreactor for the production of monoclonal antibodies by mouse hybridoma cells immobilized in calcium alginate gel beads and alginate/poly-l-lysine microcapsules was also examined. When the superficial gas velocity, V g , in the 300 ml reactor was varied from 2 to 36 cm/min, the average liquid velocity increased from 3 to 14 cm/sec, the gas hold-up rose from 0.2 to 3.0%, and the oxygen mass transfer coefficient, k L a, increased from 2.5 to 18.1 h-1. A minimum liquid velocity of 4 cm/s was required to maintain alginate gel beads (1000 m diameter, occupying 3% of reactor volume) in suspension. Batch culture of hybridoma cells immobilized in alginate beads followed logarithmic growth, reaching a concentration of 4×107 cells/ml beads after 11 days. Significant antibody production did not occur until day 9 into the culture, reaching a value of 100 g/ml of medium at day 11. On the other hand, bioreactor studies with encapsulated hybridoma cells gave monoclonal antibody concentrations of up to 800 g/ml capsules (the antibody being retained within the semipermeable capsule) and maximum cell densities of 2×108 cells/ml capsule at day 11. The volumetric productivities of the alginate gel immobilized cell system and the encapsulated cell system were 9 and 3 g antibody per ml of reactor volume per day, respectively. The main advantage of the bioreactor system is its simple design, since no mechanical input is required to vary the hydrodynamic properties.  相似文献   

8.
Bifidobacterium longum KCTC 3128 and HLC 3742 were independently immobilized (entrapped) in calcium alginate beads containing 2, 3, and 4% sodium alginate. When the bifidobacteria entrapped in calcium alginate beads were exposed to simulated gastric juices and a bile salt solution, the death rate of the cells in the beads decreased proportionally with an increase in both the alginate gel concentration and bead size. The initial cell numbers in the beads affected the numbers of survivors after exposure to these solutions; however, the death rates of the viable cells were not affected. Accordingly, a mathematical model was formulated which expressed the influences of several parameters (gel concentration, bead size, and initial cell numbers) on the survival of entrapped bifidobacteria after sequential exposure to simulated gastric juices followed by a bile salt solution. The model proposed in this paper may be useful for estimating the survival of bifidobacteria in beads and establishing optimal entrapment conditions.  相似文献   

9.
A composite gel system has been developed combining the chemical and physical properties of calcium alginate and agarose gels. The results of growing composite gel immobilized hybridoma SPO1 cells in a protein-free medium within a fluidized-bed perfusion bioreactor are presented in this paper. During the continuous operation of this system, the total cell density reached 3.9×107 cells per ml of beads (viability 79.6%). The specific productivity of monoclonal antibody of the immobilized hybridoma cells reached more than 1.5 g per 106 viable cells per hour, compared with 0.5 for non-immobilized viable cells grown in a one liter agitated bioreactor with the same medium. Significant increases in cell metabolic activities, including substrate utilization and byproduct formation, were also observed. Leaching of materials from the beads was evident and the major fraction of released materials was alginate.  相似文献   

10.
Summary Growing cells ofLactobacillus casei were entrapped in-carrageenan/locust bean gum (LBG) (2:1 or 2.75%:0.25% w/w respectively) mixed gel beads (two ranges of diameter: 0.5–1.0 and 1.0–2.0 mm) to fermentLactobacillus Selection (LBS) medium and produce biomass. The results showed significant influence of initial cell loading of the beads and bead size on the fermentation rate. The highest cell release rates were obtained with 2.75%:0.25%-carrageenan/LBG small diameter gel beads. However, 17 h fermentation of LBS medium with immobilized cells resulted in substantial softening of the gel matrix, prohibiting reuse of immobilized biocatalysts as inoculum in subsequent batch fermentation. A dynamic shear rheological study showed that the gel weakness was related to chemical interactions with the medium. Results indicated that part of the matrix-stabilizing K+ ions diffused back to the medium. Stabilization of the gel was obtained by adding potassium ions to the LBS medium;L. casei growth was not altered by this supplementation. Fermentation of LBS medium supplemented with KCl byL. casei showed higher cell counts in the broth medium with immobilized cells than with free cells, reaching 1010 cells/ml after about 10 h with entrapped cells in 0.5–1.0 mm diameter beads and 17 h with free cells. Counts in the gel beads after fermentation were higher than 1011 cells/ml and bead integrity was maintained throughout fermentation.  相似文献   

11.
Summary Spores of Curvularia lunata were immobilized in polyacrylamide granules and in calcium alginate beads (2–3 mm in diam.). Germination of the spores, initiated by the addition of nutrients, resulted in an even distribution of mycelium throughout the beads after 48 h. Such beads were used for the conversion of cortexolone to cortisol by steroid-11-hydroxylation. In order to improve the steroid transforming ability several parameters were studied. It was found that preparations based on calcium alginate gave the best results.The possible merits of immobilizing spores rather than vegetative cells, followed by in situ germination are discussed also for other microorganisms and immobilization processes.  相似文献   

12.
Summary The dissolution of alginate gel beads in 20 g sodium citrate /l produces a linear decrease in bead diameter. The rate of dissolution is dependent on the concentration of CaCl2 within the gel beads. This method allows the controlled release of Saccharomyces cerevisiae from alginate gel beads and permits the simple and rapid determination of the radial distribution of cell concentration.  相似文献   

13.
Summary The effective diffusion coefficient of oxygen, IDe, was determined in different gel support materials (calcium alginate, -carrageenan, gellan gum, agar and agarose) which are generally used for immobilization of cells. The method used was based upon fitting Crank's model on the experimental data. The model describes the solute diffusion from a well-stirred solution into gel beads which are initially free of solute. The effect of the gel concentration on IDe of oxygen in the gel was investigated. The results showed a decreasing IDe for both agar and agarose at increasing gel concentration. In case of calcium alginate and gellan gum, a maximum in IDe at the intermediate gel concentration was observed. It is hypothesized that this phenomenon is due to a changing gelpore structure at increasing gel concentrations. The IDe of oxygen in calcium alginate, -carrageenan and gellan gum varied from 1.5*10–9 to 2.1*10–9 m2s–1 in the gel concentration range of 0.5 to 5% (w/v).  相似文献   

14.
Summary The problem of obtaining a rapid estimate of the microbial content of an immobilised cell suspension is addressed. The low-frequency conductivity of free-living cell suspensions of Clostridium pasteurianum is lower than that of the medium in which they are suspended, by an amount conforming to the Bruggeman relation. The conductivity of the cell wall makes a negligible contribution to the measured conductivity under the conditions used. Calcium alginate beads (lacking microbial cells) lower the conductivity of a solution with which they have been equilibrated by an extent which is a function of the concentration of alginate gel used in forming the beads. When this is taken into account, the ratio of the conductivity of a suspension of gel-immobilised cells to that of the suspending medium can be used to give a rapid and convenient assessment of the amount of microbial biomass present.  相似文献   

15.
Summary For the production of cell-free thermostable -amylases and pullulanases various anaerobic thermophilic bacteria that belong to the genera Clostridium and Thermoanaerobacter were immobilized in calcium alginate gel beads. The entrapment of bacteria was performed in full as well as in hollow spheres. An optimal limited medium, which avoided bacterial outgrowth, was developed for the cultivation of immobilized organisms at 60° C using 0.4% starch as substrate. Compared to non-immobilized cells these techniques allowed a significant increase (up to 5.6-fold) in the specific activities of the extracellular enzymes formed. An increase in the productivity of extracellular enzymes was observed after immobilization of bacteria in full spheres. In the case of C. thermosaccharolyticum, for instance, the productivity was raised from 90 units (U)/ 1012 cells up to 700 U/1012 cells. Electrophoretic analysis of the secreted proteins showed that in all cases most of the amylolytic enzymes formed were released into the culture medium. Proteins that had a molecular mass of less than 450 000 daltons could easily diffuse through the gel matrix. Cultivation of immobilized bacteria in semi-continuous and fed-batch cultures was also accompanied by an elevation in the concentration of cell-free enzymes. Offprint requests to: G. Antranikian  相似文献   

16.
The productivity of immobilized yeast cell reactors varies with a number of parameters, including flow, amount and growth rate of yeast, bead size and type of medium. Variation of these parameters has a pronounced effect on reaction rate. This paper presents typical ranges for these productivities and demonstrates the patterns of changes that take place when bead size, flow and reaction medium are varied. Saccharomyces cerevisiae cells were immobilized in calcium alginate beads for the production of ethanol. The productivity of immobilized yeast in a batch reactor (0.2 g ethanol/g yeast · h) was only two-thirds that of free cells suspended at an equivalent cell density (0.3 g ethanol/g yeast · h). Different flow rates and bead sizes were used to ‘optimize’ the productivity. The productivity of 3.34 mm beads at a flow rate of 8.8 litre h?1(superficial velocity: 0.12 cm s?1) was 95% higher than that at 1.0 l h?1. Maximum productivities of 0.34, 0.27, 0.22 g/g yeast· h were obtained (at a flow rate of 8.8 l h?1) for 9.2% yeast-immobilized beads of 3.34, 4.45 and 5.65 mm in diameter, respectively.  相似文献   

17.
Summary Since a lethal effect of an increased temperature (42°C) on Pseudomonas putida strains PaW8 and PaW130 was demonstrated, strictly ionotropic gels such as calcium alginate or -carrageenan type X 0909 were used for cell co-immobilization, rather than a thermoionotropic -carrageenan gel. Among the variety of gel-dissolving solutions tested, only a 0.05M Na2CO3/0.02M citric acid solution was able to preserve around 100 % of the cell viability. A complete cell recovery was obtained from calcium alginate gel beads, while only 6 % of viable cells was recovered from the ionotropic -carrageenan gel.  相似文献   

18.
The purpose of this investigation was to study the effect ofStreptomyces marinensis NUV-5 cells immobilized in calcium alginate for the production of neomycin. The effect of various parameters, such as the effect of alginate concentration (1%, 2%, 3%, 4%, and 5% wt/vol), the effect of cation (caCl2, BaCl2, and SrCl2), the concentration of cation (0.01M, 0.125M, 0.25M, 0.375M, and 0.5M), the curing times (1, 6, 11, 16, and 21 hours), and the diameter of the bead (1.48, 2.16, 3.24, 4.46, and 5.44 mm), on neomycin production and bead stability were studied. The effect of maltose (4%, 3%, 2%, and 1% wt/vol) and sodium glutamate (0.6%, 0.3%, 0.15%, and 0.075%) wt/vol) concentration on neomycin production was also studied. Better neomycin production was achieved with optimized parameters, such as alginate at 2% wt/vol, 0.25M CaCl2, 1-hour curing time, and 3.24 mm bead diameter. Effective neomycin production was achieved with 3% wt/vol maltose and 0.6% wt/vol sodium glutamate concentration. The repeated batch fermentations were conducted (every 96 hours) using the optimized alginate beads, employing the production medium with 3% wt/vol maltose and 0.6% wt/vol sodium glutamate along with minerals salts solution. The increase in antibiotic production was observed up to the 5th cycle, and later gradual decrease in antibiotic production was observed. Comparison of the total antibiotic production with free cells and immobilized cells was also done. An enhanced antibiotic productivity of 32% was achieved with immobilized cells over the conventional free-cell fermentation, while 108% more productivity was achieved over the washed free-cell fermentation. From these results it is concluded that the immobilized cells ofS marinensis NUV-5 in calcium alginate are more efficient for the production of neomycin with repeated batch fermentation.  相似文献   

19.
Microorganisms have become key components in many biotechnological processes to produce various chemicals and biofuels. The encapsulation of microbial cells in calcium cross-linked alginate gel beads has been extensively studied due to several advantages over using free cells. However, industrial use of alginate gel beads has been hampered by the low structural stability of the beads. In this study, we demonstrate that the incorporation of interpenetrating covalent cross-links in an ionically cross-linked alginate gel bead significantly enhances the bead's structural durability. The interpenetrating network (IPN) was prepared by first cross-linking alginate chemically modified with methacrylic groups, termed methacrylic alginate (MA), with calcium ions and subsequently conducting a photo cross-linking reaction. The resulting methacrylic alginate gel beads (IPN-MA) exhibited higher stiffness, ultimate strength and ultimate strain and also remained more stable in media either subjected to high shear or supplemented with chelating agents than calcium cross-linked alginate gel beads. Furthermore, yeast cells encapsulated in IPN-MA gel beads remained more metabolically active in ethanol production than those in calcium cross-linked alginate gel beads. Overall, the results of this study will be highly useful in designing encapsulation devices with improved structural durability for a broad array of prokaryotic and eukaryotic cells used in biochemical and industrial processes.  相似文献   

20.
Lee KH  Choi IS  Kim YG  Yang DJ  Bae HJ 《Bioresource technology》2011,102(17):8191-8198
Yeast immobilized on alginate beads produced a higher ethanol yield more rapidly than did free yeast cells under the same batch-fermentation conditions. The optimal fermentation conditions were 30 °C, pH 5.0, and 10% initial glucose concentration with 2% sodium alginate beads. The fermentation time using reused alginate beads was 10-14 h, whereas fresh beads took 24 h, and free cells took 36 h. All bead samples resulted in nearly a 100% ethanol yield, whereas the free cells resulted in an 88% yield. Transmission electron microscopy (TEM) showed that the shortened time and higher yield with the reused beads was due to a higher yeast population per bead as well as a higher porosity. The ultrastructure of calcium alginate beads and the alginate matrix structure known as the “egg-box” model were observed using TEM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号