首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arabinose-leucine deletion mutants of Escherichia coli B-r   总被引:18,自引:9,他引:9       下载免费PDF全文
The control of ara gene expression was studied in mutants of Escherichia coli B/r containing deletions which fused the l-arabinose gene complex with the leucine operon (the normal gene order being araDABIOC...leuDCBAO). Complementation experiments with stable merodiploids showed that expression of ara genes cis to araC-leu deletions was controlled by the trans-acting product of the araC gene. Expression of ara genes cis to araB-leu deletions was under leucine control. These studies confirm the existence of a region between genes araC and araB essential for normal activator controlled expression of the ara structural genes. One deletion was characterized as an araO-leu deletion. Its effect on ara gene expression was unique in that ara genes were susceptible to potential regulation by both l-arabinose and leucine. These experiments suggest that two different species of messenger ribonucleic acid (mRNA) may be produced for the ara-leu region as a result of this deletion. One, under l-arabinose-activator control, is initiated in the l-arabinose region; the other, under leucine control, is initiated in the leucine region. The latter indicates that araI can be transcribed. Whether araI is transcribed in the former instance (mRNA made under activator control) remains to be established.  相似文献   

2.
The Bacillus subtilis araC locus, mapped at about 294 degrees on the genetic map, was defined by mutations conferring an Ara- phenotype to strains bearing the metabolic araA, araB, and araD wild-type alleles (located at about 256 degrees on the genetic map) and by mutants showing constitutive expression of the three genes. In previous work, it has been postulated that the gene in which these mutations lie exerts its effect on the ara metabolic operon in trans, and this locus was named araC by analogy to the Escherichia coli regulatory gene. Here, we report the cloning and sequencing of the araC locus. This region comprises two open reading frames with divergently arranged promoters, the regulatory gene, araC, encoding a 41-kDa polypeptide, and a partially cloned gene, termed araE, which most probably codes for a permease involved in the transport of L-arabinose. The DNA sequence of araC revealed that its putative product is very similar to a number of bacterial negative regulators (the GalR-LacI family). However, a helix-turn-helix motif was identified in the N-terminal region by its identity to the consensus signature sequence of another group of repressors, the GntR family. The lack of similarity between the predicted primary structure of the product encoded by the B. subtilis regulatory gene and the AraC regulator from E. coli and the apparently different modes of action of these two proteins lead us to propose a new name, araR, for this gene. The araR gene is monocistronic, and the promoter region contains -10 and -35 regions (as determined by primer extension analysis) similar to those recognized by RNA polymerase containing the major vegetative cell sigma factor sigmaA. An insertion-deletion mutation in the araR gene leads to constitutive expression of the L-arabinose metabolic operon. We demonstrate that the araR gene codes for a negative regulator of the ara operon and that the expression of araR is repressed by its own product.  相似文献   

3.
The araB and araC genes of Erwinia carotovora were expressed in Escherichia coli and Salmonella typhimurium. The araB and araC genes in E. coli, E. carotovora, and S. typhimurium were transcribed in divergent directions. In E. carotovora, the araB and araC genes were separated by 3.5 kilobase pairs, whereas in E. coli and S. typhimurium they were separated by 147 base pairs. The nucleotide sequence of the E. carotovora araC gene was determined. The predicted sequence of AraC protein of E. carotovora was 18 and 29 amino acids longer than that of AraC protein of E. coli and S. typhimurium, respectively. The DNA sequence of the araC gene of E. carotovora was 58% homologous to that of E. coli and 59% homologous to that of S. typhimurium, with respect to the common region they share. The predicted amino acid sequence of AraC protein was 57% homologous to that of E. coli and 58% homologous to that of S. typhimurium. The 5' noncoding regions of the araB and araC genes of E. carotovora had little homology to either of the other two species.  相似文献   

4.
In vivo regulation of the Escherichia coli araC promoter.   总被引:10,自引:3,他引:7  
The ara pC promoter is known to be derepressed about fivefold for 20 to 30 min after the addition of arabinose. This transient derepression was studied by using araC::Mu lac insertions and araC-lacZ gene fusions. In strains containing increased levels of araC protein, the pC promoter became progressively less derepressible, but the ara pBAD promoter remained normally inducible. Repression of pC was reestablished 20 min after induction in araB mutants, but did not occur in arabinose-transport-deficient mutants. Finally, mutant araCc proteins which normally do not repress pC did so in the presence of arabinose.  相似文献   

5.
The growth of strain araC(c)67, which produces the enzymes of the ara operon constitutively, is inhibited by the addition of ribitol. Isolation of strains resistant to ribitol yields mutants of either the araB or araC genes. A model to account for the inhibition by ribitol is discussed.  相似文献   

6.
Two recombinant plasmids, pSNL1 and pSNL2, carrying structural genes for L-arabinose utilization were isolated from a Bacillus subtilis gene library. Both plasmids complemented araD mutations in a Rec- B. subtilis strain and in Escherichia coli. Moreover, pSNL1 also complemented araB mutations in both species and efficiently transformed araA Rec+ B. subtilis strains to Ara+. Detailed physical mapping of both plasmids in addition to transformation experiments involving defined restriction fragments from the pSNL1 insert unambiguously determined the gene order to be araD, araB, and araA, an order different from that found in E. coli.  相似文献   

7.
A lambda lysogen with the prophage inserted into the arabinose B gene of Escherichia coli strain K-12 has been prepared. Induction of the phage from this lysogen yields viable phage at a frequency 4 X 10(-6) that found for induction of lysogens with phage inserted at the normal attachment site. Over 30% of the phage particles induced from the insertion in ara are arabinose-transducing phage. The excision end points of 62 independently isolated, nondefective araC-transducing phage containing less than the entire araC gene were genetically determined and were found to be randomly distributed through the araC gene. The amount of arabinose deoxyribonucleic acid contained on four selected transducing phage was determined by electron microscopy of deoxyribonucleic acid heteroduplexes, providing a physical map of the araC gene. The efficiency with which these phage transduce araC and araB point mutations was found to be approximately proportional to the homology length available for recombination.  相似文献   

8.
9.
Strains of Escherichia coli B/r containing a deletion of the regulatory gene araC are Ara-. Slow-growing revertants of these strains were isolated and designated aralc because they contain a second mutation in a controlling site, aral, that allows for a low level of constitutive expression of the araBAD operon (Englesbert et al., 1969). We mutagenized aralc delta C strains and selected mutants that grow faster in mineral L-arabinose medium. The new mutations, called araXc, map very close to the original aralc mutations and are in the controlling site region between araB and araC. The aralcXc delta C strains have a higher constitutive level of expression of the araBAD operon than the aralc delta C parents. The araXc mutations are cis acting and decrease the araBAD operon's sensitivity to catabolite repression. The araBAD operon is expressed equally well in ara delta C and ara C cya crp backgrounds. The repressor form of ara C protein is able to repress the constitutive synthesis due to the ara Xc allele.  相似文献   

10.
The organization of the araBAD operon of Escherichia coli   总被引:12,自引:0,他引:12  
N Lee  W Gielow  R Martin  E Hamilton  A Fowler 《Gene》1986,47(2-3):231-244
  相似文献   

11.
Merodiploids containing a high-constitutive and a low-constitutive araC(c) allele were assayed for constitutive expression of the ara operon. Low-constitutive araC(c) alleles either were unable to repress the constitutive rate of ara operon expression exhibited by by high-constitutive araC(c) alleles or achieved a partial repression of the high-constitutive rate of operon expression. Either mutation to a low-constitutive araC(c) mutant resulted in a partial or complete loss of repressor function, or subunit mixing between the two araC(c) mutant proteins resulted in a partial or complete dominance of the high-constitutive araC(c) allele. Five of the six araC(c) alleles tested allowed a partial induction of the ara operon in cya crp background. In general, a higher level of ara operon induction was achieved in the cya crp background by high araC(c) alleles than by low araC(c) alleles. Furthermore, several araC(c) mutants exhibited decreased sensitivity to catabolite repression, particularly in the presence of inducer. The results suggest a model in which certain araC(c) gene products can achieve ara operon induction in the presence of either arabinose (inducer) or catabolite activator protein-cyclic adenosine monophosphate, whereas the wild-type araC gene product requires the presence of both of these factors for operon expression.  相似文献   

12.
13.
The araBAD operon of Escherichia coli B/r is positively and negatively regulated by the araC+ regulatory protein. Mutations in gene araC can result in a variety of different regulatory phenotypes: araC null mutants (those carrying a null allele exhibiting no repressor or activator activity) are unable to achieve operon induction; araC-constitutive (araCc) mutants are partially constitutive, inducible by D-fucose, and resistant to catabolite repression; araCh mutants are hypersensitive to catabolite repression; and araCi mutants are resistant to catabolite repression. Various mutant alleles of gene araC were cloned into a derivative of plasmid pBR322 by in vivo recombination. Various heterozygous araC allelic combinations were constructed by transformation. Analysis of isomerase (araA) specific activity levels under various growth conditions indicated the following dominance relationships with regard to sensitivity to catabolite repression: araCh greater than araC+ greater than (araCc and araCi) greater than araC. It was concluded that the araCh protein may form a repressor complex that is refractory to removal by cyclic AMP receptor protein-cyclic AMP complex. This was interpreted in terms of the known nucleoprotein interactions between ara regulatory proteins and ara regulatory DNA.  相似文献   

14.
Strains were constructed that contain mutational alterations affecting two distinct functional domains within the araC gene protein. The araCi (catabolite repression insensitivity) and araCh (catabolite repression hypersensitivity) mutations were used to alter the catabolite repression sensitivity domain, and mutation to D-fucose resistance was used to alter the inducer binding domain. araCh, D-fucose-resistant double mutants never exhibited constitutive ara operon expression, whereas all of the araCi, D-fucose-resistant double mutants did exhibit constitutivity. When L-arabinose was used as an inducer, most of the double mutants exhibited the sensitivity to catabolite repression associated with the araCi or araCh mutation. However, when D-fucose was used as an inducer, changes in sensitivity to catabolite repression were observed that were attributed to interactions between the two protein domains. The roles of catabolite activator protein and araC gene protein in the induction of the araBAD operon were discussed.  相似文献   

15.
Maximum expression of the adjacent but divergently transcribed araBAD operon and araC gene requires the presence of cyclic AMP (cAMP) and the cAMP receptor protein (CRP). DNase I protection studies have previously revealed a high-affinity CRP-binding site in the ara regulatory region. Deletion mutations introduced into this site resulted in reduced expression of araBAD and araC. However, other experiments have demonstrated that spacing changes in the ara regulatory region may have multiple effects due to disruption of a DNA loop. Thus, the deletions could have destroyed the CRP-binding site, the ability to form a loop, or both. In the present study, substitution mutations were introduced into the CRP site in order to avoid creating spacing changes. We found that a 3-base-pair substitution resulted in a 30% reduction in araBAD expression, whereas a 6-base-pair substitution resulted in an 80% reduction. Both of these substitution mutations reduced araC expression threefold. We conclude that CRP bound to this site regulates expression in both directions. We found that a spacing change in the CRP site does not alter araBAD expression any more than does a substitution mutation.  相似文献   

16.
The Escherichia coli araBAD operon consists of three genes encoding three enzymes that convert L-arabinose to D-xylulose-5 phosphate. In this paper we report that the genes of the E. coli araBAD operon have been expressed in Saccharomyces cerevisiae using strong promoters from genes encoding S. cerevisiae glycolytic enzymes (pyruvate kinase, phosphoglucose isomerase, and phosphoglycerol kinase). The expression of these cloned genes in yeast was demonstrated by the presence of the active enzymes encoded by these cloned genes and by the presence of the corresponding mRNAs in the new host. The level of expression of L-ribulokinase (araB) and L-ribulose-5-phosphate 4-epimerase (araD) in S. cerevisiae was relatively high, with greater than 70% of the activity of the enzymes in wild type E. coli. On the other hand, the expression of L-arabinose isomerase (araA) reached only 10% of the activity of the same enzyme in wild type E. coli. Nevertheless, S. cerevisiae, bearing the cloned L-arabinose isomerase gene, converted L-arabinose to detectable levels of L-ribulose during fermentation. However, S. cerevisiae bearing all three genes (araA, araB, and araD) was not able to produce detectable amount of ethanol from L-arabinose. We speculate that factors such as pH, temperature, and competitive inhibition could reduce the activity of these enzymes to a lower level during fermentation compared to their activity measured in vitro. Thus, the ethanol produced from L-arabinose by recombinant yeast containing the expressed BAD genes is most likely totally consumed by the cell to maintain viability.  相似文献   

17.
Mutations in the araC gene of Escherichia coli B/r were isolated which alter both activation of the araBAD operon expression and autoregulation. The mutations were isolated on an araC-containing plasmid by hydroxylamine mutagenesis of plasmid DNA. The mutant phenotype selected was the inability to autoregulate. The DNA sequence of 16 mutants was determined and found to consist of seven different missense mutations located within the distal third of the araC gene. Enzyme activities revealed that each araC mutation had altered both autoregulatory and activator functions of AraC protein. The mutational analysis presented in this paper suggests that both autoregulatory and activator functions are localized to the same determinants of the AraC protein and that the amino acid sequence within the carboxy-terminal region of AraC protein is important for site-specific DNA binding.  相似文献   

18.
19.
20.
The polyadenylic acid-containing messenger ribonucleic acids of eukaryotic cells are rapidly isolated and deproteinized in a simple and gentle one-step procedure. The polyribosome fraction, dissolved in 0.5 M NaCl/0.5 percent sodium dodecyl sulfate, is passed through an oligo(dT)-cellulose column which is then washed with the solvent until proteins and contaminating ribonucleic acids are fully removed. Deproteinized messenger ribonucleic acid is then eluted by lowering the ionic strength. This method gives highly purified and active messenger ribonucleic acids from all tissues tested. The yield is approximately 1.5 to 2 percent of the polyribosomal ribonucleic acid. Messenger ribonucleic acids are assayed in a rabbit reticulocyte-derived, messenger-dependent, cell-free protein-synthesizing system modified from Crystal et al. (Crystal, R. G., Nienhuis, A. W., Elson, N. A., and Anderson, W.F. (1972) J. Biol. Chem. 247, 5357-5368). This system synthesizes proteins at an almost linear rate for at least 2 hours. During this period, each globin messenger ribonucleic acid directs the synthesis of several globin molecules. Each active ribosome synthesizes a globin molecule every 6 to 7 min, but only a small fraction of the ribosomes or messengers are active at any instant. Translation occurs mainly on di- and monoribosomes although larger sized polysomes also occur. Several lines of evidence suggest that globin messenger ribonucleic acid requires "activation" before it can be utilized and that a messenger activation step of protein synthesis initiation is rate-limiting in this cell-free system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号