首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The purple sulphur bacterium Thiocapsa roseopersicina, strain BBS, grown in the darkness in aerobic autotrophic conditions, oxidized sulphides to free sulphur and then to sulphates. This was accompanied with the fixation of carbon dioxide by the cells. Addition of glucose to the mineral medium increased the biomass yield; the cells oxidized thiosulphate still at a high rate. These results prove the possibility of switching T. roseopersicina from photosynthesis to a dark chemolithautotrophic way of life.  相似文献   

2.
Cell death and mutagenesis in bleomycin-treated cells of Thiocapsa roseopersicina (a purple sulfur bacterium) was studied by cultivation in a semisolid medium (agar-shake technique). This technique has also proven useful in assessing the frequency of antibiotic mutations by detecting and counting individual colonies of Thiocapsa roseopersicina. The frequencies of spontaneous mutants resistant to ampicillin, rifampicin, cloramphenicol, tetracycline, kanamycin, streptomycin, and neomycin were also studied: they ranged between 2×10-9 and 9×10-8. Bleomycin (4 g/ml) sharply increased the frequency of ampicillin-resistant mutants, from 10-8 (spontaneous) to 4×10-4 (induced), in 17 h. An inducible, error-prone mechanisms of DNA synthesis seems to be responsible for this enhancement of the mutagenic effect. This is the first report on the sensitivity to several antibiotics, and capacity of lethality and mutagenesis by bleomycin has been studied in a purple sulfur bacterium.  相似文献   

3.
The dominant purple sulfur bacterium of laminated sediment ecosystems in temperate environments, Thiocapsa roseopersicina, was cultivated in sulfide-limited continuous cultures (D=0.03 h-1) subjected to various combined diel regimen of aeration and illumination in order to simulate environmental conditions in microbial mats. For comparison, cultures were grown under similar illumination regimens but continuously anoxic conditions.Bacteriochlorophyll a (BChla) and carotenoid synthesis was restricted to anoxic-dark periods and did not occur during oxic-light periods. An increase in the length of the oxic-light periods resulted in decreased pigment contents. However, phototrophic growth remained possible even at 20 h oxic-light/4 h anoxic-dark regimens. When anoxic conditions were maintained throughtout, BChla synthesis occurred both during light and dark periods.Glycogen was synthesized in the light and degraded in the dark. Calculations showed that degradation of 1/4–1/5 of the glycogen is sufficient to account for the BChla and carotenoid synthesis in the dark.The data showed that T. roseopersicina is very well adapted to cope with the combined oxygen and light regimes as they occur in microbial mats, which may explain the dominance of this bacterium in the purple layer of these sediment ecosystems.Non-standard abbreviations BChl bacteriochlorophyll - specific growth rate - D dilution rate - SR concentration of limiting substrate in reservoir bottle  相似文献   

4.
The effects of some metal ions on the activity and activation of Thiocapsa roseopersicina hydrogenase have been studied. Inhibitory effects of Ni2+ and Cd2+ on the catalytic activity of the enzyme were reversible and competitive with respect to methyl viologen (MV) in the reaction of hydrogen oxidation. The affinity of these metal ions to the enzyme increased significantly with increasing pH, suggesting that their interactions are determined by electrostatic forces. Cu2+ and Hg2+ irreversibly inhibited the hydrogenase activity. A decrease in absorption of hydrogenase at 400 nm in the presence of these metal ions is indicative of the destruction of the FeS cluster in the enzyme.  相似文献   

5.
The method of purification up to electrophoretical homogeneity of cytochrome c552 from the phototrophic bacterium Thiocapsa roseopersicina, strain BBS is described. For the cytochrome absorption spectrum the maxima at 417, 523 and 552 nm are characteristic for the reduced state and at 409 nm--for the oxidized state. The molecular weight is equal to 62000. The cytochrome contains two hemes per molecule and consists of two subunits. pI is 4.1; E0' is about 10 mV. Cytochrome c552 is a flavoprotein according to its fluorescence spectrum and subunit structure. T. roseopersicina cytochrome c552 is able to be reduced with sulphide, cysteine and ascorbate as well as with H2 in the presence of hydrogenase from the same bacterium. These data suggest that cytochrome c552 from T. roseopersicina functions in vivo at the initial stage of electron transport from hydrogen and sulphide.  相似文献   

6.
Abstract It was shown that glutamine synthetase of purple sulfur bacterium Thiocapsa roseopersicina is regulated by covalent modification. This conclusion is made on the basis of results showing that: (i) incubation of cells under conditions of nitrogen deprivation in the light lead to an increase of glutamine synthetase activity; (ii) addition of ammonium to nitrogen-starved cell suspensions caused a rapid decrease of glutamine synthetase activity; (iii) inhibition of glutamine synthetase by feedback modifiers was higher in ammonium-treated cells than in those starved for a nitrogen source; (iv) treatment of purified glutamine synthetase and cell-free extracts with phosphodiesterase was accompanied by an increase of glutamine synthetase activity, indicating the cleavage of modifying residues covalently bound to glutamine synthetase molecules.  相似文献   

7.
Abstract The anoxygenic phototrophic purple sulfur bacterium Thiocapsa roseopersicina was grown in illuminated continuous cultures with thiosulfate as growth limiting substrate. Aeration resulted in completely colorless cells growing chemotrophically, whereafter the conditions were changed to a 23 h oxic/1 h anoxic regime. After 11 volume changes at a dilution rate of 0.031 h−1 (35% of μmax) a time dependent equilibrium was established. During the 23 h oxic periods bacteriochlorophyll a synthesis (BChl a ) was not observed, whereas during the 1 h anoxic periods synthesis was maximal (i.e. 1.1 μg (mg protein)−1 h−1). As a result the BChl a concentration gradually increased from zero to an average value over 24 h of 1.9 μg (mg protein)−1. Concomitantly, the protein concentration increased from 13.9 mg 1−1 during continuous oxic conditions to 28.8 mg 1−1. For comparison, the protein concentration during fully phototrophic growth at an identical thiosulfate concentration in the inflowing medium was 53.7 mg 1−1. The specific respiration rate was 8 μmol O2 (mg protein)−1 h−1 during full chemotrophic growth and gradually decreased to 3.5 μmol O2 (mg protein)−1 h−1 after 11 volume changes at the regime employed. These data show that T. rosepersicina is able to simultaneously utilize light and aerobic respiration of thiosulfate as sources of energy. The ecological relevance of the data is discussed.  相似文献   

8.
The localization of hydrogenase in the phototrophic bacterium Thiocapsa roseopersicina was investigated by subcellular fractionations, and transmission electron microscopic immunocytochemistry. By using sonicated cells and measuring in vitro hydrogenase activities in soluble and membrane fractions, respectively, a weak hydrophobic interaction between the hydrogenase enzyme and the T. roseopersicina membranes was observed. Polyclonal antisera directed against the purified hydrogenase were raised in rabbits and exhibited one band in native-PAGE/Western immunoblot analysis. Native-PAGE/activity stain confirmed the identity of this band as being hydrogenase. Immunocytolocalization experiments using ultrathin sections showed an internal localization of the hydrogenase enzyme. A higher specific labeling was associated with chromatophores, indicating a possible coupling of hydrogenase with the photosynthetic membranes in the T. roseopersicina cells.  相似文献   

9.
A pigment mutant strain of the purple sulfur photosynthetic bacterium Thiocapsa roseopersicina BBS was isolated by plasposon mutagenesis. Nineteen open reading frame, most of which are thought to be genes involved in the biosynthesis of carotenoids, bacteriochlorophyll, and the photosynthetic reaction center, were identified surrounding the plasposon in a 22-kb-long chromosomal locus. The general arrangement of the photosynthetic genes was similar to that in other purple photosynthetic bacteria; however, the locations of a few genes occurring in this region were unusual. Most of the gene products showed the highest similarity to the corresponding proteins in Rubrivivax gelatinosus. The plasposon was inserted into the crtD gene, likely inactivating crtC as well, and the carotenoid composition of the mutant strain corresponded to the aborted spirilloxanthin pathway. Homologous and heterologous complementation experiments indicated a conserved function of CrtC and CrtD in the purple photosynthetic bacteria. The crtDC and crtE genes were shown to be regulated by oxygen, and a role of CrtJ in aerobic repression was suggested.  相似文献   

10.
The method of purification up to homogenous states and properties of NADP-reductase of purple bacteria Thiocapsa roseopersicina, strain BBS, are described. The molecular weight of NADP-reductase is about 47 000; it is flavoprotein consisting of two subunits. Atebrim and chloromercury bensoate inhibit the activity of NADP-reductase (34% and 33--60%, respectively). The enzyme is specific to NADPH; it catalyzes menadion-reductase reaction, diaphorase reaction of benzyl viologen reduction, oxidation of reduced benzyl viologen in the presence of NADP, reduction of ferredoxin and cytochrome c in the presence of NADPH, but it is not capable to catalyze transhydrogenase reaction.  相似文献   

11.
12.
Chemotrophic growth capacities of the purple sulfur bacterium Thiocapsa roseopersicina strain M1 were studied in continuous culture under thiosulfate limitation.Pigment synthesis was completely inhibited upon a shift from anaerobic to semi-aerobic conditions (52 μM O2) in the light, but no active breakdown occurred. During the transient state, the cells grew in a mixed photo- and chemolithotrophic mode; the specific respiration rate gradually increased with a concomitant drop in the bacteriochlorophyll a content. Photolithotrophically grown cells have the ability to respire. It was concluded that photosynthesis and respiration compete for electrons, but that photosynthesis is preferred under electron donor-limiting conditions, when the cells still contain large amounts of pigments. Eventually, a fully chemolithotrophic steady state was attained.The chemolithotropic growth of T. roseopersicina was studied in the dark under semiaerobic conditions at various dilution rates. The maximum specific growth rate was 68% of the maximum attainable growth rate under photolithotrophic conditions. The growth affinity for thiosulfate was high (Km = 1.5 μM). The yield on thiosulfate under chemolithotrophic conditions exceeded that of thiobacilli. Oxygen uptake was studied in short-term experiments. It was shown that respiration in T. roseopersicina has a Km of approx. 1 μM O2. the ecological importance for T. roseopersicina of chemolithotrophic growth and pigment content is discussed with respect to the occurrence of T. roseopersicina in laminated microbial ecosystems and its possible competition with colorless sulfur bacteria.  相似文献   

13.
The method of solution and puridication of hydrogenase from chromatophores of purpur sulphur bacteria Thiocapsa roseopersicina strain BBS are described. Hydrogenase molecular weight is 73000. It contains 4,4 mole S2- and 3.1 mole Fe2+ per mole of protein; pI 4.15. The enzyme absorption spectrum has the maximun et 400-410 nm, which is characteristic of proteins containing non-haem iron. Membrane--linked enzyme as well as soluble hydrogenase of that microorganism is characterized by high thermal stability: inactivation occurs at the temperature above 78 degrees C when the optimal temperature for that enzyme is 70 degrees C. Homogenous enzyme catalyses D2--H2O exchange reaction, reversible redox reaction of methyl viologene and benzyl viologene.  相似文献   

14.
Purple sulfur bacterium Thiocapsa roseopersicina strain BBS requiring vitamin B12 may grow in the dark in media containing no other organic compounds. Under such conditions the cells oxidize sulfide and thiosulfate with the use of O2 and assimilate carbon dioxide. After 10–30 s assimilation of NaH14CO3 about 60% of radioactivity is found in phosphorylated compounds characteristic for the reductive pentose phosphate cycle. The possibility of the function of this cycle in the dark in the presence of O2 is confirmed by the capacity of cells grown under such conditions to synthesize ribulose-1,5-diphosphate carboxylase. All this evidence suggests the ability of T. roseopersicina to change from phototrophy to aerobic chemolithoautotrophy.  相似文献   

15.
16.
The effect of polypeptides having different charge on the activity of Thiocapsa roseopersicina HydSL hydrogenase was studied. Strong inhibition was shown for poly-L-lysine bearing positive charge. The inhibition was reversible and competitive to methyl viologen, an electron acceptor, in the reaction of hydrogen oxidation catalyzed by the hydrogenase. Peptides carrying less positive charge had weaker inhibiting effect, while neutral and negatively charged peptides did not inhibit the hydrogenase. Molecular docking of poly-L-lysine to T. roseopersicina hydrogenase showed strong affinity of this polypeptide to the acceptor-binding site of the enzyme. The calculated binding constant is close to the experimentally measured value (K i = 2.1 μM).  相似文献   

17.
《Comptes rendus biologies》2019,342(3-4):101-107
Two arsenic-resistant purple non-sulphur bacteria (PNSB), Q3B and Q3C, were isolated (from industrial contaminated site and paddy fields) and identified by SSU rRNA gene sequencing as Rhodospirillum and Rhodospirillaceae species, respectively. Maximum arsenic reduction by these PNSB was observed in anaerobic conditions. Rhodospirillum sp. Q3B showed 74.92% (v/v) arsenic reduction while Rhodospirillaceae sp. Q3C reduced arsenic up to 76.67% (v/v) in anaerobic conditions. Rhodospirillaceae sp. Q3C was found to contain highest carotenoid content up to 5.6 mg·g−1. Under anaerobic conditions, the isolates were able to respire arsenic in the presence of lactate, citrate, and oxalate. Rhodospirillum sp. Q3B and Rhodospirillaceae sp. Q3C were also found to produce hydrogen gas. Such diverse bacteria can be useful tools for bioremediation purposes. These bacteria can be further exploited and optimized to treat wastewater containing arsenic along with bio-hydrogen production.  相似文献   

18.
Desulfatiglans anilini is a sulfate-reducing bacterium (SRB) capable of oxidizing aniline, although growth and aniline turnover rates are slow, making it difficult to analyze the metabolism of the strain. Therefore, this study was designed to investigate the effect of sulfide on growth of D. anilini cultures, in order to improve its growth and aniline turnover rates, and study the biochemical mechanisms of sulfide inhibition. Hydrogen sulfide was found to inhibit growth of D. anilini, regardless of whether the strain was grown with aniline or phenol, and complete inhibition was observed at 20 mM hydrogen sulfide. For improving the growth of D. anilini with aniline, the sulfide-consuming phototrophic bacterium Thiocapsa roseopersicina was co-cultured in a synthetic microbial community with D. anilini using a co-cultivation device that continuously removed hydrogen sulfide from the culture. The doubling time of D. anilini with aniline was 15 days in the co-cultivation device, compared to 26 days in the absence of a sulfide-oxidizing partner. Moreover, the aniline degradation rate was significantly increased by a factor of 2.66 during co-cultivation of D. anilini with T. roseopersicina. The initial carboxylation reaction during aniline degradation was measured in cell-free extracts of D. anilini with carbon dioxide (CO2) as a co-substrate in the presence of aniline and ATP. The effects of hydrogen sulfide on this aniline carboxylating system and on phenylphosphate synthase activity for phenol activation were studied, and it was concluded that hydrogen sulfide severely inhibited these enzyme activities.  相似文献   

19.
Purple sulfur bacteria store sulfur as intracellular globules enclosed by a protein envelope. The proteins associated with sulfur globules of Chromatium vinosum and Thiocapsa roseopersicina were isolated by extraction into 50% aqueous acetonitrile containing 1% trifluoroacetic acid and 10 mM dithiothreitol. The extracted proteins were separated by reversed-phase HPLC, revealing three major proteins from C. vinosum and two from T. roseopersicina. All of these proteins have similar, rather unusual amino acid compositions, being rich in glycine and aromatic amino acids, particularly tyrosine. The molecular masses of the C. vinosum proteins were determined to be 10,498, 10,651, and 8,479 Da, while those from T. roseopersicina were found to be 10,661 and 8,759 Da by laser desorption time-of-flight mass spectrometry. The larger T. roseopersicina protein is N-terminally blocked, probably by acetylation, but small amounts of the unblocked form (mass = 10,619) were also isolated by HPLC. Protein sequencing showed that the two larger C. vinosum proteins are homologous to each other and to the large T. roseopersicina protein. The 8,479 Da C. vinosum and 8,759 Da T. roseopersicina proteins are also homologous, indicating that sulfur globule proteins are conserved between different species of purple sulfur bacteria.Abbreviations BNPS-skatole 2 (2-Nitrophenylsulfenyl)-3-methyl-3-bromoindolenine - CNB Cyanogen bromide - Cv1, Cv2, and Cv3 Chromatium vinosum sulfur globule proteins - SGP and SGPs Sulfur globule protein(s) - TFA Trifluoroacetic acid - Tr0, Tr1, and Tr2 Thiocapsa roseopersicina sulfur globule proteins  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号