首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The complete amino acid sequence of duck skeletal muscle acylphosphatase is presented. The sequence was studied by the manual Edman degradation of the complete series of tryptic peptides and the amino acid composition of peptic peptides. The NH2-terminus is acetylated, and the polypeptide consists of 102 amino acid residues. The sequence is compared with other known acylphosphatases from the skeletal muscle of several vertebrate species.  相似文献   

2.
The primary structure of bovine skeletal muscle acylphosphatase was determined by performing the sequence analyses of the complete series of tryptic peptides. The amino acid composition of the entire series of peptic peptides was used to reconstruct the sequence by the overlapping method. The proposed structure is further confirmed by analogy with known amino acid sequences of acylphosphatase from skeletal muscle of other vertebrate species. The length of the polypeptide chain is 98 residues, identical to the length of the enzymes from other known mammalian species, but different from that found in turkey. The enzyme is NH2-acetylated and a comparison with the analogous molecular forms from other vertebrate species indicates that there are several long polypeptide stretches strictly conserved (93-97% identical position among mammals, and about 80% between calf and turkey enzymes).  相似文献   

3.
This study investigated the evolution of a transition metal ion-binding cluster ([H–X–X–X–H] n ; Tx) in the alternatively spliced NH2-terminal variable region of avian pectoral muscle troponin T (TnT). Encoded by avian fast skeletal muscle TnT-specific P exons, Tx-like structures were expressed in the breast muscle TnT's of almost all birds examined. Their presence results in the developmentally up-regulated high molecular weight pectoral muscle TnT. Sequence analysis and metal affinity chromatography revealed that in Galliformes and Craciformes, the Tx structure evolved into multiple H–X–X–X–H pairs with a high-affinity metal-binding capacity. Turkey, chicken, quail, and curassow breast muscle TnT's contain nine, seven, four, and three consecutive or closely located metal-binding sites, respectively, in the NH2-terminal region. The metal-binding affinity of the Tx element increased as the number of His pairs increased due to the duplication of P exons and the conversion of other exon sequences. The data show two related components of avian pectoral muscle TnT evolution: a larger, more acidic NH2-terminal segment and a cluster of transition metal-binding sites, both of which may have functional significance for their selection value. The evolution of the Tx segment in the NH2-terminal variable region of avian pectoral muscle TnT demonstrates a functional divergence on the basis of tolerance to structural drifting. Received: 2 May 2000 / Accepted: 5 September 2000  相似文献   

4.
Acylphosphatase was purified from rat skeletal muscle essentially by gel filtration and high-performance ion-exchange chromatography. The complete amino acid sequence was reconstructed by using the sequence data obtained from tryptic, peptic, andS. aureus V8 protease peptides. The protein consists of 96 amino acid residues and is acetylated at the NH2-terminus. The immunological cross-reactivity of acylphosphatase from rat and horse skeletal muscle was examined by ELISA. The reaction with rabbit antiserum revealed the presence of at least five antigenic sites on rat enzyme, two of which are common to horse muscle enzyme. Anti-rat antibodies also recognize the peptide that corresponds to the initial part of the molecule, which varies greatly from equine enzyme. Two completely new antigenic sites are herein described: the first can be considered the main antigenic site and is located within positions 21–36, the second is in the COOH-terminal part of the molecule. A mixture of immunoreactive peptides gives strong antibody-antigen reaction inhibition (94%).  相似文献   

5.
A total of 30 actins from various chordate and invertebrate muscle sources were either characterized by full amino acid sequence data or typed by those partial sequences in the NH2-terminal tryptic peptide which are known to be specific markers for different actin isoforms. The results show that most, if not all, invertebrate muscle actins are homologous to each other and to the isoforms recognized as vertebrate cytoplasmic actins. In contrast the actin forms typically found in muscle cells of warm-blooded vertebrates are noticeably different from invertebrate muscle actins and seem to have appeared in evolution already with the origin of chordates. During subsequent vertebrate evolution there has been a high degree of sequence conservation similar or stronger than that seen in histone H4. Urochordates, Cephalochordates and probably also Agnathes express only one type of muscle actin. Two types, a striated muscle-specific form and a smooth muscle form, are already observed in Chondrichthyes and Osteichthyes. Later in evolution, with the origin of reptiles, both muscle actins seem to have duplicated again; the striated muscle type branched into a skeletal- and cardiac-specific form, while the smooth muscle form duplicated into a vascular- and stomach-specific type. These findings support the hypothesis that each of the four muscle actins of warm-blooded vertebrates are coded for by a small number and possibly only one functional gene.  相似文献   

6.
Five cysteine-containing peptides have been isolated in nearly stoichemometric yields from the tryptic digests of the NH2? and COOH-terminal BrCN peptides of rabhit muscle aldolase and their sequence determined. Peptides NS1, NS2, and NS3, from the NH2-terminal part of the enzyme have the following sequences: NS1, Val-Asp-Pro-Cys-Ile-Gly-Gly-Val-Ile-Leu-Phe-His-Glu-Thr-Leu-Tyr-Gln-Lys; NS2, Cys-Val-Leu-Lys; NS3, Cys-Ala-Glu-Tyr-Lys. The two peptides isolated from the COOH-terminal region are: CS1, Ala-Leu-Ala-Asn-Ser-Leu-Ala-Cys-Gln-Gly-Lys and CS2, Cys-Pro-Leu-Leu-Trp-Pro-Lys-Ala-Leu-Thr-Phe-Ser-Tyr-Gly-Arg. The Lys-Ala bond in peptide CS2 was found to be resistant to tryptic hydrolysis. The results provide the basis for assigning the positions of cysteine residues in the polypeptide chain. Cys-72 in peptide NS1 and Cys-336 in peptide CS1 are the residues that form a disulfide bridge when the enzyme is inactivated by oxidation with an o-phenanthroline-Cu2+ complex; Cys-287 in peptide CS2 in one of the two exposed residues, while Cys-134 and Cys-149 in peptides NS2 and NS3, respectively, are buried in the native enzyme. All of eight cysteine-containing peptides of rabbit muscle aldolase have now been sequenced, and structural homology of the α and β subunits extended to these regions.  相似文献   

7.
The linear arrangement of the three fragments of Ca2+-ATPase from rabbit skeletal muscle sarcoplasmic reticulum with molecular weights of 20,000, 30,000, and 45,000 obtained by limited tryptic hydrolysis was determined by locating the NH2-terminal acetylated methionyl residue of the original peptide in the Mr = 20,000 fragment. Since both the Mr = 20,000 and 30,000 polypeptides originate from a Mr = 55,000 fragment which is distinct from the Mr = 45,000 polypeptide, the sequence of these three fragments was determined to be 20,000, 30,000, and 45,000. The Mr = 20,000 fragment was further cleaved by cyanogen bromide to yield a Mr = 7,000 COOH-terminal fragment which is relatively hydrophilic. The NH2-terminal portion is rich in glutamyl residues. The COOH-terminus of the Mr = 30,000 fragment was determined by both digestion with carboxypeptidases and cyanogen bromide cleavage. Using the partial amino acid sequence of the Ca2+-ATPase, it was deduced that the active site phosphoaspartyl residue is 154 amino acids from the COOH-terminus of the Mr = 30,000 fragment and hence approximately 35,000 Mr from the NH2-terminus of the original Ca2+-ATPase molecule. Furthermore, it was shown that the two tryptic cleavages of the Ca2+-ATPase generating these three large fragments were both single hydrolyses of arginylalanine peptide bonds.  相似文献   

8.
The sequence of the tryptic peptides of three major species of human leukocyte interferon was determined by microsequencing procedures. The peptides were aligned by comparison with the amino acid sequences predicted by the DNA sequences of recombinants containing leukocyte interferon-coding inserts. In addition, extended NH2-terminal amino acid sequences of two human leukocyte interferons produced in Escherichia coli by recombinant DNA methodology are also reported. This report demonstrates application of microsequencing methodology to low nanomole and subnanomole amounts of proteins and peptides of biological interest.  相似文献   

9.
The use of an affinity chromatography step performed with an immunoadsorbent consisting of anti-horse muscle acylphosphatase antibodies covalently linked to Sepharose 4B allowed us to purify horse heart acylphosphatase in a very rapid and efficient fashion. As in skeletal muscle, also in heart the enzyme is present as both a mixed disulfide with glutathione and a S-S dimer. The abundance of these forms in heart is quite lower than in skeletal muscle. The comparison of the molecular forms so purified with those obtained from horse skeletal muscle showed the same aminoacid composition, tryptic fingerprint, together with strictly similar apparent molecular weight and main kinetic parameters, supporting the conclusion that the acylphosphatase present in heart is the same enzyme as that purified from skeletal muscle.  相似文献   

10.
TroponinT (TnT) is an essential element in the thin filamentCa2+-regulatory system controlling striated musclecontraction. Alternative RNA splicing generates developmental andmuscle type-specific TnT isoforms differing in the hypervariableNH2-terminal region. Using avian fast skeletal muscle TnTcontaining a metal-binding segment, we have demonstrated a role of theNH2-terminal domain in modulating the conformation of TnT(Wang J and Jin JP. Biochemistry 37: 14519-14528,1998). To further investigate the structure-function relationship ofTnT, the present study constructed and characterized a recombinantprotein in which the metal-binding peptide present in avian fastskeletal muscle TnT was fused to the NH2 terminus of mouseslow skeletal muscle TnT. Metal ion or monoclonal antibody binding tothe NH2-terminal extension induced conformational changes in other domains of the model TnT molecule. This was shown by thealtered affinity to a monoclonal antibody against the COOH-terminal region and a polyclonal antiserum recognizing multiple epitopes. Protein binding assays showed that metal binding to theNH2-terminal extension had effects on the interaction ofTnT with troponin I, troponin C, and most significantly, tropomyosin.The data indicate that the NH2-terminal Tx [4-7repeats of a sequence motif His-(Glu/Ala)-Glu-Ala-His] extension confers a specific conformational modulation in the slowskeletal muscle TnT.

  相似文献   

11.
Solid phase synthesis of somatostatin-28   总被引:10,自引:0,他引:10  
The synthesis of ovine hypothalamic somatostatin-28 (Ser-Ala-Asn-Ser-Asn-Pro-Ala-Met-Ala-Pro-Arg-Glu-Arg-Lys-Ala-Gly-Cys-Lys-Asn-Phe-Phe-Trp-Lys-Thr-Phe-Thr-Ser-Cys-OH) has been accomplished by solid phase methodology. The structure of the synthetic material was verified by: (1) direct sequence analysis with a Beckman 89°C sequencer, (2) correlation of the amino acid analyses of the isolated tryptic peptide fragments with their theoretical compositions, and (3) comparison, using high performance liquid chromatography, of the synthetic methionine-sulfoxide and methionine-sulfone modified NH2-terminal peptides (residues 1–11) with the corresponding tryptic fragment from somatostatin-28.  相似文献   

12.
Methods are described for obtaining antisera specific for the NH2-terminal regions of human and porcine big gastrin (G34) that can be used in radioimmunoassays. Three antisera have been characterized in detail: one (L66) raised to human 1–15 (Tyr7Pro8Ser9) G34 has an antigenic determinant in the 1–6 region of human G34; a second (L107) raised to 1–19 hG34 has an antigenic determinant in the 1–12 region. Both these antisera react weakly with porcine G34. A third antiserum (L33) raised to porcine G34 has an antigenic determinant in the 1–12 region of this peptide, and reacts weakly with human G34. In human antral extracts fractionated on Sephadex G50. L66 and L107 revealed a minor peak of immunoreactivity corresponding to G34, and a major peak corresponding to the NH2-terminal tryptic peptide of G34. Concentrations of the latter peptide were closely similar to those of G17 (i.e. the COOH-terminal tryptic peptide of G34), consistent with the idea that G34 is cleaved within G-cells by a trypsin-like enzyme to yield G17. Antiserum L33 revealed small amounts of immunoreactivity in antral extracts of dog and cat, but did not reveal significant immunoreactivity in rat antral extracts. In contrast, L66 reacted with rat antral extracts, but not dog or cat. The sequences of G34 in these species are not known, but the results suggest significant differences compared with human and porcine G34, and indicate a high degree of species-specificity with NH2-terminal G34 antisera.  相似文献   

13.
The structural properties of purified human growth hormone (hGH) produced by Escherichia coli K-12 into which the hGH gene has been inserted have been fully characterized by high-pressure liquid chromatography of native hGH and tryptic digests of hGH. All of the tryptic peptides have been separated by high-pressure liquid chromatography and their sequence determined. Comparison of the primary structure with that of the purified pituitary-derived hGH has established the integrity of the biosynthetic hGH disulfide arrangement and amino acid sequence with the presence of an extra NH2-terminal methionine.  相似文献   

14.
PDZ motifs are protein–protein interaction domains that often bind to COOH-terminal peptide sequences. The two PDZ proteins characterized in skeletal muscle, syntrophin and neuronal nitric oxide synthase, occur in the dystrophin complex, suggesting a role for PDZ proteins in muscular dystrophy. Here, we identify actinin-associated LIM protein (ALP), a novel protein in skeletal muscle that contains an NH2-terminal PDZ domain and a COOH-terminal LIM motif. ALP is expressed at high levels only in differentiated skeletal muscle, while an alternatively spliced form occurs at low levels in the heart. ALP is not a component of the dystrophin complex, but occurs in association with α-actinin-2 at the Z lines of myofibers. Biochemical and yeast two-hybrid analyses demonstrate that the PDZ domain of ALP binds to the spectrin-like motifs of α-actinin-2, defining a new mode for PDZ domain interactions. Fine genetic mapping studies demonstrate that ALP occurs on chromosome 4q35, near the heterochromatic locus that is mutated in fascioscapulohumeral muscular dystrophy.  相似文献   

15.
NH2-terminal sequence analysis was performed on subregions of human plasma fibronectin including 24,000-dalton (24K) DNA-binding, 29,000-dalton (29K) gelatin-binding, and 18,000-dalton (18K) heparin-binding tryptic fragments. These fragments were obtained from fibronectin after extensive trypsin digestion followed by sequential affinity purification on gelatin-Sepharose, heparin-agarose, and DNA-cellulose columns. The gelatin-binding fragment was further purified by gel filtration on Sephadex G-100, and the DNA-binding and heparin-binding fragments were further purified by high-performance liquid chromatography. The 29K fragment had the following NH2-terminal sequence: AlaAlaValTyrGlnProGlnProHisProGlnProPro (Pro)TyrGlyHis HisValThrAsp(His)(Thr)ValValTyrGly(Ser) ?(Ser)?-Lys. The NH2-terminal sequence of a 50K, gelatin-binding, subtilisin fragment by L. I. Gold, A. Garcia-Pardo, B. Prangione, E. C. Franklin, and E. Pearlstein (1979, Proc. Nat. Acad. Sci. USA76, 4803–4807) is identical to positions 3–19 (with the exception of some ambiguity at position 14) of the 29K fragment. These data strongly suggest that the 29K tryptic fragment is included in the 50K subtilisin fragment, and that subtilisin cleaves fibronectin between the Ala2Val3 residues of the 29K tryptic fragment. The 18K heparin-binding fragment had the following NH2-terminal sequence: (Glu)AlaProGlnProHisCysIleSerLysTyrIle LeuTyrTrpAspProLysAsnSerValGly?(Pro) LysGluAla?(Val)(Pro). The 29K gelatin-binding and 18K heparin-binding fragments have proline-rich NH2-terminal sequences suggesting that they may have arisen from protease-sensitive, random coil regions of fibronectin corresponding to interdomain regions preceding macromolecular-binding domains. Both of these fragments contain the identical sequence ProGlnProHis, a sequence which may be repeated in other interdomain regions of fibronectin. The 24K DNA-binding fragment has the following NH2-terminal sequence: SerAspThrValProSerProCysAspLeuGlnPhe ValGluValThrAspVal LysValThrIleMetTrpThrProProGluSerAla ValThrGlyTyrArgVal AspValCysProValAsnLeuProGlyGluHisGly Gln(Cys)LeuProIleSer. The sequence of positions 9–22 are homologous to positions 15–28 of the α chain of DNA-dependent RNA polymerase from Escherichia coli. The homology observed suggests that this stretch of amino acids may be a DNA-binding site.  相似文献   

16.
The amino acid sequences of pyridoxal-binding tetrapeptide and the NH2-terminal portion of aspartate transaminase from E.coli B were analyzed and compared with those of the corresponding parts of the cytosolic and mitochondrial isozymes from pig heart. After borohydride reduction and chymotryptic digestion of the E.coli enzyme, a pyridoxal-containing peptide was isolated, showing the sequence, Ser-Lys(Pxy)-Asn-Phe, identical with that of the cytosolic isozyme. The NH2-terminal sequence was determined up to 33 residues with a liquid phase sequence analyzer. Nearly the same degree of homology was observed among the NH2-terminal sequences of the three aspartate transaminases.  相似文献   

17.
Fructose-1,6-bisphosphatases (EC 3.1.3.11) isolated from rabbit liver and kidney appear to have identical primary structures, as deduced from their tryptic peptide maps and the peptide patterns obtained after cleavage with cyanogen bromide and chromatography on Sephadex G75. The enzyme isolated from rabbit skeletal muscle, on the other hand, yields distinctly different fingerprints and cyanogen bromide cleavage products. The results indicate that animal cells possess two genes that code for fructose-bisphosphatase. Native rabbit liver fructose bisphosphatase contains a single tryptophan located near the NH2-terminus, and the NH2 terminal-BrCN peptide containing this residue has been identified in the Sephadex G75 filtrates.  相似文献   

18.
We have recently found that the erythroid ankyrin gene, Ank1, expresses isoforms in mouse skeletal muscle, several of which share COOH-terminal sequence with previously known Ank1 isoforms but have a novel, highly hydrophobic 72–amino acid segment at their NH2 termini. Here, through the use of domainspecific peptide antibodies, we report the presence of the small ankyrins in rat and rabbit skeletal muscle and demonstrate their selective association with the sarcoplasmic reticulum. In frozen sections of rat skeletal muscle, antibodies to the spectrin-binding domain (anti-p65) react only with a 210-kD Ank1 and label the sarcolemma and nuclei, while antibodies to the COOH terminus of the small ankyrin (anti-p6) react with peptides of 20 to 26 kD on immunoblots and decorate the myoplasm in a reticular pattern. Mice homozygous for the normoblastosis mutation (gene symbol nb) are deficient in the 210-kD ankyrin but contain normal levels of the small ankyrins in the myoplasm. In nb/nb skeletal muscle, anti-p65 label is absent from the sarcolemma, whereas anti-p6 label shows the same distribution as in control skeletal muscle. In normal skeletal muscle of the rat, anti-p6 decorates Z lines, as defined by antidesmin distribution, and is also present at M lines where it surrounds the thick myosin filaments. Immunoblots of the proteins isolated with rabbit sarcoplasmic reticulum indicate that the small ankyrins are highly enriched in this fraction. When expressed in transfected HEK 293 cells, the small ankyrins are distributed in a reticular pattern resembling the ER if the NH2-terminal hydrophobic domain is present, but they are uniformly distributed in the cytosol if this domain is absent. These results suggest that the small ankyrins are integral membrane proteins of the sarcoplasmic reticulum. We propose that, unlike the 210-kD form of Ank1, previously localized to the sarcolemma and believed to be a part of the supporting cytoskeleton, the small Ank1 isoforms may stabilize the sarcoplasmic reticulum by linking it to the contractile apparatus.  相似文献   

19.
The subunits of human pituitary thyrotropin have been separated and purified by countercurrent distribution and exclusion chromatography. The NH2-terminal sequence of the β subunit is identical to that of the β subunit of bovine thyrotropin. However, amino acid composition and peptide map of tryptic and chymotryptic digests as well as compositions of tryptic and chymotryptic peptides suggest that the amino acid sequence of the α subunit is identical to that of the α subunit of human interstitial cell stimulating hormone.  相似文献   

20.
A new acylphosphatase from human erythrocytes was isolated by an original purification procedure. It is an isoenzyme of the well-characterized human skeletal muscle acylphosphatase. The erythrocyte enzyme shows hydrolytic activity on acyl phosphates with higher affinity than the muscle enzyme for some substrates and phosphorylated inhibitors. The sequence was determined by characterizing the peptides purified from tryptic, peptic, and Staphylococcus aureus V8 protease digests of the protein, and it was found to differ in 44% of the total positions as compared to the human muscle enzyme. About one-third of these differences are in the form of strictly conservative replacements. The protein consists of 98 amino acid residues; it has an acetylated NH2-terminus and does not contain cysteine: (sequence in text).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号