首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Competitive hormone binding studies with membrane and partially purified receptors from Xenopus laevis oocytes revealed that the oocyte possesses high affinity (KD = 1-3 nM) binding sites for both insulin growth factors 1 and 2 (IGF-1 and IGF-2), but not for insulin. Consistent with these findings, IGF-1 activates hexose uptake by Xenopus oocytes with a KA (3 nM) identical with its KD, while IGF-2 and insulin activate hexose uptake with KA values of 50 nM and 200-250 nM, respectively, suggesting activation mediated through an IGF-1 receptor. Both IGF-1 and insulin activate receptor beta-subunit autophosphorylation and, thereby, protein substrate (reduced and carboxyamidomethylated lysozyme, i.e. RCAM-lysozyme) phosphorylation with KA values comparable to their respective KD values for ligand binding and KA values for activation of hexose uptake. The autophosphorylated beta-subunit(s) of the receptor were resolved into two discrete components, beta 1 and beta 2 (108 kDa and 94 kDa, respectively), which were phosphorylated exclusively on tyrosine and which exhibited similar extents of IGF-1-activated autophosphorylation. When added prior to autophosphorylation, RCAM-lysozyme blocks IGF-1-activated autophosphorylation and, thereby, IGF-1-activated protein substrate (RCAM-lysozyme) phosphorylation. Based on these findings, we conclude that IGF-1-stimulated autophosphorylation of its receptor is a prerequisite for catalysis of protein substrate phosphorylation by the receptor's tyrosine-specific protein kinase. The IGF-1 receptor kinase is implicated in signal transmission from the receptor, since anti-tyrosine kinase domain antibody blocks IGF-1-stimulated kinase activity in vitro and, when microinjected into intact oocytes, prevents IGF-1-stimulated hexose uptake.  相似文献   

2.
The human X chromosome-encoded protein kinase X (PrKX) belongs to the family of cAMP-dependent protein kinases. The catalytically active recombinant enzyme expressed in COS cells phosphorylates the heptapeptide Kemptide (LRRASLG) with a specific activity of 1.5 micromol/(min.mg). Using surface plasmon resonance, high affinity interactions were demonstrated with the regulatory subunit type I (RIalpha) of cAMP-dependent protein kinase (KD = 10 nM) and the heat-stable protein kinase inhibitor (KD = 15 nM), but not with the type II regulatory subunit (RIIalpha, KD = 2.3 microM) under physiological conditions. Kemptide and autophosphorylation activities of PrKX are strongly inhibited by the RIalpha subunit and by protein kinase inhibitor in vitro, but only weakly by the RIIalpha subunit. The inhibition by the RIalpha subunit is reversed by addition of nanomolar concentrations of cAMP (Ka = 40 nM), thus demonstrating that PrKX is a novel, type I cAMP-dependent protein kinase that is activated at lower cAMP concentrations than the holoenzyme with the Calpha subunit of cAMP-dependent protein kinase. Microinjection data clearly indicate that the type I R subunit but not type II binds to PrKX in vivo, preventing the translocation of PrKX to the nucleus in the absence of cAMP. The RIIalpha subunit is an excellent substrate for PrKX and is phosphorylated in vitro in a cAMP-independent manner. We discuss how PrKX can modulate the cAMP-mediated signal transduction pathway by preferential binding to the RIalpha subunit and by phosphorylating the RIIalpha subunit in the absence of cAMP.  相似文献   

3.
The purified human placental insulin-receptor beta-subunit autophosphorylating activity was found to be inhibited, in a time- and concentration-dependent manner, by the specific thiol-alkylating agents N-ethylmaleimide and 5,5'-dithiobis-(2-nitrobenzoic acid). The insulin-receptor kinase was observed to be more sensitive to inhibition by N-ethylmaleimide in the presence [IC50 (concn, giving 50% inhibition) = 25 +/- 3 microM] than in the absence (IC50 = 73 +/- 6 microM) of insulin. Similarly, inhibition by 5,5'-dithiobis-(2-nitrobenzoic acid) occurred with IC50 = 30 +/- 6 microM in the presence and 155 +/- 35 microM in the absence of insulin. Examination of the exogenous-substrate protein kinase activity demonstrated that the differential sensitivity to N-ethylmaleimide was due to direct inhibition of protein kinase activity, as opposed to blockade of the phospho-acceptor properties of the insulin receptor. In contrast, iodoacetamide had essentially no effect on the insulin-receptor beta-subunit autophosphorylating activity and was able to protect partially against the N-ethylmaleimide inhibition in both the presence and the absence of insulin. Consistent with these findings, none of the thiol-specific agents were able to alter significantly insulin binding at concentrations which maximally inhibited the beta-subunit autophosphorylation. Further, in the presence of insulin, the insulin-receptor kinase activity was also observed to be more sensitive to oxidation by H2O2 and FeCl3/ascorbate compared with insulin receptors in the absence of insulin. These results indicate that there is a critical thiol group(s) necessary for the beta-subunit autophosphorylating activity of the insulin-receptor kinase and that in the presence of insulin is more susceptible to exogenously added thiol and oxidizing agents.  相似文献   

4.
Dithiothreitol (DTT) was observed to increase both beta-subunit autophosphorylation and exogenous substrate phosphorylation of the insulin receptor in the absence of insulin. The natural protein reducing agent thioredoxin was also observed to increase the insulin receptor beta-subunit autophosphorylation. The activation of the insulin receptor/kinase by both DTT and thioredoxin was found to be additive with that of insulin. Further, the increase in the insulin receptor beta-subunit autophosphorylation in the presence of DTT and insulin was demonstrated to be due to an increase in the initial rate of autophosphorylation without alteration in the extent of phosphorylation. Similarly, the increase in the exogenous substrate phosphorylation was due to an increase in the Vmax of phosphorylation without significant effect on the apparent Km of substrate binding. In the presence of relatively low concentrations of DTT, insulin was found to potentiate the apparent insulin receptor subunit reduction of the native alpha 2 beta 2 heterotetrameric complex into alpha beta heterodimers, when observed by silver staining of sodium dodecyl sulfate-polyacrylamide gels. N-[3H]Ethylmaleimide ([3H]NEM) labeling in the absence of DTT pretreatment demonstrated that only the beta subunit had accessible sulfhydryl group(s). However, treatment of insulin receptors with DTT increased the amount of [3H]NEM labeling in the beta subunit as well as exposing sites on the alpha subunit. Further, incubation of the insulin receptors with the combination of DTT and insulin also demonstrated the apparent insulin-potentiated subunit reduction without any increase in the total amount of [3H]NEM labeling.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
We have designed a molecule, GFB-111, that binds to platelet-derived growth factor (PDGF), prevents it from binding to its receptor tyrosine kinase, and blocks PDGF-induced receptor autophosphorylation, activation of Erk1 and Erk2 kinases, and DNA synthesis. GFB-111 is highly potent (IC50 = 250 nM) and selective for PDGF over EGF, IGF-1, aFGF, bFGF, and HRGbeta (IC50 values > 100 microM), but inhibits VEGF-induced Flk-1 tyrosine phosphorylation and Erk1/Erk2 activation with an IC50 of 10 microM. GFB-111 treatment of nude mice bearing human tumors resulted in significant inhibition of tumor growth and angiogenesis. The results demonstrate the feasibility of designing novel growth factor-binding molecules with potent anticancer and antiangiogenic activity.  相似文献   

6.
Bovine adrenal zona fasciculata (AZF) cells express a noninactivating K+ current (IAC) that is inhibited by adrenocorticotropic hormone (ACTH) at picomolar concentrations. Inhibition of IAC may be a critical step in depolarization-dependent Ca2+ entry leading to cortisol secretion. In whole-cell patch clamp recordings from AZF cells, we have characterized properties of IAC and the signalling pathway by which ACTH inhibits this current. IAC was identified as a voltage-gated, outwardly rectifying, K(+)-selective current whose inhibition by ACTH required activation of a pertussis toxin-insensitive GTP binding protein. IAC was selectively inhibited by the cAMP analogue 8-(4- chlorophenylthio)-adenosine 3':5'-cyclic monophosphate (8-pcpt-cAMP) with an IC50 of 160 microM. The adenylate cyclase activator forskolin (2.5 microM) also reduced IAC by 92 +/- 4.7%. Inhibition of IAC by ACTH, 8-pcpt-cAMP and forskolin was not prevented by the cAMP-dependent protein kinase inhibitors H-89 (5 microM), cAMP-dependent protein kinase inhibitor peptide (PKI[5-24]) (2 microM), (Rp)-cAMPS (500 microM), or by the nonspecific protein kinase inhibitor staurosporine (100 nM) applied externally or intracellularly through the patch pipette. At the same concentrations, these kinase inhibitors abolished 8-pcpt-cAMP-stimulated A-kinase activity in AZF cell extracts. In intact AZF cells, 8-pcpt-cAMP activated A-kinase with an EC50 of 77 nM, a concentration 2,000-fold lower than that inhibiting IAC half maximally. The active catalytic subunit of A-kinase applied intracellularly through the recording pipette failed to alter functional expression of IAC. The inhibition of IAC by ACTH and 8-pcpt- cAMP was eliminated by substituting the nonhydrolyzable ATP analogue AMP-PNP for ATP in the pipette solution. Penfluridol, an antagonist of T-type Ca2+ channels inhibited 8-pcpt-cAMP-induced cortisol secretion with an IC50 of 0.33 microM, a concentration that effectively blocks Ca2+ channel in these cells. These results demonstrate that IAC is a K(+)-selective current whose gating is controlled by an unusual combination of metabolic factors and membrane voltage. IAC may be the first example of an ionic current that is inhibited by cAMP through an A-kinase-independent mechanism. The A-kinase-independent inhibition of IAC by ACTH and cAMP through a mechanism requiring ATP hydrolysis appears to be a unique form of channel modulation. These findings suggest a model for cortisol secretion wherein cAMP combines with two separate effectors to activate parallel steroidogenic signalling pathways. These include the traditional A-kinase-dependent signalling cascade and a novel pathway wherein cAMP binding to IAC K+ channels leads to membrane depolarization and Ca2+ entry. The simultaneous activation of A-kinase- and Ca(2+)-dependent pathways produces the full steroidogenic response.  相似文献   

7.
Anti-insulin receptor monoclonal antibody MA-10 inhibits insulin receptor autophosphorylation of purified rat liver insulin receptors without affecting insulin binding (Cordera, R., Andraghetti, G., Gherzi, R., Adezati, L., Montemurro, A., Lauro, R., Goldfine, I. D., and De Pirro, R. (1987) Endocrinology 121, 2007-2010). The effect of MA-10 on insulin receptor autophosphorylation and on two insulin actions (thymidine incorporation into DNA and receptor down-regulation) was investigated in rat hepatoma Fao cells. MA-10 inhibits insulin-stimulated receptor autophosphorylation, thymidine incorporation into DNA, and insulin-induced receptor down-regulation without affecting insulin receptor binding. We show that MA-10 binds to a site of rat insulin receptors different from the insulin binding site in intact Fao cells. Insulin does not inhibit MA-10 binding, and MA-10 does not inhibit insulin binding to rat Fao cells. Moreover, MA-10 binding to down-regulated cells is reduced to the same extent as insulin binding. In rat insulin receptors the MA-10 binding site has been tentatively localized in the extracellular part of the insulin receptor beta-subunit based on the following evidence: (i) MA-10 binds to insulin receptor in intact rat cells; (ii) MA-10 immunoprecipitates isolated insulin receptor beta-subunits labeled with both [35S]methionine and 32P; (iii) MA-10 reacts with rat insulin receptor beta-subunits by the method of immunoblotting, similar to an antipeptide antibody directed against the carboxyl terminus of the insulin receptor beta-subunit. Moreover, MA-10 inhibits autophosphorylation and protein-tyrosine kinase activity of reduced and purified insulin receptor beta-subunits. The finding that MA-10 inhibits insulin-stimulated receptor autophosphorylation and reduces insulin-stimulated thymidine incorporation into DNA and receptor down-regulation suggests that the extracellular part of the insulin receptor beta-subunit plays a role in the regulation of insulin receptor protein-tyrosine kinase activity.  相似文献   

8.
Phosphorylation of the adipocyte lipid-binding protein (ALBP) isolated from 3T3-L1 cells has been studied in vitro utilizing the wheat germ agglutinin-purified 3T3-L1 adipocyte insulin receptor and the soluble kinase domain of the human insulin receptor. Following insulin-stimulated, ATP-dependent autophosphorylation of the wheat germ agglutinin-purified receptor beta-subunit, ALBP was phosphorylated exclusively on tyrosine 19 in the sequence Glu-Asn-Phe-Asp-Asp-Tyr19, analogous to the substrate phosphorylation consensus sequence observed for several tyrosyl kinases. The concentration of insulin necessary for half-maximal receptor autophosphorylation (KIR0.5) was identical to that necessary for half-maximal ALBP phosphorylation (KALBP0.5), 10 nM. Kinetic analysis indicated that stimulation of ALBP phosphorylation by insulin was attributable to a 5-fold increase in the Vmax (to 0.33 fmol/min/fmol insulin-binding sites) while the Km for ALBP was largely unaffected. By utilizing the soluble kinase domain of the human receptor beta-subunit, the presence of oleate bound to ALBP increased the kcat/Km greater than 3-fold. Oleate dramatically inhibited autophosphorylation of the 38-kDa fragment of the soluble receptor kinase in a concentration dependent fashion (I0.5 approximately 4 microM). The 48-kDa kinase exhibited much less sensitivity to the effects of oleate (I0.5 approximately 190 microM). The inhibition of autophosphorylation of the 48-kDa soluble kinase by oleate was reversed by adding saturating levels of ALBP. These results demonstrate that in vitro the murine adipocyte lipid-binding protein is phosphorylated on tyrosine 19 in an insulin-stimulated fashion by the insulin receptor and that the presence of a bound fatty acid on ALBP increases the affinity of insulin receptor for ALBP. Inhibition of insulin receptor kinase activity by unbound fatty acids suggests that the end products of the lipogenic pathway may feedback inhibit the tyrosyl kinase and that fatty acid-binding proteins have the potential to modulate such interaction.  相似文献   

9.
The kinase activity of partially purified insulin receptor obtained from human placenta was studied. When autophosphorylation of the beta-subunit of the receptor was initiated by ATP prior to the addition of the exogenous substrate, both basal and insulin-stimulated kinase activity was increased. However, half-maximum effective insulin concentrations were unchanged. Insulin receptor autophosphorylation as stimulated by ATP and insulin failed to affect significantly 125I-insulin binding to partially purified insulin receptor from human placenta. It is concluded that autophosphorylation of the insulin receptors regulates its kinase activity but not its affinity for insulin. The catalytic subunit of cyclic AMP-dependent protein kinase failed to phosphorylate either subunit of the insulin receptor, and each kinase failed to affect the affinity of the other one. Thus no functional interaction between cyclic AMP-dependent protein kinase and insulin receptors was observed in the in vitro system.  相似文献   

10.
Ajoene, the major antiplatelet compound derived from garlic inhibits the fibrinogen-supported aggregation of washed human platelets (ID50 = 13 microM) and, inhibits binding of 125I-fibrinogen to ADP-stimulated platelets (ID50 = 0.8 microM). In both cases, the inhibition is of the mixed non-competitive type. Furthermore, fibrinogen-induced aggregation of chymotrypsin-treated platelets is also inhibited by ajoene in a dose-dependent manner (ID50 = 2.3 microM). Other membrane receptors such as ADP or epinephrine receptors are not affected by ajoene. Ajoene strongly quenches the intrinsic fluorescence emission of purified glycoproteins IIb-IIIa (ID50 = 10 microM). These results indicate that the antiaggregatory effect of ajoene is causally related to its direct interaction with the putative fibrinogen receptor.  相似文献   

11.
The effect of insulin and ATP on insulin receptor beta subunit conformation was studied in vitro with radioiodinated monoclonal antibodies directed at several regions of the receptor beta subunit. Insulin plus ATP inhibited their binding to the receptor. The greatest inhibitory effect of insulin and ATP was seen with antibody 17A3 which recognizes a domain of the beta subunit that is near the major tyrosine autophosphorylation sites at residues 1158, 1162, and 1163. ATP alone inhibited 17A3 binding with a one-half maximal ATP inhibitory concentration of 186 +/- 7 microM. Insulin at concentrations as low as 100 pM potentiated the effect of ATP; at 100 nM where insulin had its maximal effect, insulin lowered the one-half maximal inhibitory concentration of ATP to 16 +/- 6 microM. At 1 mM CTP, GTP, ITP, TTP, and AMP were without effect in either the presence or absence of insulin; in contrast, ADP was inhibitory in the presence of insulin. Of major interest was adenyl-5'-yl imidodiphosphate (AMP-PNP). This nonhydrolyzable analog of ATP inhibited 17A3 binding, and the effect of AMP-PNP (like ATP) was potentiated by insulin. Two insulin receptor beta subunit mutants then were studied. Mutant receptor F3, where the major tyrosine autophosphorylation sites at residues 1158, 1162, and 1163 were changed to phenylalanines, bound to 17A3; antibody binding was inhibited by insulin and ATP in a manner similar to normal receptors. In contrast, mutant receptor M1030, where the lysine in the ATP binding site at residue 1030 was changed to methionine, bound 17A3, but unlike either normal receptors or F3 receptors, the binding of 17A3 was not inhibited by insulin and ATP. Therefore, these studies raise the possibility that, in vivo, ATP binding in the presence of insulin may induce a conformational change in the insulin receptor beta subunit which in turn signals some of the biological effects of insulin.  相似文献   

12.
Neurabin is a brain-specific actin and protein phosphatase-1 (PP-1) binding protein that inhibits the purified catalytic subunit of protein phosphatase-1 (PP-1(C)). However, endogenous PP-1 exists primarily as multimeric complexes of PP-1(C) bound to various regulatory proteins that determine its activity, substrate specificity, subcellular localization and function. The major form of endogenous PP-1 in brain is protein phosphatase-1(I) (PP-1(I)), a Mg(2+)/ATP-dependent form of PP-1 that consists of PP-1(C), the inhibitor-2 regulatory subunit, an activating protein kinase and other unidentified proteins. We have identified four PP-1(I) holoenzyme fractions (PP-1(IA), PP-1(IB), PP-1(IC), and PP-1(ID)) in freshly harvested pig brain separable by poly-L-lysine chromatography. Purified recombinant neurabin (amino acid residues 1-485) inhibited PP-1(IB) (IC(50)=1.1 microM), PP-1(IC) (IC(50)=0.1 microM), and PP-1(ID) (IC(50)=0.2 microM), but activated PP-1(IA) by up to threefold (EC(50)=40 nM). The PP-1(IA) activation domain was localized to neurabin(1-210). Our results indicate a novel mechanism of PP-1 regulation by neurabin as both an inhibitor and an activator of distinct forms of PP-1(I) in brain.  相似文献   

13.
In order to study the structure and function relationships of the thyrotropin (TSH)-specific beta-subunit, we produced 11 synthetic overlapping peptides containing the entire 112-amino acid sequence of human beta TSH and tested them for activity in TSH radioreceptor assay using both human and porcine thyroid membranes. Synthetic peptides representing four regions of the beta-subunit demonstrated the ability to inhibit binding of 125I-bovine TSH to crude thyroid membranes. The peptide representing the -COOH terminus of the subunit (beta 101-112) possessed highest binding activity, inhibiting binding of labeled TSH with an EC50 of 80 microM. The remaining active peptides were: beta 71-85 (104 microM), beta 31-45 (186 microM), beta 41-55 (242 microM), and beta 1-15 (331 microM). Specificity of the binding activity was shown by the inability of the peptides representing the remainder of the subunit to inhibit binding of label and by the inability of any of the peptides to inhibit binding of 125I-epidermal growth factor to the same thyroid membranes. The low affinity of the peptides as compared with native hormone is in agreement with previous studies of synthetic alpha-subunit peptides and, further, suggests that the interaction of beta TSH with receptor is multifaceted, requiring cooperative binding of these sites for the observed high affinity of the whole hormone. These studies are in agreement with previous predictions of active regions by chemical modification but add two regions to the list, showing the utility of the synthetic peptide strategy in the study of peptide hormone structure-activity relationships.  相似文献   

14.
In the present report, we demonstrate that Tb3+ binds to protein kinase C and serves as a luminescent reporter of certain cationic metal-binding sites. Tb3+ titration of 50 nM protein kinase C results in a 20-fold enhancement of Tb3+ luminescence which is half-maximal at 12 microM Tb3+. A Kd of approximately 145 nM was determined for Tb3+ binding to the enzyme. The excitation spectrum of bound Tb3+ exhibits a peak at 280 nm characteristic of energy transfer from protein tryptophan or tyrosine residues. The luminescence of this complex can be markedly decreased by other metals, including Pb2+ (IC50 = 25 microM), La3+ (IC50 = 50 microM), Hg2+ (IC50 = 300 microM), Ca2+ (IC50 = 6 mM), and Zn2+ (IC50 greater than 10 mM), and chelation of Tb3+ by 2 mM EGTA. Tb3+ binding to protein kinase C is correlated with its inhibition of protein kinase activity (IC50 = 8 microM), r = 0.99) and phorbol ester binding (IC50 = 15 microM, r = 0.98). Tb3+ inhibition of protein kinase C activity cannot be overcome by excess Ca2+, but can be partially overcome with excess phosphatidylserine or by chelation of Tb3+ with EGTA. Tb3+ noncompetitively inhibits phorbol ester binding by decreasing the maximal extent of binding without significantly altering binding affinity. The results suggest that the Tb3(+)-binding site is at or allosterically related to the enzyme's phosphatidylserine-binding site, but is distinct from the phorbol ester-binding domain and the Ca2(+)-binding site that regulates enzyme activity.  相似文献   

15.
In this report we describe the use of the baculovirus expression system to overproduce the human insulin holoreceptor (HIR) and a truncated, secretory version of the HIR cDNA (HIRsec) consisting of the alpha subunit and the extracellular portion of the beta subunit (beta'). Sf9 cells infected with the full-length HIR viruses synthesize recombinant HIR (rHIR) with an insulin-binding alpha subunit of apparent Mr = 110,000 and a beta subunit of apparent Mr = 80,000. Uncleaved alpha beta proreceptor accumulates in infected cells. Both of these forms assemble into higher order disulfide-linked dimers or heterotetramers of apparent Mr greater than 350,000. Insulin-binding activity in cells infected with rHIR viruses is present predominantly on the extracellular aspect of the plasma membrane (greater than 80%). Insulin binding to the full-length rHIR occurs with typical complex kinetics with Kd1 = 0.5-1 x 10(-9) M and Kd2 = 10(-7) M and receptors are present in large amounts in infected cells (1 x 10(6) receptors/cell; 1-2 mg HIR/10(9) cells). The full-length rHIR undergoes insulin-dependent autophosphorylation; half-maximal activation of beta subunit autophosphorylation occurs at 1-2 x 10(-8) M. The alpha beta proreceptor also becomes phosphorylated in vitro. Analysis of tryptic phosphopeptides derived from in vitro autophosphorylated beta subunit and alpha beta proreceptor reveals a pattern of phosphorylation that is indistinguishable from that of authentic placental HIR. Sf9 cells infected with rHIRsec viruses synthesize and secrete an (alpha beta')2 heterotetrameric complex having an insulin-binding alpha subunit of apparent Mr = 110,000 and a truncated beta' subunit of apparent Mr = 45,000 that lacks kinase activity. The rHIRsec complex purified from the conditioned medium of infected cells binds insulin with high affinity (Kd = 10(-9) M).  相似文献   

16.
D O Morgan  K Jarnagin  R A Roth 《Biochemistry》1986,25(19):5560-5564
The receptor for insulin-like growth factor I (IGF-I) was purified from the rat liver cell line BRL-3A by a combination monoclonal anti-receptor antibody column and a wheat germ agglutinin column. Analyses of these receptor preparations on reduced sodium dodecyl sulfate-polyacrylamide gels yielded protein bands of Mr 136K (alpha subunit) and Mr 85K and 94K (beta subunit). These receptor preparations bound 5 times more IGF-I than insulin, and the binding of both labeled ligands was more potently inhibited by unlabeled IGF-I than by insulin. These results indicate that these receptor preparations contained predominantly the IGF-I receptor. This highly purified receptor preparation was found to possess an intrinsic kinase activity; autophosphorylation of the receptor beta subunit was stimulated by low concentrations of IGF-I (half-maximal stimulation at 0.4 nM IGF-I). Twentyfold higher concentrations of insulin were required to give comparable levels of stimulation. A monoclonal antibody that inhibits the insulin receptor kinase was found to inhibit the IGF-I receptor kinase with the same potency with which it inhibits the insulin receptor. In contrast, monoclonal antibodies to other parts of the insulin receptor only poorly recognized the IGF-I receptor. A comparison of V8 protease digests of the insulin and IGF-I receptors again revealed some similarities and also some differences in the structures of these two receptors. Thus, the IGF-I receptor is structurally, antigenically, and functionally similar to but not identical with the insulin receptor.  相似文献   

17.
L Ellis  E Clauser  D O Morgan  M Edery  R A Roth  W J Rutter 《Cell》1986,45(5):721-732
Insulin stimulates the autophosphorylation of tyrosine residues of the beta subunit of the insulin receptor (IR); this modified insulin-independent kinase has increased activity toward exogenous substrates in vitro. We show here that replacement of one or both of the twin tyrosines (residues 1162 and 1163) with phenylalanine results in a dramatic reduction in or loss of insulin-activated autophosphorylation and kinase activity in vitro. In vivo, these mutations not only result in a substantial decrease in insulin-stimulated IR autophosphorylation but also in a parallel decrease in the insulin-activated uptake of 2-deoxyglucose. Furthermore, a truncated IR protein (lacking the last 112 amino acids) has an unstable beta subunit; this mutant has no kinase activity in vitro or in vivo and does not mediate insulin-stimulated uptake of 2-deoxyglucose. IR autophosphorylation is thus implicated in the regulation of IR activities, with tyrosines 1162 and 1163 as major sites of this regulation.  相似文献   

18.
1-[N,O-Bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpipera zine (KN-62), a selective inhibitor of rat brain Ca2+/calmodulin-dependent protein kinase II (Ca2+/CaM kinase II) was synthesized and its inhibitory properties in vitro and in vivo were investigated. KN-62 inhibited phosphorylation of exogenous substrate (chicken gizzard myosin 20-kDa light chain) by Ca2+/CaM kinase II with Ki value of 0.9 microM, but no significant effect up to 100 microM on activities of chicken gizzard myosin light chain kinase, rabbit brain protein kinase C, and bovine heart cAMP-dependent protein kinase type II. KN-62 also inhibited the Ca2+/calmodulin-dependent autophosphorylation of both alpha (50 kDa) and beta (60 kDa) subunits of Ca2+/CaM kinase II dose dependently in the presence or absence of exogenous substrate. Kinetic analysis indicated that this inhibitory effect of KN-62 was competitive with respect to calmodulin. However, KN-62 did not inhibit the activity of autophosphorylated Ca2+/CaM kinase II. Moreover, Ca2+/CaM kinase II bound to a KN-62-coupled Sepharose 4B column, but calmodulin did not. These results suggest that KN-62 affects the interaction between calmodulin and Ca2+/CaM kinase II following inhibition of this kinase activity by directly binding to the calmodulin binding site of the enzyme but does not affect the calmodulin-independent activity of already autophosphorylated (activated) enzyme. We examined the effect of KN-62 on cultured PC12 D pheochromocytoma cells. KN-62 suppressed the A23187 (0.5 microM)-induced autophosphorylation of the 53-kDa subunit of Ca2+/CaM kinase in PC12 D cells, which was immunoprecipitated with anti-rat forebrain Ca2+/CaM kinase II polypeptides antibodies coupled to Sepharose 4B, thereby suggesting that KN-62 could inhibit the Ca2+/CaM kinase II activity in vivo.  相似文献   

19.
We have previously reported that rabbit skeletal muscle phosphorylase kinase is phosphorylated by glycogen synthase (casein) kinase-1 (CK-1) primarily on the beta subunit (beta = 1 mol of PO4; alpha = 0.2 mol of PO4) when the reaction was carried out in beta-glycerophosphate. The resultant enzyme activation was 16-fold (Singh, T. J., Akatsuka, A., and Huang, K.-P. (1982) J. Biol. Chem. 257, 13379-13384). In the present study we found that in Tris-Cl buffer CK-1 catalyzes the incorporation of greater than 2 mol of PO4/monomer into each of the alpha and beta subunits. Phosphorylase kinase activation resulting from the higher level of phosphorylation remained 16-fold. 32P-Labeled tryptic peptides from the alpha and beta subunits were analyzed by isoelectric focusing. Cyclic AMP-dependent protein kinase (A-kinase) phosphorylates a single major site in each of the alpha and beta subunits at 1.5 mM Mg2+. In addition to these two sites, A-kinase phosphorylates at least three other sites in the alpha subunit at 10 mM Mg2+. CK-1 also catalyzes the phosphorylation of multiple sites in both the alpha and beta subunits. Of the two major sites phosphorylated by CK-1 in the beta subunit, one of these sites is also recognized by A-kinase. At least three sites are phosphorylated by CK-1 in the alpha subunit. One of these sites is recognized by CK-1 only after a prior phosphorylation of phosphorylase kinase by A-kinase at a single site in each of the alpha and beta subunits at 1.5 mM Mg2+. The roles of the different phosphorylation sites in phosphorylase kinase activation are discussed.  相似文献   

20.
The insulin receptor protein kinase. Physicochemical requirements for activity   总被引:13,自引:0,他引:13  
We determined that the rate of insulin-stimulated autophosphorylation of the insulin receptor is independent of receptor concentration and thus proceeds via an intramolecular process. This result is consistent with the possibility that ligand-dependent autophosphorylation may be a means by which cells can distinguish occupied from unoccupied receptors. We employed dithiothreitol to dissociate tetrameric receptor into alpha beta halves in order to further elucidate the structural requirements for the receptor-mediated kinase activity. Dithiothreitol had a complex biphasic effect on insulin-stimulated receptor kinase activity. Marked stimulation of kinase activity was observed at 1-2 mM dithiothreitol when the receptor was predominantly tetrameric and kinase activity diminished when dimeric alpha beta receptor halves predominate (greater than 2 mM dithiothreitol). N-Ethylmaleimide inhibits insulin-stimulated receptor kinase activity. We suggest that the tetrameric holoreceptor is the most active kinase structure and this structure requires for maximal activity, a reduced sulfhydryl group at or near the active site. We treated receptor preparations with elastase to generate receptor proteolytically "nicked" in the beta subunit. This treatment completely abolishes insulin-dependent autophosphorylation and histone phosphorylation with essentially no effects on insulin binding as determined by affinity labeling of the receptor alpha subunit. We suggest such treatment functionally uncouples insulin binding from insulin-stimulated receptor kinase activity. The possible physiological significance of these findings is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号