首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The turnover rate of tubulin in rat brain was determined from the decay in specific radioactivity of the protein after pulse-labeling. When precursors were administered by a parenteral route, the shortest half-life, 9.8 days, was obtained with [14C]NaHCO3; the longer half-lives obtained with [U-14C]glucose or [4,5-3H]leucine suggest significant reutilization of label. Furthermore, with leucine as precursor maximal specific radioactivity of tubulin was not obtained until eight days after administration of label. Labeling and decay kinetics obtained with [4,5-3H]leucine were markedly different when the isotope was administered directly into the lateral ventricle. The difference between the turnover rates of the -α and β subunits of tubulin purified by means of high resolution polyacrylamide gel electrophoresis was not statistically significant. A half-life for tubulin of 6.2 days was measured by continuous intravenous infusion of [U-14C]tyrosine.  相似文献   

2.
—The metabolic activity of proteins from myelin and non-myelin fractions of slices of lesions in monkey brains and in spinal cords of Lewis rats with acute experimental allergic encephalomyelitis was investigated using [1-14C]leucine as a protein precursor. The uptake in vitro of [1-14C]leucine into the monkey EAE lesions was greatly increased in both the myelin and non-myelin fractions. Similar findings were made in spinal cord slices of the EAE rat with an average specific activity 341 per cent of control measured in proteins of purified myelin and 415 per cent of control in the non-myelin protein. The increased uptake appeared with the onset of paralytic symptoms 10–14 days after injection. The increased uptake did not appear to be a result of an increased amino acid pool size as measured with uniformly labelled l -leucine, valine, arginine and phenylalanine. The increase in specific activity of the myelin protein of the EAE rats was shown to be associated with the peaks characteristic of myelin protein when separated on polyacrylamide gels and the serial slices counted. Most of the radioactivity of both the control and EAE myelin protein migrated with the high molecular weight fraction, and the largest increase in radioactivity in myelin protein appeared in this fraction. Some increase in specific activity was also found in the basic and proteolipid proteins. Four different guinea-pig antigens were used to induce EAE: whole spinal cord, purified basic protein, purified myelin and basic protein + cerebroside. All caused paralytic symptoms and greatly increased incorporation in vitro of [1-14C]leucine into spinal cord proteins. The incorporation of [1-14C]leucine into slices of the inguinal and popliteal lymph nodes of the EAE and Freund's adjuvant control rats were measured and compared with the incorporation into the spinal cord non-myelin fractions. The specific activity of lymph node proteins was of the order of 10 × that of the non-myelin protein of the control spinal cord. Invasion of a moderate number of cells of the order of activity of these lymph nodes could account for the large increase in rate of protein synthesis in the EAE nervous tissue. It is concluded that much of the increased protein synthesis could be due to the inflammatory cells, although a small amount of the total increase appears to be associated with myelin protein. Other changes in metabolism of the CNS tissue of the EAE rat include a lower rate of lipid synthesis and a decreased activity of the tricarboxylic acid cycle.  相似文献   

3.
Abstract— The oxidation of l -[U-14C]leucine and l -[l-14C]leucine at varying concentrations from 0.1 to 5mM to CO2 and the incorporation into cerebral lipids and proteins by brain slices from 1-week old rats were markedly stimulated by glucose. Although the addition of S mM-dl -3-hydroxybutyrate had no effect on the metabolism of [U-14C]leucine by brain slices from suckling rats, the stimulatory effects of glucose on the metabolism of l -[U-14C]leucine were markedly reduced in the presence of dl -3-hydroxybutyrate. The stimulatory effect of glucose on leucine oxidation was, however, not observed in adult rat brain. Furthermore, the incorporation of leucine-carbon into cerebral lipids and proteins was also very low in the adult brain. The incorporation of l -[U-14C]leucine into cerebral lipids by cortex slices was higher during the first 2 postnatal weeks, which then declined to the adult level. During this time span, the oxidation of l -[U-14C]leucine to CO2 remained relatively unchanged. The incorporation in vivo of D-3-hydroxy[3-14C]butyrate into cerebral lipids was markedly decreased by acute hyperleucinemia induced by injecting leucine into 9-day old rats. In in vitro experiments, 5 mM-leucine had no effect on the oxidation of [U-14C]glucose to CO2 or its incorporation into lipids by brain slices from 1-week old rats. However, 5 mM-leucine inhibited the oxidation of d -3-hydroxy-[3-14C]butyrate, [3-14C]acetoacetate and [1-14C]acetate to CO2 by brain slices, but their incorporation into cerebral lipids was not affected by leucine. In contrast 2-oxo-4-methylvalerate, a deaminated metabolite of leucine, markedly inhibited both the oxidation to CO2 and the incorporation into lipids of labelled glucose, ketone bodies and acetate by cortex slices from 1-week old rats. These findings suggest that the reduction in the incorporation in vivo of d -3-hydroxy[3-14C]butyrate into cerebral lipids in rats injected with leucine is most likely caused by 2-oxo-4-methylvalerate formed from leucine. Since the concentrations of leucine and 2-oxo-4-methylvalerate in plasma of untreated patients with maple-syrup urine disease are markedly elevated, our findings are compatible with the possibility that an alteration in the metabolism of glucose and ketone bodies in the brain may contribute to the pathophysiology of this disease.  相似文献   

4.
Aggregation of the enzyme acetyl-CoA: choline-O-acetyltransferase (ChAc, EC 2.3.1.6) which appears to be homogeneous has been observed. The molecular weight of the most abundant form of ChAc was estimated by gel filtration and sucrose gradient centrifugation to be in the range 58,000-62,000. The most frequently encountered aggregates were much larger and eluted in the void volume from Sephadcx® G-100 and G-150 indicating molecular weights in excess of 400,000. In fact, they were subsequently found to be 1.2 × 106 and 1.9 × 106 by sucrose gradient centrifugation. The percentage of activity associated with high molecular weight ChAc increased with purification, but these aggregates disappeared after storage for 2-3 weeks at ?20°C. The loss occurred independently of any fall in enzymic activity in the preparations examined.  相似文献   

5.
The influence of early hypothyroidism on the concentration and biochemical properties of soluble and particulate tubulin from the cerebral cortex and cerebellum was investigated during development in the rat. Cellular soluble tubulin concentration (pmol colchicine bound/μg DNA) was approx 16% lower in both brain areas of hypothyroid animals compared to controls at 25 days of age. No effect of thyroid hormone deficiency was observed when tubulin concentration was expressed in terms of tissue protein or weight. The particulate tubulin concentration was approx 20% lower in the cerebral cortex of 25-day-old hypothyroid rats although the distribution of tubulin between soluble and particulate fractions was similar to controls. The incorporation of [14C]leucine into cerebral cortical tubulin in vitro (c.p.m. in tubulin/c.p.m. in total protein) was not significantly altered by the hormonal deficiency. Thus there was no apparent evidence of a selective defect in tubulin synthesis. Tubulin from hypothyroid rats behaved similarly to control samples with respect to the effects of pharmacological agents and temperature, lability of binding, chromatographic profile and electrophoretic mobility on sodium dodecyl sulfate polyacrylamide gels.  相似文献   

6.
S-Adenosylmethionine decarboxylase was purified from the livers of calves treated with methylglyoxal bis (guanylhydrazone) to elevate the level of the enzyme. Purified bovine S-adenosylmethionine decarboxylase was similar in specific activity and subunit molecular weight (32 000) to the enzymes previously isolated from rat and mouse. The bovine liver enzyme immunologically crossreacted with S-adenosylmethionine decarboxylase from resting and mitogenically activated bovine lymphocytes. The rate of enzyme synthesis in activated lymphocytes was determined by labeling the cells with [3H]leucine and isolating the radioactive decarboxylase by affinity chromatography and sodium dodecyl sulfate gel electrophoresis. The rate of enzyme syntheis was increased 10-fold by 9 h after mitogen treatment, which accounts for the initial increase in cellular enzymatic. There was no further incraese in the rate of S-adenosylmethionine decarboxylase synthesis that correlated with a second elevation of activity occuring at approx. 24 h after mitogenic activation. It was concluded that the second increase in enzyme activity was due to lengthening the intracellular half-life of the enzyme by 2-fold.  相似文献   

7.
A β-N-acetylhexosaminidase [EC 3.2.1.30] has been purified ~98-fold from an extract of the digestive organs of Saxidomus purpuratus by using ammonium sulfate fractionation, and chromatography on Toyopearl HW-50, CM-cellulose, and Sepharose 4B. The purified enzyme, the molecular weight of which was estimated to be ~66,000 by gel filtration, was composed of two sub-units of molecular weight 30,000 as determined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The purified enzyme had a pH optimum of 3.8 and an optimum temperature of 55°, and its activity was enhanced ~2-fold in the presence of 0.1m sodium chloride. The Michaelis constants toward p-nitrophenyl 2-acetamido-2-deoxy-β-d-glucoside and -galactoside were 1.2 × 10?4 and 1.3 × 10?4m, respectively.  相似文献   

8.
—The regulation of [14C]ACh synthesis was studied in rat striatal synaptosomes incubated in presence of various concentrations of Triton X-100, using [2-14C]pyruvate or [6-14C]glucose as precursors. The progressive rupture of the cytoplasmic and mitochondrial compartments induced by the non-ionic detergent was followed by studying the release, into the incubating medium, of lactate dehydrogenase and choline acetyltransferase (ChAc) and of fumarate hydratase, respectively. [3H]Choline uptake (1 μm ) was measured to determine the activity of the high affinity choline permease. 14CO2 formation from [2-14C]pyruvate was used as an index of the Krebs cycle activity. The rate of [14C]ACh synthesis from [2-14C] pyruvate was dependent on the Triton X-100 concentration; the ester formation decreased between 0·001% (v/v) and 0·010%, but increased again beyond this concentration of detergent. This last phenomenon was interpreted as the result of an extracellular synthesis of ACh involving pyruvate dehydrogenase and ChAc. At 0·002% Triton X-100 the 14CO2 formation was not affected, indicating a normal mitochondrial activity. The decrease of [14C]ACh synthesis observed up to this detergent concentration could be correlated to the decline of the highaffinity choline permease activity. In these experimental conditions, the ester synthesis could not be restored by the addition of large amounts of choline in the incubating medium suggesting that the molecules of choline must cross the high-affinity choline permease system in order to be acetylated. This could indicate a close association between the permease and choline acetyltransferase.  相似文献   

9.
Measurement of protein turnover in rat brain   总被引:6,自引:3,他引:3  
Abstract— Degredation rates of rat brain proteins were measured by following the decay in specific radioactivity of carboxyl labelled aspartate and glutamate over a 17-day period. Initial labelling of these amino acids was achieved by a single intraperitoneal injection 0f NaH14CO3. The non-linear decay curve for total brain proteins could be approximated by assuming that the mixture contained two classes of proteins with half-lives of 3.3 and 8.7 days, respectively. Half-lives of 2.5 and 7.7 days were estimated for such protein classes in the microsomal fraction. The half-lives of soluble proteins, synaptic membranes, cell body and synaptic mitochondria were 3.1, 5.8, 5.6 and 8.4 days, respectively. Identical results were obtained if the change in specific activity of intact protein labeled by NaH14CO3 was followed. Two-fold slower decay rates were obtained when brain proteins were labeled with a pulse of [4,5-3H]leucine or [l-14C]leucine. Half-lives calculated for the two classes of proteins in whole brain were 8.4 and 16.5 days, respectively with [4,5-3H]leucine and 8.9 and 14.2 days, respectively with [1-14C]leucine. These results indicate the very significant reutilization of this amino acid in brain. Sodium [14C]bicarbonate is a more satisfactory isotopic precursor for accurate assessment of rates of protein turnover in brain.  相似文献   

10.
Abstract— Incorporation of [3H]leucine into tubulin and total protein was examined using a polysomal system from newborn (1-day-old). young (10-day-old) and adult (3-month-old) rat brains and cerebral cortices. The rate of tubulin biosynthesis (specific radioactivity) was always lower than that of total protein biosynthesis. No significant differences in the specific radioactivities of the synthesized total proteins were found between the newborn and young brain polysomal system, although young cerebral cortical polysomes were less active than newborn cerebral cortical polysomes. The adult brain (or cerebral cortical) polysomes were less active, about 20-30% lower than the young brain (or cerebral cortical) polysomes. The incorporation of [3H]leucine into tubulin showed a progressive decrease in the polysomal systems isolated from the newborn, young and adult rat brains and cerebral cortices. These tendencies were similar in every cell sap taken from newborn, young and adult rat brain homogenates.
In order to examine the relative activities of free and bound polysomes of the developing rat brain in tubulin biosynthesis. double-labelling experiments were carried out. Labelled tubulin was purified by the assembly and disassembly method, followed by SDS gel electrophoresis, or by vinblastine precipitation method, followed by SDS gel electrophoresis; then identification by co-electrophoresis with native brain tubulin, molecular weight determination and demonstration of specific aggregation in the presence of GTP followed. Free and bound polysomes showed approximately similar activities during tubulin biosynthesis. Furthermore, relative activities of tubulin biosynthesis by free and bound polysomes did not significantly change during development.  相似文献   

11.
Colchicine blocks axoplasmic flow and produces neurofibrillary degeneration. Brain slices from mice injected intracerebrally with colchicine incorporated more [14C]leucine into protein and had a decreased uptake of [14C]leucine into the perchloric acid-soluble pool than did their controls. Brain RNA content was decreased and free leucine increased by colchicine-induced encephalopathy. The specific activities of proteins from subcellular fractions of colchicine-injected brain were increased in the nuclear fraction, the 100,000-g supernatant, and its vinblastine-precipitable tubulin. The ratio of the specific activity of the crude mitochondrial fraction to that of the total homogenate was decreased, as would consistent with impaired movement of newly labeled protein into synaptosomes. Colchicine-injected brain extracts contained one or more cytosol fractions that stimulated ribosomal incorporation of [14C]leucine into protein in a cell-free system. Colchicine-binding-activity measurements indicated loss of soluble and particulate tubulin in colchicine-injected brains; the decrease of soluble tubulin was verified by its selective precipitation with vinblastine. Colchicine encephalopathy did not affect the rate of spontaneous breakdown of in vitro colchicine binding activity. Similarities of colchicine encephalopathy to the neuron's response to axonal damage suggest that colchicine-induced increase in protein synthesis may, in part, reflect a neuronal response to blockage of neuroplasmic transport.  相似文献   

12.
In the absence of any other oxidizable substrate, the perfused rat heart oxidizes [1-14C]leucine to 14CO2 at a rapid rate and releases only small amounts of α-[1-14C]ketoisocaproate into the perfusion medium. The branched-chain α-keto acid dehydrogenase complex, assayed in extracts of mitochondria prepared from such perfused hearts, is very active. Under such perfusion conditions, dichloroacetate has almost no effect on [1-14C]leucine oxidation, α-[1-14C]ketoisocaproate release, or branched-chain α-keto acid dehydrogenase activity. Perfusion of the heart with some other oxidizable substrate, e.g., glucose, pyruvate, ketone bodies, or palmitate, results in an inhibition of [1-14C]leucine oxidation to 14CO2 and the release of large amounts of α-[1-14C]ketoisocaproate into the perfusion medium. The branched-chain α-keto acid dehydrogenase complex, assayed in extracts of mitochondria prepared from such hearts, is almost completely inactivated. The enzyme can be reactivated, however, by incubating the mitochondria at 30 °C without an oxidizable substrate. With hearts perfused with glucose or ketone bodies, dichloroacetate greatly increases [1-14C]leucine oxidation, decreases α-[1-14C]ketoisocaproate release into the perfusion medium, and activates the branched-chain α-keto acid dehydrogenase complex. Pyruvate may block dichloroacetate uptake because dichloroacetate neither stimulates [1-14C]leucine oxidation nor activates the branched-chain α-keto acid dehydrogenase complex of pyruvate-perfused hearts. It is suggested that leucine oxidation by heart is regulated by the activity of the branched-chain α-keto acid dehydrogenase complex which is subject to interconversion between active and inactive forms. Oxidizable substrates establish conditions which inactivate the enzyme. Dichloroacetate, known to activate the pyruvate dehydrogenase complex by inhibition of pyruvate dehydrogenase kinase, causes activation of the branched-chain α-keto acid dehydrogenase complex, suggesting the existence of a kinase for this complex.  相似文献   

13.
The stereochemical reaction course for the two C-3 hydrogens of leucine to produce a characteristic isoprenoidal lipid in halophilic archaea was observed using incubation experiments with whole cell Halobacterium salinarum. Deuterium-labeled (3R)- and (3S)-[3-2H]leucine were freshly prepared as substrates from 2,3-epoxy-4-methyl-1-pentanol. Incorporation of deuterium from (3S)-[3-2H]leucine and loss of deuterium from (3R)-[3-2H]leucine in the lipid-core of H. salinarum was observed. Taken together with the results of our previous report, involving the incubation of chiral-labeled [5-2H]leucine, these results strongly suggested an involvement of isovaleryl-CoA dehydrogenase in leucine conversion to isoprenoid lipid in halophilic archaea. The stereochemical course of the reaction (anti-elimination) might have been the same as that previously reported for mammalian enzyme reactions. Thus, these results suggested that branched amino acids were metabolized to mevalonate in archaea in a manner similar to other organisms.  相似文献   

14.
Abstract— Protein turnover in rat brain was measured over a period of 30 days by following the decay in specific radioactivity of acidic amino acids in proteins labelled by a single intraperitoneal injection of [14C]NaHCO3. Two major populations of brain proteins can be identified from the resultant non-linear decay curve—one with an average half-life of 4 days and another with an average half-life of 12 days. The half-lives of total brain, mitochondrial, microsomal and soluble proteins determined over a period of 5 days were 3.4, 5.8, 2.8, and 2.6 days, respectively. Turnover of these same brain subcellular fractions was also measured by continuous infusion of [14C]tyrosine. The estimated half-lives were in close agreement with those obtained from the 5 day measurement of radioactive decay following a pulse label of [14C]NaHCO3.  相似文献   

15.
The simultaneous incorporation of [3H]fucose and [1-14C]leucine into normal rat sciatic nerve was examined using an in vitro incubation model. A linear rate of protein precursor uptake was found in purified myelin protein over 1/2–6 hr of incubation utilizing a supplemented medium containing amino acids. This model was then used to examine myelin protein synthesis in nerves undergoing degeneration at 1–4 days following a crush injury. Data showed a statistically significant decrease in the ratio of fucose to leucine at 2, 3, and 4 days of degeneration, which was the consequence of a significant increase in leucine uptake. These results, plus substantial protein recovery in axotomized nerves, are indicative of active synthesis of proteins that purify with myelin during early Wallerian degeneration.  相似文献   

16.
The regulation of the pyruvate dehydrogenase multienzyme complex of isolated beef heart mitochondria by a phosphorylation-dephosphorylation mechanism was investigated. From mitochondria incubated under conditions favoring either a protein kinasemediated inactivation or a phosphatase-mediated reactivation, the pyruvate dehydrogenase complex was extracted and partially purified. Incorporation of 32P from [γ-32P]ATP into the pyruvate dehydrogenase complex corresponded to the loss of enzymatic activity. Upon incubation of the mitochondria that were preincubated with [γ-32P]ATP under metabolic conditions favoring the phosphatase reaction, the amount of radioactivity in the 32P-labeled fraction decreased significantly with a concomitant increase in the pyruvate dehydrogenase activity. The estimated molecular weight of the 32P-labeled fraction derived from the mitochondrial incubation was 41,000, corresponding to the reported molecular weight of the α-subunit of the pyruvate dehydrogenase portion of the multienzyme complex.  相似文献   

17.
Rats were given a portocaval anastomosis and 3 weeks later, when the only ultrastructural change in the CNS is watery swelling of astrocytes, several aspects of brain metabolism were studied. The uptake of leucine by the brain, its incorporation into protein and its oxidation were followed after the simultaneous injection of a mixture of L-[114C]leucine and L-[4,5-3H]leucine. The concentration of leucine in blood was lowered in the operated animals whereas in brain it was increased. The specific radioactivity of leucine in the brain was comparable to values in control animals and there was no evidence of a decrease in incorporation of [1-14C]leucine into brain proteins over the short experimental time period studied. The only difference from the controls in the oxidation of [4,5-3H]leucine was a greater accumulation in glutamine. The amount of glutamine in the brains of the operated animals had increased 4-fold at the time of the metabolic studies. From dual-labelled experiments in which a mixture containing [1-14C]butyrate and L-[4,5-3H]leucine was injected intravenously, it was shown that, in both control and operated animals, the pools of brain glutamate and glutamine labelled from butyrate were metabolically distinct from those labelled from leucine. The total radioactivity appearing in brain from [1-14C]butyrate was markedly reduced in operated animals, but the radioactivity from L-[4,5-3H]leucine was not. The metabolism of [1-14C]octanoate was compared with that of [1-14C]butyrate. In control animals the labelling of metabolites was almost identical with either precursor. In operated animals there was no reduction in the uptake of [1-14C]octanoate into the brain. There was evidence that the size of the glutamine pool labelled, relative to glutamate, was increased but that it had a slower fractional turnover coefficient. A link between astroglial changes and an impairment to the carrier mechanism for transport of short chain monocarboxylic acids across the blood-brain barrier is suggested.  相似文献   

18.
dl-[2-14C]p-CHLOROPHENYLALANINE AS AN INHIBITOR OF TRYPTOPHAN 5-HYDROXYLASE   总被引:1,自引:0,他引:1  
The distribution in vivo of dl -[2-14C]p-chlorophenylalanine (p-CP) in regions and subcellular fractions of the rat brain was determined. The half-lives of p-CP and its metabolite p-chlorophenylpyruvic acid (p-CPPA) in plasma and brain were correlated with the development of inhibition of cerebral tryptophan 5-hydroxylase (EC 1.99.1.4). There was active transamination in vivo of p-CP and p-CPPA in the brain. Transport of indolealkylamino acids into brain was impaired by p-CP. Inhibition of tryptophan 5-hydroxylase could not be reversed by administration of large doses of l -tryptophan, l -tyrosine, or l -phenylalanine. After administration of [2-14C]p-CP in vivo, appreciable radioactivity was bound to cerebral proteins, including those with tryptophan 5-hydroxylase activity, as well as to phenylalanine 4-hydroxylase (EC 1.99.1.2) purified from liver. Amino acid analysis of the acid hydrolysate of purified, radioactive hepatic phenylalanine 4-hydroxylase showed over 80 per cent of the radioactivity to be present as p-CP. Neither the inhibition in vivo nor in vitro of tryptophan 5-hydroxylase could be reversed by dialysis; in controls, dialysis resulted in marked loss of enzyme activity. After incubation for 5 min with p-CP in vitro, enzymic activity was inhibited 60 per cent. In vitro, p-CPPA labelled protein much more extensively than p-CP, yet inhibited the enzyme less. Some of the label from p-CPPA was removable by dialysis.  相似文献   

19.
Endo-1,4-β-D-mannanase (1,4-β-D-mannanohydrolase, EC 3.2.1.78) was purified from viscera of a mud snail, Pomacea insularus (de Ordigny). The purified enzyme gave a single protein band in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weight of the purified enzyme was estimated to be 44,000. The amino-terminal sequence was H· Gly-X-Leu-Arg-Arg-Gln-Gly-Thr-Asn-Ile-Val-Asp-Ser-His-Gly-His-Lys-Val-Phe-Leu-Ser-Gly-Ala-Asn-Thr-Ala-Trp-Val-Ala-Tyr-Gly-Tyr-Asp-. The enzyme was stable from pH about 5.0 to about 10.5 and had its maximum activity at pH about 5.5. The purified enzyme produced M2, M3, M4,and M5 from β-1,4-mannan. Enzyme activity was greatly inhibited by Ag+, Hg2+, Cu2+, and dithiothreitol at 1 mM concentration. In addition, N-bromosuccinimide completely inhibited the enzyme activity.  相似文献   

20.
—Mercuric chloride, silver acetate and cupric sulphate (0·1 mm ) completely inhibited purified choline acetyltransferase from bovine caudate nuclei. At the same concentration cadmium chloride and zinc acetate gave a 50 per cent inhibition. Potassium and sodium salts more than doubled the enzymatic activity while creatinine hydrochloride more than tripled it. Guanidine hydrochloride was less effective than creatinine hydrochloride but more effective than KCl and NaCl. Sodium chloride and creatinine hydrochloride had a synergistic effect on the enzyme. When ammonium sulphate was used to fractionate the choline acetyltransferase that had been extracted from bovine caudate nuclei, the enzyme aggregated into different molecular sizes as determined by exclusion chromatography on Bio-gel A-1·5 m. The molecular weight of the largest aggregate was at least 106 daltons. The initial tissue extract contained only one molecular species of ChAc as did a partially purified preparation in which ammonium sulphate was not used in the purification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号