首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liver mitochondria isolated from rats treated with hexachlorobenzene plus iron, present a lower content of total porphyrin in respect to that of mitochondria from rats fed hexachlorobenzene alone. The in vitro mitochondrial porphyrin accumulation processes have been studied in mitochondria from iron loaded rats. It has been found that under these conditions the active porphyrin uptake process, which is driven by the K+ transmembrane gradient, is maximally inhibited in the presence of pentachlorophenol at a concentration similar to that found in vivo in the hexachlorobenzene experimental porphyria. By contrast the same degree of inhibition is presented by control mitochondria only in the presence of pentachlorophenol plus valinomycin, a condition which collapses the transmembrane K+ gradient. A strict correlation between porphyrin uptake and K+ concentration has been found in control as well as in iron treated mitochondria. A possible involvement of peroxidative reactions in the mitochondrial membranes has been proposed as a cause of the changes in the permeability properties of the mitochondrial membranes in the experimental chronic hepatic porphyria under conditions of iron overload.  相似文献   

2.
Rat liver mitochondrial fractions have previously been shown to contain a pool of iron which was bound neither in cytochromes nor in iron-sulfur centers (Tangerås, A., Flatmark, T., Bäckström, D. and Ehrenberg, A. (1980) Biochim. Biophys. Acta 589, 162–175), and in the present study the availability of this iron pool for heme synthesis has been studied in isolated mitochondria. A minor fraction of this iron is here shown to originate from iron-rich lysosomes present as a contaminant in mitochondrial fractions isolated by differential centrifugation, and a method for the selective quantitation of this iron pool was developed. The availability of the mitochondrial iron pool for heme synthesis by mitochondria in vitro was studied using a recently developed HPLC method for the assay of ferrochelatase activity. When deuteroporphyrin was used as the substrate, 1.04±0.13 nmol/mg protein of deuteroheme was formed after 6 h incubation at 37°C when a plateau was approached, and the initial rate of heme synthesis was 0.3 nmol/h per mg protein. Heme formation from the physiological substrate protoporphyrin was also seen. The heme synthesis increased with the amount of mitochondria used and was blocked by both Fe(II) and Fe(III) chelators. The heme synthesis was independent of mitochondrial oxidizable substrates and no difference was observed between pH 7.4 and 6.5. FMN slightly stimulated the formation of heme from endogenous iron, probably by mobilization of a small amount of contaminating lysosomal iron present in the preparations. The possibility that the mitochondrial iron pool functions as the proximate iron donor for heme synthesis by ferrochelatase in vivo is discussed.  相似文献   

3.
Rat liver mitochondrial fractions have previously been shown to contain a pool of iron which was bound neither in cytochromes nor in iron-sulfur centers (Tanger?s, A., Flatmark, T., B?ckstr?m, D. and Ehrenberg, A. (1980) Biochim. Biophys. Acta 589, 162-175), and in the present study the availability of this iron pool for heme synthesis has been studied in isolated mitochondria. A minor fraction of this iron is here shown to originate from iron-rich lysosomes present as a contaminant in mitochondrial fractions isolated by differential centrifugation, and a method for the selective quantitation of this iron pool was developed. The availability of the mitochondrial iron pool for heme synthesis by mitochondria in vitro was studied using a recently developed HPLC method for the assay of ferrochelatase activity. When deuteroporphyrin was used as the substrate, 1.04 +/- 0.13 nmol/mg protein of deuteroheme was formed after 6 h incubation at 37 degrees C when a plateau was approached, and the initial rate of heme synthesis was 0.3 nmol/h per mg protein. Heme formation from the physiological substrate protoporphyrin was also seen. The heme synthesis increased with the amount of mitochondria used and was blocked by both Fe(II) and Fe(III) chelators. The heme synthesis was independent of mitochondrial oxidizable substrates and no difference was observed between pH 7.4 and 6.5. FMN slightly stimulated the formation of heme from endogenous iron, probably by mobilization of a small amount of contaminating lysosomal iron present in the preparations. The possibility that the mitochondrial iron pool functions as the proximate iron donor for heme synthesis by ferrochelatase in vivo is discussed.  相似文献   

4.
The role of the mitochondrion in cellular iron homeostasis   总被引:1,自引:0,他引:1  
The yeast ATM1 protein is essential for normal mitochondrial iron homeostasis. Deletion of ATM1 results in mitochondrial iron accumulation and oxidative mitochondrial damage. Mutations in ABC7, the human homolog of ATM1, result in X-linked sideroblastic anemia and ataxia. Here we show that a deletion of ATM1 also has effects on extra-mitochondrial iron metabolism. ATM1-deficient cells have an increased iron requirement for growth. When grown in iron-rich medium, mutant cells accumulate excess mitochondrial iron and have increased expression of the genes required for both high and low affinity iron uptake. Thus, ATM1 mutant cells simultaneously demonstrate features of both iron overload and iron starvation. Yfh1p is the yeast homolog of the human frataxin protein, which is deficient in Friedreich's ataxia. As in atm1 cells, a yfh1 deletion results in both mitochondrial iron accumulation and cytosolic iron starvation. In spite of their apparent roles in cellular iron homeostasis, we find that the expression of neither ATM1 nor YFH1 is responsive to cellular iron status. Based on these observations, we propose a model in which cellular iron is prioritized for use by the mitochondrion, and available to the remainder of the cell only after mitochondrial needs have been fulfilled.  相似文献   

5.
Friedreich ataxia (FRDA), a progressive neurodegenerative disease, is due to the partial loss of function of frataxin, a mitochondrial protein of unknown function. Loss of frataxin causes mitochondrial iron accumulation, deficiency in the activities of iron-sulfur (Fe-S) proteins, and increased oxidative stress. Mouse models for FRDA demonstrate that the Fe-S deficit precedes iron accumulation, suggesting that iron accumulation is a secondary event. Furthermore, increased oxidative stress in FRDA patients has been demonstrated, and in vitro experiments imply that the frataxin defect impairs early antioxidant defenses. These results taken together suggest that frataxin may function either in mitochondrial iron homeostasis, in Fe-S cluster biogenesis, or directly in the response to oxidative stress. It is clear, however, that the pathogenic mechanism in FRDA involves free-radical production and oxidative stress, a process that appears to be sensitive to antioxidant therapies.  相似文献   

6.
Friedreich׳s ataxia is the most important recessive ataxia in the Caucasian population. Loss of frataxin expression affects the production of iron–sulfur clusters and, therefore, mitochondrial energy production. One of the pathological consequences is an increase of iron transport into the mitochondrial compartment leading to a toxic accumulation of reactive iron. However, the mechanism underlying this inappropriate mitochondrial iron accumulation is still unknown. Control and frataxin-deficient flies were fed with an iron diet in order to mimic an iron overload and used to assess various cellular as well as mitochondrial functions. We showed that frataxin-deficient flies were hypersensitive toward dietary iron and developed an iron-dependent decay of mitochondrial functions. In the fly model exhibiting only partial frataxin loss, we demonstrated that the inability to activate ferritin translation and the enhancement of mitochondrial iron uptake via mitoferrin upregulation were likely the key molecular events behind the iron-induced phenotype. Both defects were observed during the normal process of aging, confirming their importance in the progression of the pathology. In an effort to further assess the importance of these mechanisms, we carried out genetic interaction studies. We showed that mitoferrin downregulation improved many of the frataxin-deficient conditions, including nervous system degeneration, whereas mitoferrin overexpression exacerbated most of them. Taken together, this study demonstrates the crucial role of mitoferrin dysfunction in the etiology of Friedreich׳s ataxia and provides evidence that impairment of mitochondrial iron transport could be an effective treatment of the disease.  相似文献   

7.
The respiratory parameters and the membrane of liver mitochondria from rats treated with either hexachlorobenzene, iron or hexachlorobenzene plus iron, to induce experimental porphyria, have been studied. Partial uncoupling of oxidative phosphorylation has been observed in mitochondria from hexachlorobenzen- and hexachlorobenzene plus iron-treated rats. Direct evidence has been pressented that this uncoupling is due to the action of pentochlorophenol endogenously formed by metabolism of hexachlorobenzene. No irreversible damage of mitochondrial membrane has been revealed under both these conditions. Normal oxidative phosphorylation has bee found in mitochondria from rats treated with iron alone. In contrast, they presented an anomalous membrane potential, fully restored by oligomycin. A possible involvement of lipid peroxidation process, induced by iron, in causing these abnormalities has been suggested.  相似文献   

8.
9.
During the aging process, an accumulation of non-heme iron disrupts cellular homeostasis and contributes to the mitochondrial dysfunction typical of various neuromuscular degenerative diseases. Few studies have investigated the effects of iron accumulation on mitochondrial integrity and function in skeletal muscle and liver tissue. Thus, we isolated liver mitochondria (LM), as well as quadriceps-derived subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM), from male Fischer 344 x Brown Norway rats at 8, 18, 29 and 37 months of age. Non-heme iron content in SSM, IFM and LM was significantly higher with age, reaching a maximum at 37 months of age. The mitochondrial permeability transition pore (mPTP) was more susceptible to the opening in aged mitochondria containing high levels of iron (i.e. SSM and LM) compared to IFM. Furthermore, mitochondrial RNA oxidation increased significantly with age in SSM and LM, but not in IFM. Levels of mitochondrial RNA oxidation in SSM and LM correlated positively with levels of mitochondrial iron, whereas a significant negative correlation was observed between the maximum Ca(2+) amounts needed to induce mPTP opening and iron contents in SSM, IFM and LM. Overall, our data suggest that age-dependent accumulation of mitochondrial iron may increase mitochondrial dysfunction and oxidative damage,thereby enhancing the susceptibility to apoptosis.  相似文献   

10.
The yeast ATM1 gene is essential for normal cellular iron homeostasis. Deletion of ATM1 results in mitochondrial iron accumulation and increased sensitivity to oxidative stress and transition metal toxicity. Atm1p is an ATP-binding cassette (ABC) transporter localized to the mitochondrial inner membrane. The specific function of Atm1p has not been determined, though roles in both mitochondrial iron export and cytosolic Fe-S cluster assembly have been proposed. We undertook a screen for yeast genes capable of suppressing the abnormalities of cellular iron metabolism demonstrated by Deltaatm1 cells. One of the genes we identified was MDL1, which like ATM1, encodes a mitochondrial inner membrane ABC transporter. Mdl1p has previously been shown to function in the export of peptides from the mitochondrial matrix. We demonstrate that over-expression of MDL1 in Deltaatm1 cells results in a reduction of mitochondrial iron content, and decreased sensitivity to H(2)O(2) and transition metal toxicity. Additionally, in studies of the effect of over-expression and deletion of MDL1, we have identified a novel role for Mdl1p in the regulation of cellular resistance to oxidative stress.  相似文献   

11.
Iron-sulfur (Fe-S) clusters are ubiquitous cofactors composed of iron and inorganic sulfur. They are required for the function of proteins involved in a wide range of activities, including electron transport in respiratory chain complexes, regulatory sensing, photosynthesis and DNA repair. The proteins involved in the biogenesis of Fe-S clusters are evolutionarily conserved from bacteria to humans, and many insights into the process of Fe-S cluster biogenesis have come from studies of model organisms, including bacteria, fungi and plants. It is now clear that several rare and seemingly dissimilar human diseases are attributable to defects in the basic process of Fe-S cluster biogenesis. Although these diseases –which include Friedreich’s ataxia (FRDA), ISCU myopathy, a rare form of sideroblastic anemia, an encephalomyopathy caused by dysfunction of respiratory chain complex I and multiple mitochondrial dysfunctions syndrome – affect different tissues, a feature common to many of them is that mitochondrial iron overload develops as a secondary consequence of a defect in Fe-S cluster biogenesis. This Commentary outlines the basic steps of Fe-S cluster biogenesis as they have been defined in model organisms. In addition, it draws attention to refinements of the process that might be specific to the subcellular compartmentalization of Fe-S cluster biogenesis proteins in some eukaryotes, including mammals. Finally, it outlines several important unresolved questions in the field that, once addressed, should offer important clues into how mitochondrial iron homeostasis is regulated, and how dysfunction in Fe-S cluster biogenesis can contribute to disease.  相似文献   

12.
Frataxin is a nuclear-encoded mitochondrial protein highly conserved in prokaryotes and eukaryotes. Its deficiency was initially described as the phenotype of Friedreich's ataxia, an autosomal recessive disease in humans. Although several functions have been described for frataxin, that is, involvement in Fe-S cluster and heme synthesis, energy conversion and oxidative phosphorylation, iron handling and response to oxidative damage, its precise function remains unclear. Although there is a general consensus on the participation of frataxin in the maintenance of cellular iron homeostasis and in iron metabolism, this protein may have other specific functions in different tissues and organisms.  相似文献   

13.
Frataxin deficiency is the primary cause of Friedreich ataxia (FRDA), an autosomal recessive cardiodegenerative and neurodegenerative disease. Frataxin is a nuclear-encoded mitochondrial protein that is widely conserved among eukaryotes. Genetic inactivation of the yeast frataxin homologue (Yfh1p) results in mitochondrial iron accumulation and hypersensitivity to oxidative stress. Increased iron deposition and evidence of oxidative damage have also been observed in cardiac tissue and cultured fibroblasts from patients with FRDA. These findings indicate that frataxin is essential for mitochondrial iron homeostasis and protection from iron-induced formation of free radicals. The functional mechanism of frataxin, however, is still unknown. We have expressed the mature form of Yfh1p (mYfh1p) in Escherichia coli and have analyzed its function in vitro. Isolated mYfh1p is a soluble monomer (13,783 Da) that contains no iron and shows no significant tendency to self-associate. Aerobic addition of ferrous iron to mYfh1p results in assembly of regular spherical multimers with a molecular mass of approximately 1. 1 MDa (megadaltons) and a diameter of 13+/-2 nm. Each multimer consists of approximately 60 subunits and can sequester >3,000 atoms of iron. Titration of mYfh1p with increasing iron concentrations supports a stepwise mechanism of multimer assembly. Sequential addition of an iron chelator and a reducing agent results in quantitative iron release with concomitant disassembly of the multimer, indicating that mYfh1p sequesters iron in an available form. In yeast mitochondria, native mYfh1p exists as monomer and a higher-order species with a molecular weight >600,000. After addition of (55)Fe to the medium, immunoprecipitates of this species contain >16 atoms of (55)Fe per molecule of mYfh1p. We propose that iron-dependent self-assembly of recombinant mYfh1p reflects a physiological role for frataxin in mitochondrial iron sequestration and bioavailability.  相似文献   

14.
The divalent metal transporter (DMT1) is well known for its roles in duodenal iron absorption across the apical enterocyte membrane, in iron efflux from the endosome during transferrin-dependent cellular iron acquisition, as well as in uptake of non-transferrin bound iron in many cells. Recently, using multiple approaches, we have obtained evidence that the mitochondrial outer membrane is another subcellular locale of DMT1 expression. While iron is of vital importance for mitochondrial energy metabolism, its delivery is likely to be tightly controlled due to iron's damaging redox properties. Here we provide additional support for a role of DMT1 in mitochondrial iron acquisition by immunofluorescence colocalization with mitochondrial markers in cells and isolated mitochondria, as well as flow cytometric quantification of DMT1-positive mitochondria from an inducible expression system. Physiological consequences of mitochondrial DMT1 expression are discussed also in consideration of other DMT1 substrates, such as manganese, relevant to mitochondrial antioxidant defense.  相似文献   

15.
The divalent metal transporter (DMT1) is well known for its roles in duodenal iron absorption across the apical enterocyte membrane, in iron efflux from the endosome during transferrin-dependent cellular iron acquisition, as well as in uptake of non-transferrin bound iron in many cells. Recently, using multiple approaches, we have obtained evidence that the mitochondrial outer membrane is another subcellular locale of DMT1 expression. While iron is of vital importance for mitochondrial energy metabolism, its delivery is likely to be tightly controlled due to iron''s damaging redox properties. Here we provide additional support for a role of DMT1 in mitochondrial iron acquisition by immunofluorescence colocalization with mitochondrial markers in cells and isolated mitochondria, as well as flow cytometric quantification of DMT1-positive mitochondria from an inducible expression system. Physiological consequences of mitochondrial DMT1 expression are discussed also in consideration of other DMT1 substrates, such as manganese, relevant to mitochondrial antioxidant defense.  相似文献   

16.
Iron is vital for many physiological functions, including energy production, and dysregulated iron homeostasis underlies a number of pathologies. Ferroptosis is a recently recognized form of regulated cell death that is characterized by iron dependency and lipid peroxidation, and this process has been reported to be involved in multiple diseases. The mechanisms underlying ferroptosis are complex, and involve both well-described pathways (including the iron-induced Fenton reaction, impaired antioxidant capacity, and mitochondrial dysfunction) and novel interactions linked to cellular energy production. In this review, we examine the contribution of iron to diverse metabolic activities and their relationship to ferroptosis. There is an emphasis on the role of iron in driving energy production and its link to ferroptosis under both physiological and pathological conditions. In conclusion, excess reactive oxygen species production driven by disordered iron metabolism, which induces Fenton reaction and/or impairs mitochondrial function and energy metabolism, is a key inducer of ferroptosis.Subject terms: Cell biology, Biochemistry  相似文献   

17.
A patient with characteristic features of iron deficiency was unexpectedly found to have circulating siderocytes. Bone marrow iron stain at this time showed absence of both hemosiderin and ringed sideroblasts; electron microscopy revealed absence of mitochondrial iron loading but presence of cytoplasmic ferritin in normoblasts. Replenishment of iron stores led to development of typical sideroblastic anemia. These observations suggest that increased percentage of siderocytes in otherwise typical iron deficiency anemia may signify the presence of a sideroblastic process masked by iron deficiency due to bleeding.  相似文献   

18.
We previously described that the cold-induced apoptosis of cultured hepatocytes is mediated by an increase in the cellular chelatable iron pool. We here set out to assess whether a mitochondrial permeability transition (MPT) is involved in cold-induced apoptosis. When cultured hepatocytes were rewarmed after 18 h of cold (4°C) incubation in cell culture medium or University of Wisconsin solution, the vast majority of cells rapidly lost mitochondrial membrane potential. This loss was due to MPT as assessed by confocal laser scanning microscopy and as evidenced by the inhibitory effect of the MPT inhibitors trifluoperazine plus fructose. The occurrence of the MPT was iron-dependent: it was strongly inhibited by the iron chelators 2,2′-dipyridyl and deferoxamine. Addition of trifluoperazine plus fructose also strongly inhibited cold-induced apoptosis, suggesting that the MPT constitutes a decisive intermediate event in the pathway leading to cold-induced apoptosis. Further experiments employing the non-site-specific iron indicator Phen Green SK and specifically mitochondrial iron indicators and chelators (rhodamine B-[(1,10-phenanthrolin-5-yl)aminocarbonyl]benzyl ester, RPA, and rhodamine B-[(2,2′-bipyridin-4-yl)aminocarbonyl]benzyl ester, RDA) suggest that it is the cold-induced increase in cytosolic chelatable iron that triggers the MPT and that mitochondrial chelatable iron is not involved in this process.  相似文献   

19.
The functional state of isolated mitochondria and specifically the integrity of the inner membrane, were investigated in the liver of rats made siderotic by dietary supplementation with carbonyl iron. The concentration of iron in the hepatic tissue increased progressively up to nearly 40 days and reached a steady-state level. When the iron content reached a threshold value (higher than 90 nmol/mg protein) the occurrence of in vivo lipid peroxidation in the mitochondrial membrane was detected. This process did not result in gross alterations in the mitochondrial membrane, as indicated by electron microscopy, phosphorylative capability and membrane potential measurements. On the contrary, the induction of lipoperoxidative reaction appeared to be associated with the activation of Ca2+ release from mitochondria. This was shown to occur as a consequence of rather subtle modifications in the inner membrane structure via a specific efflux route, which appeared to be linked to the oxidation level of mitochondrial pyridine nucleotides. The induction of this Ca2+ release from iron-treated mitochondria resulted in enhancement of Ca2+ cycling, a process which dissipates energy to reaccumulate into mitochondria the released Ca2+. The perturbation in mitochondrial Ca2+ homeostasis reported here may be a factor in the onset of cell damage in this experimental model of hepatic iron overload.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号