首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
IFN-gamma exhibits differential effects depending on the target and can induce cellular activation and enhance survival or mediate cell death via activation of apoptotic pathways. In this study, we demonstrate an alternative mechanism by which IFN-gamma enhances tumor recognition, mediated by the active release of Hsp72. We demonstrate that stimulation of 4T1 breast adenocarcinoma cells and K562 erythroleukemic cells with IFN-gamma triggers the cellular stress response, which results in the enhanced expression of total Hsp72 expression without a significant increase in cell death. Intracellular expression of Hsp72 was abrogated in cells stably transfected with a mutant hsf-1 gene. IFN-gamma-induced Hsp72 expression correlated with enhanced surface expression and consequent release of Hsp72 into the culture medium. Pretreatment of tumors with compounds known to the block the classical protein transport pathway, including monensin, brefeldin A, tunicamycin, and thapsigargin, did not significantly block Hsp72 release. However, pretreatment with intracellular calcium chelator BAPTA-AM or disruption of lipid rafts using methyl beta-cyclodextrin completely abrogated IFN-gamma-induced Hsp72 release. Biochemical characterization revealed that Hsp72 is released within exosomes and has the ability to up-regulate CD83 expression and stimulate IL-12 release by naive dendritic cells. Pretreatment with neutralizing mAb or depletion of Hsp72 completely abrogated its chaperokine function. Taken together, these findings are indicative of an additional previously unknown mechanism by which IFN-gamma promotes tumor surveillance and furthers our understanding of the central role of extracellular Hsp72 as an endogenous adjuvant and danger signal.  相似文献   

4.
Aminopeptidase N (APN, CD13) and dipeptidyl peptidase IV (DPP IV, CD26) are transmembrane ectoenzymes occurring in a wide variety of cells. They are involved in tumour cell invasion and the formation of metastases. A basis for further information about these enzymes is the exact ultrastructural localization in normal and malignant cells. In this paper, we demonstrate the precise subcellular localization of the membrane peptidases APN and DPP IV on the cell surfaces in renal tissues, renal cell carcinoma, cultured renal parenchymal cells and cultured renal carcinoma cells. Using cryo-ultramicrotomy of weakly fixed tissues and cells in combination with indirect immunogold labelling, both membrane peptidases were detectable on the external cell surfaces. They showed different ultrastructural expression patterns. Both membrane peptidases were abundantly labelled on the external cell surfaces of human kidney proximal tubular cells. The expression pattern of APN/CD13 and DPP IV/CD26 in single labelling was confirmed by a successive double labelling technique. The immunolabelling of CD13 on cultured renal parenchymal cells showed a stronger expression then in cells in vivo, but CD26 could not be found. In renal cell cancer (mixed clear cell/chromophilic, poorly differentiated and clear cell type, moderately differentiated) CD13 and CD26 were labelled as in benign renal tissue, but CD26 appeared overexpressed. On the renal carcinoma cells Caki-1 and Caki-2, only one of the two peptidases could be found. CD13 was present non-homogeneously in Caki-1, where the enzyme appeared to form clusters. When CD26 on the cultured renal carcinoma cells Caki-2, is compared with renal proximal tubular cells and renal carcinoma cells in tissue sections, a reduced expression is observed. CD13 was not detected in Caki-2, and CD26 was not found in Caki-1. These small changes on the cell surfaces can only be detected by electronmicroscopic methods. The differences in the distribution of APN/CD13 and DPP IV/CD26 in normal and malignant cells are discussed in connection with literature. Further investigations, especially labelling studies on other neoplastic tissues and cells, will be necessary in order to explain the precise role these membrane peptidases in malignancies.  相似文献   

5.
TGF-beta1 is a well-known immunosuppressive cytokine that inhibits inducible nitric oxide synthase (iNOS) gene expression in various cells including macrophages. In this study, we investigated the suppressive mechanisms of TGF-beta1 on IFN-gamma-induced iNOS gene expression using the murine macrophage-like cell line RAW 264.7. TGF-beta1 decreased iNOS protein amount through enhanced degradation, although TGF-beta1 did not affect IFN-gamma-induced iNOS mRNA level or stability. In addition, the enhancement of iNOS protein degradation by TGF-beta1 treatment was almost completely blocked by MG132, a proteasome inhibitor. Furthermore, TGF-beta1 enhanced the trypsin-like activity of proteasomes in the presence of IFN-gamma, although did not enhance the peptidylglutamyl-peptide hydrolyzing and chymotrypsin-like activities of proteasomes. The level of ubiquitinated iNOS protein was not significantly altered by IFN-gamma or IFN-gamma plus TGF-beta1 treatment. Because MG132 inhibited iNOS protein degradation and IFN-gamma plus TGF-beta1 treatment increased the trypsin-like activity of proteasomes, we hypothesized that TGF-beta1 might enhance iNOS protein degradation via the ubiquitin-proteasome pathway in the presence of IFN-gamma. We propose that these mechanisms of TGF-beta1 in the posttranslational regulation of iNOS gene expression may contribute to suppression of excess nitric oxide during inflammatory processes.  相似文献   

6.
Mesenchymal stromal cells (MSC) possess immunosuppressive properties, yet when treated with IFN-gamma they acquire APC functions. To gain insight into MSC immune plasticity, we explored signaling pathways induced by IFN-gamma required for MHC class II (MHC II)-dependent Ag presentation. IFN-gamma-induced MHC II expression in mouse MSC was enhanced by high cell density or serum deprivation and suppressed by TGF-beta. This process was regulated by the activity of the type IV CIITA promoter independently of STAT1 activation and the induction of the IFN regulatory factor 1-dependent B7H1/PD-L1 encoding gene. The absence of direct correlation with the cell cycle suggested that cellular connectivity modulates IFN-gamma responsiveness for MHC II expression in mouse MSC. TGF-beta signaling in mouse MSC involved ALK5 and ALK1 TGF-beta RI, leading to the phosphorylation of Smad2/Smad3 and Smad1/Smad5/Smad8. An opposite effect was observed in human MSC where IFN-gamma-induced MHC II expression occurred at the highest levels in low-density cultures; however, TGF-beta reduced IFN-gamma-induced MHC II expression and its signaling was similar as in mouse MSC. This suggests that the IFN-gamma-induced APC features of MSC can be modulated by TGF-beta, serum factors, and cell density in vitro, although not in the same way in mouse and human MSC, via their convergent effects on CIITA expression.  相似文献   

7.
In rheumatic joints, high concentrations of interleukin-8 (IL-8) have been measured in synovial fluid and in pannus tissue. In both locations aminopeptidase N (APN)/CD13, an exopeptidase with reported activity towards IL-8 is also present. The surprising stability of IL-8 in the presence of an alleged IL-8-degrading peptidase prompted us to undertake the present study. Cocultivation of fibroblast-like synoviocytes (SFC) with T cells or with T lymphocytic cell membranes, or of T cells with SFC cell membranes, all resulted in increased IL-8 mRNA expression and IL-8 secretion into the medium, and an increase of APN expression on lymphocytes. IL-8 degradation was monitored by Western blots and HPLC. IL-8(72), as a partially processed form, was used throughout this study since it is abundant in tissues and has increased biological activity in comparison to IL-8(77). Thus its degradation/inactivation is considered of high biological significance. Whereas trypsin as a positive control rapidly degraded IL-8, we did not see any IL-8 degradation, either by a variety of soluble APNs, by leucine aminopeptidase or by APN expressed on the surface of SFC, or on ECV304 cells transfected with an APN expression vector. The much more sensitive HPLC technique resulted in negative results as well.  相似文献   

8.
Zhang Z  Harada H  Tanabe K  Hatta H  Hiraoka M  Nishimoto S 《Peptides》2005,26(11):2182-2187
A family of fluorescein-peptide conjugates (CNP1-3) for aminopeptidase N (APN/CD13) targeting fluorescent probes were designed and synthesized. Among the three conjugates, CNP1 bearing tumor-homing cyclic peptide CNGRC, could selectively label APN/CD13 over-expressing on the surface of tumor cells of HT-1080, as identified by means of fluorescent microscopic cell imaging. CNP1 was shown to be a promising fluorescent probe applicable to tumor-targeting molecular imaging.  相似文献   

9.
It has previously been shown that IFN-gamma-induced up-regulation of HLA class II on the surface of epithelial cells is not sufficient to induce proliferation of allospecific CD4+ T cells in vitro. To further investigate this phenomenon, a human epithelial bladder carcinoma, T24, was induced to constitutively express HLA class II without IFN-gamma stimulation, by permanent transfection with the full-length class II transactivator (CIITA) gene. Proliferation of allospecific T cells to transfected and wild-type cells with and without prior activation with saturating levels of IFN-gamma for 4 days was examined. IFN-gamma-activated T24 did not induce any response from CD4+ T cells. However, T24.CIITA induced significant levels of alloproliferation, which could be abrogated by pretreatment of T24.CIITA with a mAb to LFA-3. Prestimulation of T24. CIITA with saturating levels of IFN-gamma for 4 days also prevented allospecific CD4+ T cell proliferation. These findings suggest that epithelial cells may be intrinsically able to process and present alloantigen and provide adequate costimulation. We propose that IFN-gamma has a secondary, as yet unidentified, effect that acts to negatively regulate this response, at least in some epithelial cells.  相似文献   

10.
Interleukin-10 (IL-10) and transforming growth factor-beta (TGF-beta) regulate CD4+ T cell interferon-gamma (IFN-gamma) secretion in schistosome granulomas. The role of IL-12 was determined using C57BL/6 and CBA mice. C57BL/6 IL-4-/- granuloma cells were stimulated to produce IFN-gamma when cultured with IL-10 or TGF-beta neutralizing monoclonal antibody. In comparison, C57BL/6 wild-type (WT) control granuloma cells produced less IFN-gamma. IL-12, IL-18, and soluble egg antigen stimulated IFN-gamma release from C57BL/6 IL-4-/- and WT mice. IFN-gamma production in C57 IL-4-/- and WT granulomas was IL-12 dependent, because IL-12 blockade partly abrogated IFN-gamma secretion after stimulation. All granuloma cells released IL-12 (p70 and p40), and IL-12 production remained constant after anti-TGF-beta, anti-IL-10, recombinant IL-18, or antigen stimulation. C57 WT and IL-4-/- mouse granuloma cells expressed IL-12 receptor (IL-12R) beta1-subunit mRNA but little beta2 mRNA. TGF-beta or IL-10 blockade did not influence beta1 or beta2 mRNA expression. CBA mouse dispersed granuloma cells released no measurable IFN-gamma, produced IL-12 p70 and little p40, and expressed IL-12R beta2 and little beta1 mRNA. In T helper 2 (Th2) granulomas of C57BL/6 WT and IL-4-/- mice, cells produce IL-12 (for IFN-gamma production) and IL-10 and TGF-beta modulate IFN-gamma secretion via mechanisms independent of IL-12 and IL-12R mRNA regulation. We found substantial differences in control of granuloma IFN-gamma production and IL-12 circuitry in C57BL/6 and CBA mice.  相似文献   

11.
12.
Proteins in the brush border membrane (BBM) of the midgut binding to the insecticidal Cry1Ac toxin from Bacillus thuringiensis were investigated to examine the lower sensitivity of Bombyx mori to Cry1Ac, and new aminopeptidase N that bound to Cry1Ac was discovered. DEAE chromatography of Triton X-100-soluble BBM proteins from the midgut revealed 96-kDa aminopeptidase that bound to Cry1Ac. The enzyme was purified to homogeneity and estimated to be a 96.4-kDa molecule on a silver-stained SDS-PAGE gel. However, the native protein was eluted as a single peak corresponding to approximately 190-kDa on gel filtration and gave a single band on native PAGE. The enzyme was determined to be an aminopeptidase N (APN96) from its substrate specificity. Antiserum to class 3 B. mori APN (BmAPN3) recognized APN96, but peptide mass fingerprinting revealed that 54% of the amino acids of matched peptides were identical to those of BmAPN3, suggesting that APN96 was a novel isoform of the APN3 family. On ligand blots, APN96 bound to Cry1Ac but not Cry1Aa or Cry1Ab, and the interaction was inhibited by GalNAc. K(D) of the APN96-Cry1Ac interaction was determined to be 1.83 +/- 0.95 microM. The lectin binding assay suggested that APN96 had an N-linked bi-antennal oligosaccharide or an O-linked mucin type one. The role of APN96 was discussed in relation to the insensitivity of B. mori to Cry1Ac.  相似文献   

13.
In the present study, we characterized in monocytes the rise in [Ca(2+)](i) evoked by monoclonal antibodies (mAbs) to aminopeptidase N (APN)/CD13, showing a two-phase calcium increase with a small-belled [Ca(2+)](i) rise due to the release of calcium from intracellular stores and a more sustained plateau due to the influx of calcium from the extracellular environment. Tyrosine kinase inhibitors were able to inhibit the rise in [Ca(2+)](i) induced by ligation APN/CD13, as were inhibitors of the phosphatidylinositol 3-kinase. For the first time we can show that mAbs to APN/CD13 provoke phosphorylation of the mitogen-activated protein kinases ERK1/2, JNK, and p38. Furthermore, we show that mRNA of the chemotactic cytokine IL-8 is upregulated under the influence of APN/CD13 ligation. Although the in vivo ligand as well as possible cooperating membrane molecules remains to be identified, our results suggest that the membrane ectoenzyme APN/CD13 is a novel signal transduction molecule in monocytes.  相似文献   

14.
15.
As wound healing proceeds into the tissue remodeling phase, cellular interactions become dominated by the interplay of keratinocytes with fibroblasts in the skin, which is largely mediated through paracrine signaling and greatly affects the molecular constitution of the extracellular matrix. We have recently identified aminopeptidase N (APN)/CD13 as a potential fibroblast receptor for 14-3-3 sigma (also known as stratifin), a keratinocyte-releasable protein with potent matrix metalloproteinase 1 (MMP1) stimulatory activity. The present study demonstrates that the expression of APN on dermal fibroblasts is regulated through paracrine signaling by keratinocyte-derived soluble factors. By using an in vitro keratinocyte-fibroblast co-culture system, we showed that APN expression in dermal fibroblasts is induced in the presence of keratinocytes or in response to keratinocyte-conditioned medium. Conditioned medium collected from differentiated keratinocytes further increases APN protein production, suggesting an amplified stimulatory effect by keratinocyte differentiation. Recombinant stratifin potently induces APN synthesis in a dose-dependent manner. A consistent correlation between the protein expression levels of APN and MMP1 was also observed. These results confirm paracrine regulation of APN expression in dermal fibroblasts by keratinocyte-derived stimuli, in particular stratifin, and provide evidence that APN may serve as a target in the regulation of MMP1 expression in epidermal-mesenchymal communication.  相似文献   

16.
17.
Patients with defects in IFN-gamma- or IL-12-mediated immunity are susceptible to infections with Salmonella and non-tuberculous mycobacteria, but rarely suffer from infections with other intracellular pathogens such as Toxoplasma gondii. Here we describe macrophage and T cell function in eight individuals with partial IFN-gamma receptor 1 (IFN-gammaR1) deficiency due to a mutation that results in elevated cell surface expression of a truncated IFN-gammaR1 receptor that lacks the intracellular domain. We show that various effector mechanisms dependent on IFN-gammaR signaling are affected to different extents. Whereas TNF-alpha production was normally up-regulated in response to IFN-gamma, IL-12 production and CD64 up-regulation were strongly reduced, and IFN-gamma-mediated killing of the intracellular pathogens Salmonella typhimurium and T. gondii was completely abrogated in patient's macrophages. Since these patients suffer selectively from infections with non-tuberculous mycobacteria and Salmonella, but not T. gondii, despite sero-immunity in six of eight patients, which indicates previous contact with this pathogen, we next studied the role of TNF-alpha as a possible immune compensatory mechanism. IFN-gamma-induced killing of T. gondii appeared to be partially mediated by TNF-alpha, and addition of TNF-alpha could compensate for the abrogated killing of T. gondii in the patient's macrophages. In contrast, IFN-gamma-mediated killing of S. typhimurium appeared to be independent of TNF-alpha. We propose that the divergent role of TNF-alpha in IFN-gamma-induced killing of T. gondii and S. typhimurium may at least partially explain the highly selective susceptibility of patients.  相似文献   

18.
Transforming growth factor-beta is an essential moderator of malaria-induced inflammation in mice. In this study, we show that the virulence of malaria infections is dependent upon the cellular source of TGF-beta and the timing of its production. C57BL/6 mice infected with a nonlethal (Py17X) strain of Plasmodium yoelii produce TGF-beta from 5 days postinfection; this correlates with resolution of parasitemia, down-regulation of TNF-alpha, and full recovery. In contrast, infection with the lethal strain Py17XL induces high levels of circulating TGF-beta within 24 h; this is associated with delayed and blunted IFN-gamma and TNF-alpha responses, failure to clear parasites, and 100% mortality. Neutralization of early TGF-beta in Py17XL infection leads to a compensatory increase in IL-10 production, while simultaneous neutralization of TGF-beta and IL-10R signaling leads to up-regulation of TNF-alpha and IFN-gamma, prolonged survival in all, and ultimate resolution of infection in 40% of Py17XL-infected animals. TGF-beta production can be induced in an Ag-specific manner from splenocytes of infected mice, and by cross-linking surface CTLA-4. CD25(+) and CD8(+) cells are the primary source of TGF-beta following Py17X stimulation of splenocytes, whereas Py17XL induces significant production of TGF-beta from adherent cells. In mice immunized against Py17XL, the early TGF-beta response is inhibited and is accompanied by significant up-regulation of IFN-gamma and TNF-alpha and rapid resolution of challenge infections.  相似文献   

19.
MHC class II induction by cytokines has been suggested to play a major role in the initiation and propagation of immune and autoimmune processes. TNF-alpha has been found both to enhance and also to inhibit IFN-gamma-induced MHC class II expression. In the present studies, the effect of TNF-alpha on IFN-gamma induced MHC class II expression was tested in various cell lines. On the basis of the data, we propose that, depending on the stage of differentiation and maturation of the cells, TNF-alpha might synergize or antagonize the affects of IFN-gamma on the regulation of MHC class II expression. Thus, in immature cells such as HL-60 or THP-1, TNF-alpha enhances IFN-gamma-induced class II expression. However, when differentiation was induced in these cells by TPA or IFN-gamma, the additive effect of TNF-alpha on the IFN-gamma induced DR expression was eliminated. Furthermore, TNF-alpha down-regulates the IFN-gamma-induced class II expression in differentiated cells such as human skin fibroblasts or activated macrophages. In bone marrow cells induced to differentiate in vitro, TNF-alpha decreased the IFN-gamma-induced MHC class II expression in a maturation-dependent fashion. These results provide a rational explanation for the conflicting reports regarding the effect of TNF-alpha on IFN-gamma-induced class II expression. But more importantly they may be relevant to the biologic function of TNF-alpha. Thus, we show that TNF-alpha-treated mice have reduced level of Ia expression on peritoneal macrophages and in vivo treatment with TNF-alpha antagonizes the ability of IFN-gamma to induce class II expression on these macrophages.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号