首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yeast cells of mating type α excrete a sex factor which inhibits cell division and deoxyribonucleic acid replication but not ribonucleic acid or protein synthesis in cells of opposite mating type a.  相似文献   

2.
Osmotically shocked spheroplasts from Saccharomyces cerevisiae incorporated deoxynucleoside triphosphates specifically into double-stranded nuclear and mitochondrial deoxyribonucleic acid (DNA). Results with this in vitro system for cells with and without mitochondrial DNA were compared. Strains lacking mitochondrial DNA were used to study nuclear DNA replication. With a temperature-sensitive mutant defective in DNA replication in vivo, DNA synthesis in vitro was temperature sensitive as well. The product of synthesis with all strains after very short labeling times consisted principally of short fragments that sedimented at approximately 4S in alkali; with longer pulse times or a chase with unlabeled nucleotides, they grew to a more heterogenous size, with an average of 6 to 8S and a maximum of 15S. There was little, if any, integration of these DNA fragments into the high-molecular-weight nuclear DNA. Analysis by CsCl density gradient centrifugation after incorporation of bromodeoxyuridine triphosphate showed that most of the product consisted of chains containing both preexisting and newly synthesized material, but there was also a small fraction (ca. 20%) in which the strands were fully synthesized in vitro. (32)P-label transfer ("nearest-neighbor") experiments demonstrated that at least a part of the material synthesized in vitro contained ribonucleic acid-DNA junctions. DNA pulse-labeled in vivo in a mutant capable of taking up thymidine 5'-monophosphate, sedimented in alkali at 4S, as in the case of the in vitro experiments.  相似文献   

3.
Cells of Saccharomyces cerevisiae permeabilized by treatment with ether take up and incorporate exogenous deoxynucleoside triphosphate into deoxyribonucleic acid (DNA). With rho(+) strains, more than 95% of the product was mitochondrial DNA (mtDNA). This report characterizes ether-permeabilized yeast cells and describes studies on the mechanism of mtDNA synthesis with this system. The initial rate of in vitro mtDNA synthesis with one strain (X2180-1Brho(+)) was close to the rate of mtDNA replication in vivo. The extent of synthesis after 45 min was sufficient for the duplication of about 25% of the total mtDNA in the cells. The incorporated radioactivity resulting from in vitro DNA synthesis appeared in fragments that were an average of 30% mitochondrial genome size. Density-labeling experiments showed that continuous strands of at least 7 kilobases after denaturation, and up to 25 kilobase pairs before denaturation, were synthesized by this system. Pulse-chase experiments demonstrated that a large proportion of DNA product after short labeling times appeared in 0.25-kilobase fragments (after denaturation), which served as precursors of high-molecular-weight DNA. It is not yet clear whether the short pieces participate in a mechanism of discontinuous replication similar to that of bacterial and animal cell chromosomal DNA or whether they are related to the rapidly turning over, short initiation sequence of animal cell mtDNA. In rho(0) strains, which lack mtDNA, the initial rate of nuclear DNA synthesis in vitro was 1 to 2% of the average in vivo rate. With temperature-sensitive DNA replication mutants (cdc8), the synthesis of nuclear DNA was temperature sensitive in vitro as well, and in vitro DNA synthesis was blocked in an initiation mutant (cdc7) that was shifted to the restrictive temperature before the ether treatment.  相似文献   

4.
The characteristics of a system for the in vitro synthesis of mitochondrial deoxyribonucleic acid (mtDNA) in mitochondria isolated from Saccharomyces cerevisiae are described. In this system the exclusive product of the reaction is mtDNA. Under optimal conditions the initial rate of synthesis is close to the calculated in vivo rate; the rate is approximately linear for 20 min but then decreases gradually with time. DNA synthesis proceeds for at least 60 min and the de novo synthesis of an amount of mtDNA equivalent to 15% of the mtDNA initially present is achieved. The rate and extent of synthesis observed with mitochondria isolated from grande and petite (rho(-)) strains were similar. The mode of DNA synthesis is semiconservative; after density labeling with 5-bromodeoxyuridine triphosphate, in vitro, the majority of labeled DNA fragments of duplex molecular weight, 6 x 10(6), are of a density close to that calculated for hybrid yeast mtDNA. The density label is incorporated into one strand of the duplex molecules. These properties indicate that the synthesis resembles replicative rather than repair synthesis. This system therefore provides a convenient method for the study of mtDNA synthesis in S. cerevisiae. The observation that mtDNA synthesis is semiconservative in vitro suggests that the dispersive mode of synthesis observed in S. cerevisiae in vivo labeling studies is the result of some other process, possibly a high recombination rate.  相似文献   

5.
The effects of inhibitors of bacterial deoxyribonucleic acid (DNA) synthesis upon logarithmically growing cultures of Saccharomyces cerevisiae were investigated. Cell division, ribonucleic acid (RNA) synthesis, and DNA synthesis were measured after addition of nalidixic acid, fluorodeoxyuridine, or phenethyl alcohol to cultures of yeast growing in defined and complex media. Both nalidixic acid and fluorodeoxyuridine had only temporary effects on nucleic acid synthesis in cultures growing in defined medium, and little or no observable effect on cultures growing in complex medium. Neither compound inhibited colony formation on complex solid medium, although growth was slow on defined solid medium. Phenethyl alcohol caused complete inhibition of DNA synthesis, RNA synthesis, and cell division in cultures growing in defined medium. In cultures growing in complex medium, RNA synthesis and cell division were inhibited to a lesser extent. A slight increase in DNA was observed in the presence of the inhibitor.  相似文献   

6.
Rates of cell division and deoxyribonucleic acid synthesis after shift-up with grande and mitchondrial deoxyribonucleic-acid-less petite yeasts were studied. The results indicate that simple eukaryotes behave as prokaryotes.  相似文献   

7.
Two deoxyribonucleic acid (DNA)-dependent ribonucleic acid (RNA) polymerases (I, II) have been solubilized from isolated Saccharomyces cerevisiae nuclei. The enzymes can be separated by chromatography on O-diethylaminoethyl Sephadex. Both enzymes are active with high-molecular-weight nuclear yeast DNA, although RNA polymerase I has a higher affinity for polydeoxy-adenylic-thymidylic acid and RNA polymerase II for denatured DNA. RNA polymerase I is active only with manganese. alpha-Amanitin inhibits only the activity of RNA polymerase II.  相似文献   

8.
Summary We studied changes in autolytic activity of cells in the course of mating, using heterothallic haploid strains of Saccharomyces cerevisiae. Autolytic activity was determined by measuring protein and sugar released in the medium. The autolytic activity increased very rapidly after mixing a and type haploid cells, while such a conspicuous change was not observed with separate cultures of a or type cells. Increase due to mating in release of sugar was more conspicuous than that of protein. Increase in autolytic activity preceded the appearance of conjugating cells.  相似文献   

9.
A diffusible sex-specific substance called substance-I (S-I) was isolated from culture filtrate of type strains of the yeast Saccharomyces cerevisiae. The isolated S-I, an oligopeptide, induced sexual cell agglutinability in inducible a type strains and enhanced the agglutinability in constitutive a type strains. The induction of sexual agglutinability was detected in 30 min and reached maximum in 90 min, when 0.2 g/ml of S-I was added to inducible a type cells. The a type-specific factor responsible for sexual cell agglutination, called a type agglutination factor (aAF), was shown to be produced during the induction or the enhancement of agglutinability of a type cells by S-I. The aAF produced in response to S-I was not different in the susceptibility to proteolytic enzymes and disulfide-cleaving agents from those produced constitutively in the absence of S-I.  相似文献   

10.
Summary Haploid Saccharomyces yeasts showed sexual agglutination when a and type cells were mixed. Two types of a type strains were found; one constitutive and the other inducible concerning agglutinability. In type strains, no such differentiation was observed. Agglutination was inhibited by protease treatment. Secretion from type cells induced agglutinability in inducible a type cells. The activity of the secreted principle was heat-stable. The secretion is thought to induce de novo synthesis of proteinous sex-specific substances or to uncover preexisting sex substances.  相似文献   

11.
Summary Conspicuous cell agglutination occurred when cells of the a and types were mixed together and cultured, while it did not when the strains not to mate each other were mixed. In the former case the ability of cells to agglutinate developed gradually with time after the mixing. The agglutination was inhibited by cycloheximide but not by chloramphenicol. Relation between yeast sexual hormones and the mating-specific cell agglutination is discussed.  相似文献   

12.
The process of mating reaction of Saccharomyces cerevisiae was studied by electron microscopy. Prior to the dissolution of the part of the cell walls separating the conjugating pair of cells, the thinning of the electron transparent layer of the cell wall occurs at the part toward which the nuclei are migrating. After the dissolution of the cell walls of the conjugating cells, the cell membranes become associated with each other, then to be broken and rejoined. The first diploid bud emerges from about the middle of the zygote. The morphological changes during the mating reaction are discussed in relation to the biochemical changes so far known.  相似文献   

13.
14.
Alpha-factor-mediated cell cycle arrest and mating inhibition of a mating-type cells of Saccharomyces cerevisiae have been examined in liquid cultures. Cell cycle arrest may be monitored unambiguously by the appearance of morphologically abnormal cells after administration of alpha factor, whereas mating inhibition is determined by comparing the mating efficiency in the absence or presence of added alpha factor. For both cell cycle arrest and mating inhibition, a dose-dependent response may be observed at limiting concentrations of the pheromone. If cell cycle arrest and mating inhibition require a small number of alpha-factor molecules, one might expect that responsive/nonresponsive cells = K(alpha factor)(N) where N is the order of dependence of cell cycle arrest (or mating inhibition) on alpha-factor concentration. The value of N has been determined to be 0.98 +/- 0.18 (standard error of the mean) for cell cycle arrest and 1.08 +/- 0.32 for mating inhibition. These results support the notion that saturation of a single site by alpha factor is sufficient to cause cell cycle arrest or mating inhibition of a mating-type cells.  相似文献   

15.
16.
To determine whether polyamine synthesis is dependent on deoxyribonucleic acid (DNA) synthesis, polyamine levels were estimated after infection of bacterial cells with ultraviolet-irradiated T4 or T4 am N 122, a DNA-negative mutant. Although phage DNA accumulation was restricted to various degrees in comparison to cells infected with T4D, nearly commensurate levels of putrescine and spermidine synthesis were observed after infection, regardless of the rate of phage DNA synthesis. We conclude from these data that polyamine synthesis after infection is independent of phage DNA synthesis.  相似文献   

17.
The Saccharomyces cerevisiae mating pheromone a-factor is a prenylated and carboxyl methylated extracellular peptide signaling molecule. Biogenesis of the a-factor precursor proceeds via a distinctive multistep pathway that involves COOH-terminal modification, NH2-terminal proteolysis, and a nonclassical export mechanism. In this study, we examine the formation and fate of a-factor biosynthetic intermediates to more precisely define the events that occur during a-factor biogenesis. We have identified four distinct a-factor biosynthetic intermediates (P0, P1, P2, and M) by metabolic labeling, immunoprecipitation, and SDSPAGE. We determined the biochemical composition of each by defining their NH2-terminal amino acid and COOH-terminal modification status. Unexpectedly, we discovered that not one, but two NH2-terminal cleavage steps occur during the biogenesis of a-factor. In addition, we have shown that COOH-terminal prenylation is required for the NH2-terminal processing of a-factor and that all the prenylated a-factor intermediates (P1, P2, and M) are membrane bound, suggesting that many steps of a-factor biogenesis occur in association with membranes. We also observed that although the biogenesis of a-factor is a rapid process, it is inherently inefficient, perhaps reflecting the potential for regulation. Previous studies have identified gene products that participate in the COOH-terminal modification (Ram1p, Ram2p, Ste14p), NH2-terminal processing (Ste24p, Axl1p), and export (Ste6p) of a-factor. The intermediates defined in the present study are discussed in the context of these biogenesis components to formulate an overall model for the pathway of a-factor biogenesis.In Saccharomyces cerevisiae, the peptide mating pheromones a-factor and α-factor function to promote conjugation between cells of the opposite mating type, MATa and MATα (Marsh et al., 1991; Sprague and Thorner, 1992). Like the peptide hormones secreted by higher eukaryotes, the yeast mating pheromones are initially synthesized as larger precursors that undergo posttranslational modification and proteolytic processing before their export from the cell. Despite their functional equivalence as signaling molecules, the a-factor and α-factor pheromones are structurally quite dissimilar and exemplify distinct paradigms for biogenesis. The maturation of α-factor is well characterized and involves the “classical” secretory pathway (ER→ Golgi→ secretory vesicles; Julius et al., 1984). Subsequent to its translocation across the ER membrane, the α-factor precursor undergoes signal sequence cleavage, glycosylation, a series of proteolytic processing steps in the lumenal compartments of the secretory pathway, and then exits the cell via exocytosis (Fuller et al., 1986; Sprague and Thorner, 1992). In contrast to our extensive understanding of α-factor maturation, our view of the events involved in a-factor biogenesis is still incomplete. An important difference between the two pheromones is that secretion of a-factor is mediated by a “nonclassical” export mechanism (Kuchler et al., 1989; McGrath and Varshavsky, 1989; Michaelis, 1993). The purpose of the present study is to delineate the steps of a-factor biogenesis that occur before its export, by the identification and characterization of a-factor biosynthetic intermediates.Mature bioactive a-factor is a prenylated and methylated dodecapeptide, derived by the posttranslational maturation of a precursor encoded by the similar and functionally redundant genes MFA1 and MFA2 (Brake et al., 1985; Michaelis and Herskowitz, 1988). The structures of the precursor and mature forms of a-factor derived from MFA1 are shown in Fig. Fig.1.1. The a-factor precursor can be subdivided into three functional segments: (a) the mature portion (shaded in Fig. Fig.1),1), which is ultimately secreted; (b) the NH2-terminal extension; and (c) the COOH-terminal CAAX motif (C is cysteine, A is aliphatic, and X is one of many residues). As shown here, and also suggested by our previous studies, the biogenesis of a-factor occurs by an ordered series of events involving first COOH-terminal CAAX modification, then NH2-terminal processing, and finally export from the cell (He et al., 1991; Michaelis, 1993; Sapperstein et al., 1994). Open in a separate windowFigure 1Structure of precursor and mature forms of a-factor encoded by MFA1. The a-factor precursor encoded by MFA1 is shown with the NH2-terminal extension, COOH-terminal CAAX motif, and mature portion (shaded gray) indicated. Every fifth residue is numbered. Mature a-factor derived from this precursor is modified on its COOH-terminal cysteine residue by a farnesyl moiety and a carboxyl methyl group, as indicated.The COOH-terminal maturation of the a-factor precursor is directed by its CAAX sequence. The CAAX motif is present at the COOH terminus of numerous eukaryotic proteins, most notably the Ras proteins, and is known to signal a triplet of posttranslational modifications. These include prenylation of the cysteine residue, proteolysis of the COOH terminal AAX residues (VIA for a-factor), and methylation of the newly exposed cysteine carboxyl group (Clarke, 1992; Zhang and Casey, 1996). The yeast enzymes that mediate the modification of CAAX-terminating proteins are known from genetic and biochemical studies. RAM1 and RAM2 encode the subunits of the cytosolic farnesyltransferase enzyme (Fujiyama et al., 1987; He et al., 1991; Powers et al., 1986; Schafer et al., 1990). An “AAX” endoprotease has been detected as a membrane-associated activity in yeast extracts, although the corresponding gene(s) remains elusive (Ashby et al., 1992; Hrycyna and Clarke, 1992). STE14 encodes the prenylcysteine-dependent carboxyl methyltransferase that mediates methylation, the final step in modification of CAAX proteins; Ste14p is also membrane associated (Hrycyna and Clarke, 1990; Hrycyna et al., 1991; Marr et al., 1990; Sapperstein et al., 1994). In mutants (ram1, ram2, and ste14) defective in CAAX modification, biologically active a-factor is not produced.The events involved in the NH2-terminal proteolytic processing of the a-factor precursor are less well-defined than those of COOH-terminal maturation. It was recently shown that a protease encoded by the AXL1 gene is required for one step of the NH2-terminal processing of a-factor (Adames et al., 1995). Axl1p belongs to the insulin-degrading enzyme (IDE)1 subfamily of proteases; an AXL1 homologue, Ste23p, was also found to perform a role at least partially redundant to that of Axl1p in a-factor processing (Adames et al., 1995). Recently, we have identified another gene, STE24, whose product participates in the NH2-terminal processing of the a-factor precursor in a manner distinct from Axl1p and Ste23p (Fujimura-Kamada and Michaelis, 1997). Based on a priori inspection of the precursor and mature forms of a-factor (Fig. (Fig.1),1), a single NH2-terminal proteolytic cleavage event (between residues N21 and Y22) might have been predicted; however, we provide evidence in the present study that the proteolytic processing of the NH2terminal extension of the a-factor precursor occurs in two distinct steps.The final event in a-factor biogenesis is the export of the fully matured pheromone from the cell. The absence of a canonical NH2-terminal signal sequence in the MFA1 and MFA2 sequences, as well as the lack of effect upon a-factor secretion of sec mutants blocked at various steps in the classical secretory pathway, led to the suggestion of a nonclassical export mechanism for a-factor export (McGrath and Varshavsky, 1989; Sterne, 1989). Indeed, a-factor export is now known to be mediated by Ste6p, a member of the ATP-binding cassette (ABC) superfamily of proteins (Kuchler et al., 1989; McGrath and Varshavsky, 1989). ABC proteins carry out the ATP-dependent membrane translocation of a variety of compounds, including small peptides, hydrophobic drugs, and even prenylcysteine derivatives, by an uncharacterized mechanism (Gottesman and Pastan, 1993; Zhang et al., 1994). It is notable that a-factor undergoes COOH-terminal modification and NH2-terminal proteolytic maturation before Ste6p-mediated membrane translocation. This order of events contrasts with those of the biogenesis of the α-factor precursor and other classical secretory substrates, which undergo ER membrane translocation first and are matured only subsequently.In the present study, we aimed to elucidate the events that occur during a-factor biogenesis, before its export from the cell. Our approach was to identify a-factor biosynthetic intermediates, determine their chemical composition and localization properties, and examine the efficiency of their formation and the effects of an a-factor CAAX mutation on their formation. In addition to identifying the biosynthetic intermediates we expected, which include the unmodified a-factor precursor (P0), the COOHterminally modified a-factor precursor (P1), and mature a-factor (M), we unexpectedly uncovered a novel and unanticipated intermediate. This species, designated P2, is fully COOH-terminally modified and has had only a segment of its NH2-terminal extension proteolytically removed. The existence of the P2 intermediate provides evidence that an additional unpredicted step occurs during the NH2-terminal processing of the a-factor precursor. The biosynthetic intermediates we identify here, considered together with known a-factor biogenesis components, are presented in terms of a comprehensive model for the a-factor biogenesis pathway.  相似文献   

18.
Kinetic and genetic evidences are presented to show that, in addition to specific amino acid permeases, Saccharomyces cerevisiae has a general amino acid permease which catalyzes the transport of basic and neutral amino acids, but most probably not that of proline. The general amino acid permease appears to be constitutive, and its activity is inhibited when ammonium ions are added to the culture medium. A mutant which has lost the general amino acid permease activity was isolated. Its mutation, named gap (general amino acid permease), is not allelic to the aap (amino acid permease) mutation of Surdin et al., which has a quite different phenotype and cannot be considered as having selectively lost the general amino acid permease activity.  相似文献   

19.
Synthesis of ribosomes in Saccharomyces cerevisiae.   总被引:52,自引:1,他引:52       下载免费PDF全文
  相似文献   

20.
The effect of bacteriophage SPO1 infection of Bacillus subtilis and a deoxyribonucleic acid (DNA) polymerase-deficient (pol) mutant of this microorganism on the synthesis of DNA has been examined. Soon after infection, the incorporation of deoxyribonucleoside triphosphates into acid-insoluble material by cell lysates was greatly reduced. This inhibition of host DNA synthesis was not a result of host chromosome degradation nor did it appear to be due to the induction of thymidine triphosphate nucleotidohydrolase. Examination of the host chromosome for genetic linkage throughout the lytic cycle indicated that no extensive degradation occurred. After the inhibition of host DNA synthesis, a new polymerase activity arose which directed the synthesis of phage DNA. This new activity required deoxyribonucleoside triphosphates as substrates, Mg2+ ions, and a sulfhydryl reducing agent, and it was stimulated in the presence of adenosine triphosphate. The phage DNA polymerase, like that of its host, was associated with a fast-sedimenting cell membrane complex. The pol mutation had no effect on the synthesis of phage DNA or production of mature phage particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号