首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Since 1985, the coastal embayments of Long Island, New York, have been plagued with recurrent blooms, aptly called brown tides, of the pelagophyte Aureococcus anophagefferens. The distinct ocean color observed during these blooms suggests that optical methods can be used as a tool to study, detect, and track brown tides. Thus, the goal of our project was to compare the optical properties and pigment composition during bloom and non-bloom conditions and assess temporal variations in the phytoplankton and other constituents in the seawater associated with bloom development. From 17 May to 8 June 2000, we measured a time series of particle size distributions and concentrations as well as size-fractioned algal pigments and optical properties in two Long Island embayments where brown tides are known to occur. During our study, A. anophagefferens represented an insignificant contribution to the algal community in West Neck Bay (WNB), whereas a bloom developed in Quantuck Bay (QB). Initially, temperature and salinity were similar at the two locations; however, bulk optical properties, chlorophyll, and particle concentrations were nearly a factor of 2 greater at QB. Bulk optical properties remained constant at WNB, yet increased exponentially at QB as the bloom developed. The composition of particulates, including phytoplankton, varied little at QB, and the optical properties suggested the dominance of A. anophagefferens (confirmed by microscopy). The largest temporal variations were observed in the colored dissolved organic material (CDOM); the colloidal (0.2–0.7 μm) fraction, exhibiting a strong protein-like signal, increased dramatically at the height of the bloom. At WNB particle sizes and algal composition varied despite the invariant bulk optical properties; CDOM variations were minimal. Overall, the optical properties in the two bays demonstrated that at QB temporal variations were dominated by biomass and colloidal protein changes, whereas shifts in the algal community occurred at WNB. This study demonstrates the utility of in situ optical observations to resolve temporal changes in the ecological conditions associated with algal bloom development.  相似文献   

2.
This study examined benthic and pelagic rate processes from the perspective of benthic dissolved organic matter (DOM) and its possible role in Aureococcus anophagefferens population dynamics. Sampling was conducted in Quantuck Bay, Long Island, New York, at three times in the summer of 2000 and two times in the summer of 2001. A. anophagefferens exhibited a large bloom between the May and July 2000 sample periods, but a smaller bloom was captured in the September 2000 sampling. Densities throughout 2001 were significantly lower than during 2000. There were few differences in most parameters measured between years, but the largest difference was the seasonal increase in both particulate (POM) and dissolved organic matter (DOM) during 2000 that was not observed during 2001. In particular, DOP accumulated the most, followed by DON and DOC, which resulted in significant seasonal decreases in the C:N:P ratios of the DOM pools. On the contrary, changes in elemental ratios of POM were not observed. The seasonal accumulation of DON appeared to be driven largely (50%) by the flux of DON from the benthos in 2000, but during 2001, all measured DON fluxes were into the sediment from the water column. This is consistent with the lack of accumulation during this year. There was little evidence for changes in microzooplankton grazing pressure between 2000 and 2001, and therefore the accumulation of DON and DOP during 2000 could have provided a competitive advantage to A. anophagefferens over other picoalgal species (e.g., Synechococcus) resulting in the significant blooms observed in 2000.  相似文献   

3.
The entire microbial plankton community was quantified on a weekly basis April through June of 2000 in Quantuck Bay as part of an ongoing study to identify factors contributing to the initiation of blooms of Aureococcus anophagefferens (brown tide) in Long Island, NY bays. We used flow cytometry, imaging cytometry, fluorescent antibody cell counts, and traditional visual cell counting to quantify the picophytoplankton, heterotrophic bacteria, nanophytoplankton, heterotrophic protists, and microplankton prior to, and during the initiation of a brown tide bloom. Cells passing through a 5 μm mesh dominated the total chlorophyll concentration (>80%) for most of the spring study period. The A. anophagefferens bloom occurred in the context of a larger pico/nanophytoplankton bloom where A. anophagefferens accounted for only 30% of the total cell count when it was at its maximum concentration of 4.8 × 105 mL−1. Levels of dissolved organic nitrogen were enriched during the bloom peak relative to pre-bloom levels and heterotrophic bacteria also bloomed, reaching abundances over 107 mL−1. A trophic cascade within the heterotrophic protist community may have occurred, coinciding with the A. anophagefferens bloom. Before the onset of the bloom, larger grazers increased in abundance, while the next smaller trophic level of grazers were diminished. These smaller grazers were the likely water column predators of A. anophagefferens, and the brown tide bloom initiated when they were depleted. These results suggest that this bloom initiated due to interactions with other pico/nano algae and release from grazing pressure through a trophic cascade.  相似文献   

4.
Concentrations of the accessory phytoplankton pigment 19′-butanoyloxyfucoxanthin (but-fuco), derived from archived high performance liquid chromatography (HPLC) data from the Atlantic coastal bays of Maryland and Virginia (1993–1995 and 1999–2002), were used to determine the presence of Aureococcus anophagefferens at 18 stations. Paired data of direct cell counts of A. anophagefferens and but-fuco concentration data from 2000 to 2002 were linearly regressed (R2 = 0.78). This regression was used to estimate historical cell densities from 1994 to 1995 and to improve the spatial resolution from 1999 to 2002. Although the HPLC method used did not permit quantification of but-fuco before 1994, the records indicate that qualitatively A. anophagefferens was present in 1993. Quantitative measurements grouped into bloom index categories showed that annually, peak densities occurred in May to July. Severe Category 3 blooms (>200,000 cells ml−1) were found in 1995, 2001, and 2002. Spatially, concentrations of but-fuco were higher in the northern extent of the study region than in the lower Chincoteague Bay, and along the western shore of Chincoteague Bay than on the eastern side. On an interannual basis, it appeared that A. anophagefferens became more geographically widespread and blooms more intense throughout the study period.  相似文献   

5.
Brown tide, a bloom of the picoplankter Aureococcus anophagefferens, first appeared in eastern Long Island (Suffolk County) waters in the late spring of 1985, at about the same time it emerged, although to a lesser degree, in Narraganset Bay, RI. Since then, it has recurred sporadically in Suffolk County, and blooms have been reported in New Jersey, Delaware, Maryland, and only one other area of the world, Saldanha Bay, South Africa. Bloom initiation and maintenance within Suffolk County appear to be related to A. anophagefferens’ ability to use dissolved organic nitrogen (DON) during periods of limited dissolved inorganic nitrogen (DIN) availability. Factors controlling DIN availability include groundwater influx related to meteorological conditions, introduction of septic leachate from on-site wastewater treatment systems, and biological removal. The complexity of bloom dynamics is illustrated by a cascade of events in Great South Bay involving shellfish clearing rates, a macroalgal bloom, and microbial decomposition.  相似文献   

6.
In order to study the influence of nutrients on the growth characteristics of the dominant dinoflagellates, Ceratium furca and Ceratium fusus, in the temperate coastal area of Sagami Bay, Japan, we conducted field monitoring from January 2000 to December 2005 and performed laboratory culture experiments. In the field study, population densities of C. furca and C. fusus were high, even in low nutrient concentrations (N: 1.58 μM, P: 0.17 μM). Both species were more abundant in the surface and sub-surface layers than in the bottom layers during the stratification periods. In the laboratory study, the specific growth rates of C. furca and C. fusus increased gradually along with increasing nutrients up to the T5 (N: 5 μM, P: 0.5 μM) and T10 (N: 10 μM, P: 1 μM) concentration levels, after which the growth rate plateaued at the T50 (N: 50 μM, P: 5 μM) concentration level. In contrast, the nutrient uptake rates of both species continuously increased, indicating “luxury consumption”, i.e., excessive cellular storage not related to growth rate. The half-saturation constants (Ks) of C. furca for nitrate (0.49 μM) and phosphate (0.05 μM) were slightly higher than C. fusus (0.32 and 0.03 μM, respectively). We offer two reasons why the two Ceratium population densities were maintained at high levels in low nutrient conditions. First, these two species have a competitive advantage over other algal species because of low Ks values and specific characteristics for nutrient uptake such as luxury consumption. Their ability to obtain nutrients through alternative methods, such as phagotrophy, might contribute to bloom formation and population persistence. Second, the cell densities of both Ceratium species increased along with nitrate concentrations in the media even when phosphorus was held constant. In particular, the growth of C. furca was directly supported by various nitrogen sources such as nitrate, ammonium, and urea, although the highest growth rates were observed only in the nitrate-enriched cultures. Our field and laboratory results revealed that the growth rates of the two Ceratium species increased readily in high N:P nutrient conditions (i.e., conditions of P limitation) indicating an advantage over other algal species in phosphorus-limited environments such as Sagami Bay.  相似文献   

7.
Large blooms of the marine cyanobacterium Lyngbya majuscula in Moreton Bay, Australia (27°05′S, 153°08′E) have been re-occurring for several years. A bloom was studied in Deception Bay (Northern Moreton Bay) in detail over the period January–March 2000. In situ data loggers and field sampling characterised various environmental parameters before and during the L. majuscula bloom. Various ecophysiological experiments were conducted on L. majuscula collected in the field and transported to the laboratory, including short-term (2 h) 14C incorporation rates and long-term (7 days) pulse amplitude modulated (PAM) fluorometry assessments of photosynthetic capacity. The effects of L. majuscula on various seagrasses in the bloom region were also assessed with repeated biomass sampling. The bloom commenced in January 2000 following usual December rainfall events, water temperatures in excess of 24 °C and high light conditions. This bloom expanded rapidly from 0 to a maximum extent of 8 km2 over 55 days with an average biomass of 210 gdw−1 m−2 in late February, followed by a rapid decline in early April. Seagrass biomass, especially Syringodium isoetifolium, was found to decline in areas of dense L. majuscula accumulation. Dissolved and total nutrient concentrations did not differ significantly (P > 0.05) preceding or during the bloom. However, water samples from creeks discharging into the study region indicated elevated concentrations of total iron (2.7–80.6 μM) and dissolved organic carbon (2.5–24.7 mg L−1), associated with low pH values (3.8–6.7). 14C incorporation rates by L. majuscula were significantly (P < 0.05) elevated by additions of iron (5 μM Fe), an organic chelator, ethylenediaminetetra-acetic acid (5 μM EDTA) and phosphorus (5 μM PO4−3). Photosynthetic capacity measured with PAM fluorometry was also stimulated by various nutrient additions, but not significantly (P > 0.05). These results suggest that the L. majuscula bloom may have been stimulated by bioavailable iron, perhaps complexed by dissolved organic carbon. The rapid bloom expansion observed may then have been sustained by additional inputs of nutrients (N and P) and iron through sediment efflux, stimulated by redox changes due to decomposing L. majuscula mats.  相似文献   

8.
We present a conceptual model for initiation of blooms of the estuarine brown-tide pelagophyte Aureococcus anophagefferens. The model is based on the observation that in addition to its well-documented stimulation by organic nutrients, Aureococcus is pre-adapted to low light levels. Its relatively low maximum (light-saturated) growth rate makes it a poor competitor with other estuarine species at high light under acclimated conditions. Its large photosynthetic antenna and relatively low quota of photoprotective pigments make it more susceptible to photoinhibition than other species to which it is compared. These same characteristics give it a competitive advantage at low light levels. In its shallow habitat, both the light level and the rate of nutrient supply from groundwater and benthic porewater are determined by the degree of benthic coupling. Experimental manipulations in a microcosm and a survey of the literature demonstrate the ability of the sediment-associated microphytobenthos (MPB) to regulate both the light- and nutrient-environment in the overlying water column. The model predicts that the growth dynamics of the MPB are such that the benthic/water column interactions tend towards one of two stable states. In one, a well-developed population of MPB restricts resuspension of particulate material and efflux of dissolved nutrients, resulting in clear and nutrient-poor overlying waters. This condition does not favor growth of Aureococcus. In the alternative state, erosion of the MPB results in turbid, nutrient-rich waters that do favor bloom initiation. Alternation between the states is caused by external physical forcing, through wind-driven mixing of the water column. Field data from Quantuck Bay, New York (USA), failed to document the transition from non-bloom to bloom conditions. Even so, they are consistent with the model’s predictions.  相似文献   

9.
We investigated the impact of viruses, nutrient loading, and microzooplankon grazing on phytoplankton communities in two New York estuaries that hosted blooms of the brown tide alga Aureococcus anophagefferens during 2000 and 2002. The absence of a bloom at one location during 2002 allowed for the fortuitous comparison of a bloom and non-bloom year at the same location as well as a comparison of two sites experiencing bloom and non-bloom conditions during the same year. During the study, blooms were found at locations with high levels of dissolved organic nitrogen and lower nitrate concentrations compared to a non-bloom location. Experimental additions of inorganic nitrogen and phosphorus yielded growth rates within the total phytoplankton community which significantly exceeded control treatments in 83% of experiments, while A. anophagefferens experienced significantly increased growth during only 20% of experimental inorganic nutrient additions. Consistent with prior research, these results suggest brown tides are not caused by eutrophication, but instead are more likely to occur when sources of labile DOM are readily available. Microzooplankton grazing rates on the total phytoplankton community during a bloom were lower than grazing rates at a non-bloom site, and grazing rates on A. anophagefferens were lower than grazing rates on the total community on some dates, suggesting that reduced grazing mortality may also promote brown tides. Mean densities of viruses during blooms (3 × 108 ml−1) were elevated compared to most estuarine environments and were twice the levels found at a non-bloom site. Experimental enrichment of the natural viral densities yielded a significant increase in A. anophagefferens growth rates relative to control treatments when background levels of viruses were low (<1.7 × 108 ml−1), suggesting that viruses may promote bloom occurrence by regenerating DOM or altering the composition of microbial communities.  相似文献   

10.
The rate of growth of juvenile hard clams, Mercenaria mercenaria, was studied in the Coastal Bays of Maryland during an outbreak of the brown tide, Aureococcus anophagefferens. Brown tide dominated the plankton community during the month of June 2002, with cell densities at several sites reaching category 3 (>200,000 cells ml−1) levels. Temperatures during the bloom were 18.6–27.5 °C. Nutrient conditions preceding and during the bloom were conducive for the proliferation of A. anophagefferens: while inorganic nitrogen and phosphorus were <1 μg at N or P l−1, urea was elevated during bloom development. Organic nitrogen, phosphorus and carbon were in the range of levels observed in previous brown tide blooms and increased following the collapse of the bloom. Growth rates of juvenile clams were significantly lower during the period of the brown tide bloom than following its collapse. Growth rates of M. mercenaria were found to be negatively impacted at brown tide densities as low as 20,000 cells ml−1, or category 1 levels. The low growth rates of M. mercenaria could not be explained by temperature, as the lowest growth rates were found when water temperatures were at levels previously found to be optimal for growth.  相似文献   

11.
Yessotoxin (YTX) was detected in an algal sample and two mussel samples (0.07–0.10 μg g−1) collected from Scripps Pier in La Jolla, California during a bloom of Lingulodinium polyedrum. Mussel samples collected from Monterey Bay, California also contained measurable YTX (levels up to 0.06 μg g−1) in samples obtained during a 6-month (weekly) sampling period. Gonyaulax spinifera and L. polyedrum were identified in background concentrations in Monterey Bay during the time of contamination. An algal sample from Washington coastal waters collected during non-bloom conditions also contained YTX, possibly originating from Protoceratium reticulatum.Three strains of L. polyedrum (CCMP1931, CCMP1936, 104A) isolated from southern California coastal waters and one strain of G. spinifera (CCMP409) isolated from Maine were tested for YTX production using two methods, competitive ELISA and liquid chromatography–mass spectrometry (LC–MS). The ELISA method detected YTX in the particulate phase in two of three L. polyedrum strains. The LC–MS method did not detect YTX in the particulate or dissolved phase of any of the strains.To our knowledge, this is the first study to test and confirm YTX in environmental samples from California and Washington coastal waters. It is highly likely that L. polyedrum was responsible for the YTX contamination in the southern California samples. Future research needs to conclusively determine the biological origin(s) of YTX contamination in central California and Washington coastal waters.  相似文献   

12.
Transformations and fluxes of N were examined in three forested sites located along a gradient of soil texture in the coastal forests of the Waquoit Bay watershed on Cape Cod. Total N leaching losses to ground water were 0.5 kg ha-1 yr-1 in the loamy sand site and 1.5 kg ha-1 yr-1 in the fine sand site. Leaching loss to groundwater was not measured in the coarse sand site due to the prohibitive depth of the water table but total N leaching loss to 1m depth in the mineral soil was 3.9 kg ha-1 yr-1. DON accounted for most of the leaching losses below the rooting zone (77–89%) and through the soil profile to ground water (60%–80%). Differences in DON retention capacity of the mineral soil in the sites along the soil texture gradient were most likely related to changes in mineral soil particle surface area and percolation rates associated with soil texture. Forests of the watershed functioned as a sink for inorganic N deposited on the surface of the watershed in wet and dry deposition but a source of dissolved organic N to ground water and adjoining coastal ecosystems.  相似文献   

13.
A 3 year study (2000–2002) in Barnegat Bay-Little Egg Harbor (BB/LEH), New Jersey (USA), was conducted by the New Jersey Department of Environmental Protection, Division of Science Research and Technology (DSRT) in cooperation with several partners to assess brown tide blooms in coastal waters in NJ. Water samples were collected by boat and helicopter at coastal stations from 2000 to 2002 along with field measurements. Aureococcus anophagefferens were enumerated and associated environmental factors were analyzed. A. anophagefferens abundances were classified using the Brown Tide Bloom Index and mapped, along with salinity and temperature parameters, to their geo-referenced location using the ArcView GIS. The highest A. anophagefferens abundances (>106 cells ml−1), including category 3 blooms (≥200,000 cells ml−1) and category 2 blooms (≥35,000 to ≤200,000 cells ml−1), recurred during each of the 3 years of sampling and covered significant geographic areas of the estuary, especially in Little Egg Harbor. While category 3 blooms were generally associated with warmer water temperatures (>16 °C) and higher salinity (>25–26 ppt), these factors were not sufficient alone to explain the timing or distribution of A. anophagefferens blooms. There was no significant relationship between brown tide abundances and dissolved organic nitrogen measured in 2002 but this was consistent with other studies. Extended drought conditions, with corresponding low freshwater inputs and elevated bay water salinities, occurring during this time were conducive to blooms. A. anophagefferens abundances were well above the reported levels that have been reported to cause negative impacts on shellfish. It was shown that over 50% of the submerged aquatic vegetation (SAV) habitat located in Barnegat Bay/Little Egg Harbor was categorized as having a high frequency of category 2 or 3 blooms for all 3 years.  相似文献   

14.
Brown tide algal blooms, caused by the excessive growth of Aureococcus anophagefferens, recur in several northeastern US coastal bays. Direct bloom control could alleviate the ecological and economic damage associated with bloom outbreak. This paper explored the effectiveness and safety of natural chemical biocide hydrogen peroxide (H2O2) for brown tide bloom control. Culture studies showed that H2O2 at 1.6 mg L−1 effectively eradicated high density A. anophagefferens within 24-hr, but caused no significant growth inhibition in the diatoms, prymnesiophytes, green algae and dinoflagellates of >2–3 μm cell sizes among 12 phytoplankton species tested over 1-week observation. When applied to brown tide bloom prone natural seawater in a microcosm study, this treatment effectively removed the developing brown tide bloom, while the rest of phytoplankton assemblage (quantified via HPLC based marker pigment analyses), particularly the diatoms and green algae, experienced only transient suppression then recovered with total chlorophyll a exceeding that in the controls within 72-hr; cyanobacteria was not eradicated but was still reduced about 50% at 72-hr, as compared to the controls. The action of H2O2 against phytoplankton as a function of cell size and cell wall structure, and a realistic scenario of H2O2 application were discussed.  相似文献   

15.
High ratios of dissolved organic nitrogen (DON) to dissolved inorganic nitrogen (DIN) have been suggested to favor the growth of the brown tide alga Aureococcus anophagefferens. DON could provide a particular advantage in low light levels, as occur when blooms induce self-shading. We examined the effects of varying DON:DIN ratios on the photosynthetic abilities of cultured Aureococcus at two light intensities, 93 and 17 μmol photons m−2 s−1. Glutamic acid and urea were used as DON sources, and the remainder of the nitrogen was added as nitrate.In experiments examining Aureococcus growth with varying ratios of DONGlu:DINNitrate at two light intensities in batch culture, higher growth rates and biomass were observed in treatments containing DIN than in those with DON only, which contrasts with the results of previous studies. In semi-continuous growth experiments with varying DONUrea:DINNitrate ratios, low light cultures with urea had higher growth rates than those without urea. Also, the effective target area for light absorption per cell and photosystem II efficiency were greater for the low light cultures of each nutrient treatment, particularly when DON:DIN mixtures (33 and 67% NUrea) were used. The same pattern was seen in the maximum photosynthetic rates per cell in the light-saturated (Pmcell) and in the initial slope (αcell) of the PE (photosynthesis versus irradiance) curve, and in PON, POC and chlorophyll a cell−1. This indicates that the ability of Aureococcus to acclimate to low light conditions may be enhanced by the presence of both organic and inorganic nitrogen sources. These results suggest that Aureococcus physiology and photosynthesis are different during growth on a mixture of urea-N and nitrate than when either nitrogen source is present alone. Results of this study suggest that Aureococcus may not respond to all DON substrates in the same way, and that mixtures of DON and DIN may provide for higher photosynthetic rates, especially at low light. Our results did not, however, support earlier suggestions that growth on DON alone provides the brown tide alga with a large advantage at low light levels.  相似文献   

16.
During a 4-week period in late spring 1998 an extensive Prorocentrum minimum (Pavillard) Schiller bloom developed in several tributaries of the Chesapeake Bay. Experiments were carried out in one of these tributaries using 13C and 15N isotopic techniques to characterize C and N uptake as a function of irradiance during the course of this bloom. Uptake rates of N substrates (NO3, NH4+, urea, and an amino acid mixture) and C substrates (bicarbonate and urea) were measured. For each N substrate, short-term uptake rates (0.5 h) were not substantially different over the irradiance range measured, suggesting that N uptake of this dinoflagellate was not strongly light-dependent over this time scale. Dark uptake rates of all N substrates ranged between 35 and 113% of light uptake rates. Over the duration of the P. minimum bloom, however, total ambient N uptake rates increased with increasing natural irradiance. Uptake of bicarbonate showed typical light-dependent photosynthetic characteristics and the measured photosynthetic parameters suggested that at least on the short time scale (0.5 h), P. minimum cells were adapted to high light. Rates of C uptake from the substrate urea were minimal, <1% of total C uptake from photosynthesis, but doubled over the course of the bloom, and like N uptake, were not strongly light-dependent on the short time scale (0.5 h). Significant N dark uptake by P. minimum was likely to have been important by providing N sources over the daily scale to sustain the bloom.  相似文献   

17.
Retention of soluble organic nutrients by a forested ecosystem   总被引:10,自引:6,他引:4  
We document an example of a forested watershed at the Coweeta HydrologicLaboratory with an extraordinary tendency to retain dissolved organic matter(DOM) generated in large quantities within the ecosystem. Our objectives weretodetermine fluxes of dissolved organic C, N, and P (DOC, DON, DOP,respectively),in water draining through each stratum of the ecosystem and synthesizeinformation on the physicochemical, biological and hydrologic factors leadingtoretention of dissolved organic nutrients in this ecosystem. The ecosystemretained 99.3, 97.3, and 99.0% of water soluble organic C, N and P,respectively, produced in litterfall, throughfall, and root exudates. Exportsinstreamwater were 4.1 kg ha–1yr–1of DOC, 0.191 kg ha–1 yr–1 ofDON, and 0.011 kg ha–1 yr–1 ofDOP. Fluxes of DON were greater than those of inorganic N in all strata. MostDOC, DON, and DOP was removed from solution in the A and B horizons, with DOCbeing rapidly adsorbed to Fe and Al oxyhydroxides, most likely by ligandexchange. DON and DOC were released gradually from the forest floor over theyear. Water soluble organic C produced in litterfall and throughfall had adisjoint distribution of half-decay times with very labile and veryrefractory fractions so that most labile DOC was decomposed before beingleachedinto the mineral soil and refractory fractions dominated the DOC transportedthrough the ecosystem. We hypothesize that this watershed retained solubleorganic nutrients to an extraordinary degree because the soils have very highcontents of Fe and Al oxyhydroxides with high adsorption capacities and becausethe predominant hydrologic pathway is downwards as unsaturated flow through astrongly adsorbing A and B horizon. The well recognized retention mechanismsforinorganic nutrients combine with adsorption of DOM and hydrologic pathway toefficiently prevent leaching of both soluble inorganic andorganic nutrients in this watershed.  相似文献   

18.
The Baltic Sea is known for its ecological problems due to eutrophication caused by high nutrient input via nitrogen fixation and rivers, which deliver up to 70% of nitrogen in the form of dissolved organic nitrogen (DON) compounds. We therefore measured organic nitrogen uptake rates using self produced 15N labeled allochthonous (derived from Brassica napus and Phragmites sp.) and autochthonous (derived from Skeletonema costatum) DON at twelve stations along a salinity gradient (34 to 2) from the North Sea to the Baltic Sea in August/September 2009. Both labeled DON sources were exploited by the size fractions 0.2–1.6 μm (bacteria size fraction) and >1.6 μm (phytoplankton size fraction). Higher DON uptake rates were measured in the Baltic Sea compared to the North Sea, with rates of up to 1213 nmol N l?1 h?1. The autochthonous DON was the dominant nitrogen form used by the phytoplankton size fraction, whereas the heterotrophic bacteria size fraction preferred the allochthonous DON. We detected a moderate shift from >1.6 μm plankton dominated DON uptake in the North Sea and central Baltic Sea towards a 0.2–1.6 μm dominated DON uptake in the Bothnian Bay and a weak positive relationship between DON concentrations and uptake. These findings indicate that DON is an important component of plankton nutrition and can fuel primary production. It may therefore also contribute substantially to eutrophication in the Baltic Sea especially when inorganic nitrogen sources are depleted.  相似文献   

19.
The Delaware Inland Bays (DIB) have experienced harmful algal blooms of dinoflagellates and raphidophytes in recent years. We used quantitative polymerase chain reaction (QPCR) techniques to investigate the community dynamics of three DIB dinoflagellates (Karlodinium veneficum, Gyrodinium instriatum, and Prorocentrum minimum) and one raphidophyte (Heterosigma akashiwo) at a single site in the DIB (IR-32) in summer 2006 relative to salinity, temperature and nutrient concentrations. We also carried out complementary laboratory culture studies. New primers and probes were developed and validated for the 18S rRNA genes in the three dinoflagellates. K. veneficum, H. akashiwo, and G. instriatum were present in almost all samples throughout the summer of 2006. In contrast, P. minimum was undetectable in late June through September, when temperatures ranged from 20 to 30 °C (average 25.7 °C). Dissolved nutrients ranged from 0.1 to 2.8 μM PO43− (median = 0.3 μM), 0.7–30.2 μM NOx (median = 12.9 μM), and 0–19.4 μM NH4+ (median = 0.7 μM). Dissolved N:P ratios covered a wide range from 2.6 to 177, with a median of 40. There was considerable variability in occurrence of the four species versus nutrients, but in general P. minimum and H. akashiwo were most abundant at higher (>40) N:P ratios and dissolved nitrogen concentrations, while K. veneficum and G. instriatum were most abundant at low dissolved N:P ratios (<20) and dissolved nitrogen concentrations < 10 μM. The semi-continuous laboratory competition experiment used mixed cultures of K. veneficum, P. minimum, and H. akashiwo grown at dissolved N:P ratios of 5, 16, and 25. At an N:P of 16 and 25 P. minimum was the dominant alga at the end of the experiment, even at a temperature that was much higher than that at which this alga was found to bloom in the field (27 °C). P. minimum and H. akashiwo had highest densities in the N:P of 25. K. veneficum grew equally well at all three N:P ratios, and was co-dominant at times at an N:P of 5. H. akashiwo had the lowest densities of the three algae in the laboratory experiment. Laboratory and field results showed both interesting similarities and significant differences in the influences of important environmental factors on competition between these harmful algal species, suggesting the need for more work to fully understand HAB dynamics in the DIB.  相似文献   

20.
A massive outbreak of Karenia brevis that had been ongoing for several months along the southwestern coast of Florida was sampled in early September 2005 off Sanibel Island to assess the utility of bio-optical features and ataxonomic analysis (quantification of eukaryotic and cyanobacterial picoplankton) by flow cytometry in monitoring red tide blooms. Sea-surface sampling followed aircraft visual location of discolored water. Within the most concentrated area of the bloom, chlorophyll a values exceeded 500 μg l−1, and concentrations of nitrate (0.3 μM ± 0.0) and ammonium (<0.2 μM) were depleted compared to high concentrations of total dissolved nitrogen, total dissolved phosphorus, and soluble reactive phosphorus (141 ± 34 μM, 16.5 ± 2.5 μM, and 6.44 ± 0.57 μM, respectively). Low water clarity in the bloom (Secchi depth transparency 0.3 m, Kd estimated at 4.83 m−1) was strongly influenced by attenuation from dinoflagellates as well as chromophoric dissolved organic matter (CDOM). The fact that the K. brevis bloom occurred in lower-salinity (30 psu), high-nutrient waters implicates riverine transport of land-based nutrients as a source of nutrient supplies that fueled or sustained the bloom. Throughout ongoing efforts to advance modeling and technological capabilities that presently lack reliable predictive capability, bio-optical remote sensing via aerial flyovers along with in-water sensor data can continue to provide accurate coverage of relatively large temporal and spatial features. Flow cytometry can provide conservative (because of some cell lysis), rapid, near-real-time validation of bloom components. The concentration and position of the organisms, along with water mass scalars, can also help to diagnose factors promoting K. brevis bloom development and dispersion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号