首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 155 毫秒
1.
First order rate constants for the degradation (degradation constants) of catalase in the cotyledons of sunflower (Helianthus annuus L.) were determined by measuring the loss of catalase containing 14C-labeled heme. During greening of the cotyledons, a period when peroxisomes change from glyoxysomal to leaf peroxisomal function, the degradation of glyoxysomal catalase is significantly (P = 0.05) slower than during all other stages of cotyledon development in light or darkness. The degradation constant during the transition stage of peroxisome function amounts to 0.205 day−1 in contrast to the constants ranging from 0.304 day−1 to 0.515 day−1 during the other developmental stages. Density labeling experiments comprising labeling of catalase with 2H2O and its isopycnic centrifugation on CsCl gradients demonstrated that the determinations of the degradation constants were not substantially affected by reutilization of 14C-labeled compounds for catalase synthesis. The degradation constants for both glyoxysomal catalase and catalase synthesized during the transition of peroxisome function do not differ. This was shown by labeling the catalases with different isotopes and measuring the isotope ratio during the development of the cotyledons. The results are inconsistent with the concept that an accelerated and selective degradation of glyoxysomes underlies the change in peroxisome function. The data suggest that catalase degradation is at least partially due to an individual turnover of catalase and does not only result from a turnover of the whole peroxisomes.  相似文献   

2.
Density-labeling with 10 mm K15NO3/70% 2H2O has been used to investigate catalase synthesis in different developmental stages of sunflower (Helianthus annuus L.) cotyledons. A mathematical approach is introduced for the quantitative evaluation of the density-labeling data. The method allows, in the presence of preexisting enzyme activity, calculation of this synthesized activity (apparent enzyme synthesis) which results from the balance between actual enzyme synthesis and the degradation of newly synthesized enzyme at a given time. During greening of the cotyledons, when the catalase activity declines and the population of leaf peroxisomes is formed, the apparent catalase synthesis is lower than, or at best equal to, that occurring during a developmental stage when the leaf peroxisome population is established and catalase synthesis and degradation of total catalase are in equilibrium. This result suggests a formation, in fatty cotyledons, of the leaf peroxisomes by transformation of the glyoxysomes rather than by de novo synthesis.  相似文献   

3.
The specific activity of catalase purified from the peroxisomes of sunflower cotyledons declines in parallel with the total cotyledonary catalase activity during the transition of peroxisomes from glyoxysomal to leaf peroxisomal function. The hematin content of the purified catalase however, remains constant at 4 hematin groups per catalase molecule. The absorbance coefficients of catalase at 404 and 280 nm were determined to be 372 and 540/mM/cm, respectively.  相似文献   

4.
5.
As a step to study the mechanism of the microbody transition (glyoxysomes to leaf peroxisomes) in pumpkin (Cucurbita sp. Amakuri Nankin) cotyledons, catalase was purified from glyoxysomes. The molecular weight of the purified catalase was determined to be 230,000 to 250,000 daltons. The enzyme was judged to consist of four identical pieces of the monomeric subunit with molecular weight of 55,000 daltons. Absorption spectrum of the catalase molecule gave two major peaks at 280 and 405 nanometers, showing that the pumpkin enzyme contains heme. The ratio of absorption at 405 and 280 nanometers was 1.0, the value being lower than that obtained for catalase from other plant sources. These results indicate that the pumpkin glyoxysomal catalase contains the higher content of heme in comparison with other plant catalase.

The immunochemical resemblance between glyoxysomal and leaf peroxisomal catalase was examined by using the antiserum specific against the purified enzyme preparation from pumpkin glyoxysomes. Ouchterlony double diffusion and immunoelectrophoretic analysis demonstrated that catalase from both types of microbodies cross-reacted completely whereas the immunotitration analysis showed that the specific activity of the glyoxysomal catalase was 2.5-fold higher than that of leaf peroxisomal catalase. Single radial immunodiffusion analysis showed that the specific activity of catalase decreased during the greening of pumpkin cotyledons.

  相似文献   

6.
Development of enzymes in the cotyledons of watermelon seedlings   总被引:19,自引:13,他引:6       下载免费PDF全文
Changes in hypocotyl length, cotyledon weight, lipid content, chlorophyll content, and capacity for photosynthesis have been described in seedlings of Citrullus vulgaris, Schrad. (watermelon) growing at 30 C under various light treatments. Corresponding changes in the levels of 19 enzymes in the cotyledons are described, with particular emphasis on enzymes of microbodies, since during normal greening, enzymes of the glyoxysomes are lost and those of leaf peroxisomes appear. In complete darkness enzymes of the glyoxysomes reach a peak at 4 days and decline as the fat is depleted. Enzymes of mitochondria and of glycolytic pathways also peak at 4 to 5 days and either remain unchanged or decline to a lesser extent. Exposure to light at 4 days, when the cotyledons emerge, results in a selectively greater destruction of enzymes of the glyoxylate cycle; chlorophyll synthesis and capacity for photosynthesis increase in parallel, and there is a striking increase in the activities of chloroplast enzymes and in those of the leaf peroxisomes, hydroxypyruvate reductase and glycolate oxidase. The reciprocal changes in enzymes of the glyoxysomes and of leaf peroxisomes can be temporally dissociated, since even after 10 days in darkness, when malate synthetase and isocitrate lyase have reached very low levels, hydroxypyruvate reductase and glycolate oxidase increase strikingly on exposure to light and the cotyledons become photosynthetic. Furthermore, the parallel development of enzymes of leaf peroxisomes and functional chloroplasts is not immutable, since hydroxypyruvate reductase and glycolate oxidase activity can be elicited in darkness following a 5-minute exposure to light at day 4 while chlorophyll does not develop under these conditions.  相似文献   

7.
The changes in activities of glyoxysomal and peroxisomal enzymes have been correlated with the fine structure of microbodies in cotyledons of the cucumber (Cucumis sativus L.) during the transition from fat degradation to photosynthesis in light-grown plants, and in plants grown in the dark and then exposed to light. During early periods of development in the light (days 2 through 4), the microbodies (glyoxysomes) are interspersed among lipid bodies and contain relatively high activities of glyoxylate cycle enzymes involved in lipid degradation. Thereafter, these activities decrease rapidly as the cotyledons expand and become photosynthetic, and the activity of glycolate oxidase rises to a peak (day 7); concomitantly the microbodies (peroxisomes) become preferentially associated with chloroplasts.  相似文献   

8.
Summary Sunflower, cucumber, and tomato cotyledons, which contain microbodies in both the early lipid-degrading and the later photosynthetic stages of post-germinative growth, were processed for electron microscopy according to conventional procedures and examined 1, 4 and 7 days after germination. Homogenates of sunflower cotyledons were assayed for enzymes characteristic of glyoxysomes and leaf peroxisomes (both of which are defined morphologically as microbodies) at stages corresponding to the fixations for electron microscopy. The particulate nature of these enzymes was demonstrated by differential and equilibrium density centrifugation, making it possible to relate them to the microbodies seen in situ.One day after germination, the microbodies are present as small organelles among large numbers of protein and lipid storage bodies; the cell homogenate contains catalase but no detectable isocitrate lyase (characteristic of glyoxysomes) or glycolic acid oxidase (characteristic of leaf peroxisomes). 4 days after germination, numerous microbodies (glyoxysomes) are in extensive and frequent contact with lipid bodies. The microbodies often have cytoplasmic invaginations. At this stage the cells are rapidly converting lipids to carbohydrates, and the homogenate has high isocitrate lyase activity. 7 days after germination, microbodies (peroxisomes) are appressed to chloroplasts and frequently squeezed between them in the green photosynthetic cells. The homogenate at this stage has substantial glycolic acid oxidase activity but a reduced level of isocitrate lyase. It is yet to be determined whether the peroxisomes present at day 7 are derived from preexisting glyoxysomes or arise as a separate population of organelles.  相似文献   

9.
Summary After the functional transition of glyoxysomes to leaf peroxisomes during the greening of pumpkin cotyledons, the reverse microbody transition of leaf peroxisomes to glyoxysomes occurs during senescence. Immunocytochemical labeling with protein A-gold was performed to analyze the reverse microbody transition using antibodies against a leaf-peroxisomal enzyme, glycolate oxidase, and against two glyoxysomal enzymes, namely, malate synthase and isocitrate lyase. The intensity of labeling for glycolate oxidase decreased in the microbodies during senescence whereas in the case of malate synthase and isocitrate lyase intensities increased strikingly. Double labeling experiments with protein A-gold particles of different sizes showed that the leaf-peroxisomal enzymes and the glyoxysomal enzymes coexist in the microbodies of senescing pumpkin cotyledons, indicating that leaf peroxisomes are directly transformed to glyoxysomes during senescence.  相似文献   

10.
The functional transition of glyoxysomes to leaf peroxisomes occurs during greening of germinating pumpkin cotyledons (Cucurbita sp. Amakuri Nankin). The immunocytochemical protein A-gold method was employed in the analysis of the transition using glyoxysomal specific citrate synthase immunoglobulin G and leaf peroxisomal specific glycolate oxidase immunoglobulin G. The labeling density of citrate synthase was decreased in the microbodies during the greening, whereas that of glycolate oxidase was dramatically increased. Double labeling experiments using different sizes of protein A-gold particles show that both the glyoxysomal and the leaf peroxisomal enzymes coexist in the microbody of the transitional stage indicating that glyoxysomes are directly transformed to leaf peroxisomes during greening.  相似文献   

11.
12.
Bernt Gerhardt 《Planta》1973,110(1):15-28
Summary The enzyme patterns in sunflower cotyledons indicate that the glyoxysomal function of microbodies is replaced by the peroxisomal function of these organelles during the transition from fat degradation to photosynthesis. The separation of the microbody population into glyoxysomes and peroxisomes during this transition period is reported. The mean difference in density between the activity peaks of glyoxysomal and peroxisomal marker enzymes on a sucrose gradient was calculated to be 0.007±0.004 g/cm3 and turned out to be significant (t=7.8>4.04=t 5;0.01). The activity peak of catalase coincides with that of isocitrate lyase in early stages of development, but shifts to the activity peak of peroxisomal marker enzymes during the transition period. No isozymes of the catalase could be detected by gel electrophoresis in the microbodies with the two different functions.During the rise of the peroxisomal marker enzymes no synthesis of the common microbody marker, catalase, could be demonstrated using the inhibitor allylisopropylacetamide. Using D2) for density labeling of newly-formed catalase, no difference is observed between the density of catalase from cotyledons grown on 99.8% D2O during the transition period and the density of enzyme from cotyledons grown on H2O. The activity of particulate glycolate oxidase is reduced 30–50% by allylisopropylacetamide, but is not affected by D2O. The chlorophyll formation in the cotyledons is strongly inhibited by both substances.  相似文献   

13.
The intraorganellar distribution of superoxide dismutase (SOD) (EC 1.15.1.1) in two types of plant peroxisomes (glyoxysomes and leaf peroxisomes) was studied by determinations of SOD latency in intact organelles and by solubilization assays with 0.2 molar KCl. Glyoxysomes were purified from watermelon (Citrullus vulgaris Schrad.) cotyledons, and their integrity, calculated on the basis of glyoxysomal marker enzymes, was about 60%. Under the same conditions, the latency of SOD activity determined in glyoxysomes was 40%. The difference between glyoxysomal intactness and SOD latency was very close to the percentage of isozyme Mn-SOD previously determined in glyoxysomes (LM Sandalio, LA Del Río 1987 J Plant Physiol 127: 395-409). In matrix and membrane fractions of glyoxysomes, SOD exhibited a solubilization pattern very similar to catalase, a typical soluble enzyme of glyoxysomes. The analysis of the distribution of individual SOD isozymes in glyoxysomal fractions treated with KCl showed that Cu,Zn-SOD II, the major SOD isozyme in glyoxysomes, was present in the soluble fraction of these organelles, whereas Mn-SOD was bound to the glyoxysomal membrane. These data in conjunction with those of latency of SOD activity in intact glyoxysomes suggest that Mn-SOD is bound to the external side of the membrane of glyoxysomes. On the other hand, in intact leaf peroxisomes where only a Mn-containing SOD is present (LM Sandalio, JM Palma, LA Del Río 1987 Plant Sci 51: 1-8), this isozyme was found in the peroxisomal matrix. The physiological meaning of SOD localization in matrix and membrane fractions of glyoxysomes and the possibility of new roles for plant peroxisomes in cellular metabolism related to activated oxygen species is discussed.  相似文献   

14.
The turnover of catalase apoprotein and catalase heme was studied in cotyledons of sunflower (Helianthus annuus L.) seedlings by density labeling of apoprotein and radioactive labeling of heme moieties. The heavy isotope (50% 2H2O) and the radioactive isotope ([14C]5-aminolevulinic acid) were applied either during growth in the dark (day 0-2.5) or in the light (day 2.5 and 5). Following isopycnic centrifugation of catalase purified from cotyledons of 5-day-old seedlings, superimposition curve fitting was used to determine the amounts of radioactive heme moieties in native and density-labeled catalase. Data from these determinations indicated that turnover of catalase heme and apoprotein essentially was coordinate. Only small amounts of heme groups were recycled into newly synthesized apoprotein during growth in the light, and no evidence was found for an exchange of heme groups in apoprotein moieties. It followed from these observations that degradation of catalase apoprotein was slightly faster than that of catalase heme. A degradation constant for catalase apoprotein of 0.263 per day was determined from the data on heme recycling and the degradation constant of catalase heme determined previously to be 0.205 per day (R Eising, B Gerhardt [1987] Plant Physiol 84: 225-232).  相似文献   

15.
Peroxisomes in higher plant cells are known to differentiate into at least three different classes, namely, glyoxysomes, leaf peroxisomes, and unspecialalized peroxisomes, dependending on the cell types. In germinating fatty seedlings, glyoxysomes that first appear in the etiolated cotyledonary cells are functionally transformed into leaf peroxisomes during greening. Subsequently, the organelles are transformed back into glyoxysomes during senescence of the cotyledons. Flexibility of function is a distinct feature of plant peroxisomes. This article briefly describes recent studies of the regulatory mechanisms involved in the changes of the function of plant peroxisomes.  相似文献   

16.
Narciclasine (NCS), isolated from mucilage of Narcissus bulb, showed inhibitory effects on growth and plastid development of excised radish cotyledons. NCS (0.1 mumol/L) started to show inhibitory effects on isocitrate lyase and hydroxypyruvate reductase activities after 24 h incubation in light. When NCS concentration was increased to 10 mumol/L, the activities of both enzymes are completely inhibited. From ultrastructural studies, NCS markedly prevented the degradation of protein bodies and lipid bodies, as well as chloroplast formation of excised radish cotyledons. There was only little degradation of protein and lipid bodies, and almost no chloroplast formation in the excised radish cotyledon treated with 1 mumol/L NCS. Therefore, our results provide clear evidence that NCS inhibited the transition of glyoxysomes and peroxisomes, and chloroplast development.  相似文献   

17.
The ontogeny of glyoxysomes and leaf peroxisomes has been examined in the cotyledons of germinating watermelon (Citrullus vulgaris) seedlings. Organelles from the cotyledons were extracted by razor blade homogenization and microbodies were separated by sucrose density gradient fractionation. Both kinds of microbodies have the same mean equilibrium density on sucrose gradients.  相似文献   

18.
The microbody transition observed in the cotyledons of somefatty seedlings involves the conversion of glyoxysomes to leafperoxisomes. To clarify the molecular mechanisms underlyingthe microbody transition, we established a method for the preparationof highly purified microbodies. SDS-PAGE and immunoblot analysisof isolated microbodies from pumpkin cotyledons at various stagesshowed that glyoxysomal enzymes are replaced by leaf-peroxisomalenzymes during the microbody transition. Two proteins in glyoxysomalmembranes, with molecular masses of 31 kDa and 28 kDa, werenot solubilized from the membranes with 0.2 M KCl, an indicationthat these proteins are bound tightly with glyoxysomal membranes.Their polyclonal antibodies were raised against the respectivepurified protein. Immunoblot analysis of subcellular fractionsand immunogold analysis confirmed that these proteins were specificallylocalized on glyoxysomal membranes. Analysis of these membraneproteins during development revealed that the amounts of thesemembrane proteins decreased during the microbody transitionand that the large one was retained in leaf peroxisomes, whereasthe small one could not be found in leaf peroxisomes after completionof the microbody transition. The results clearly showed thatmembrane proteins in glyoxysomes change dramatically duringthe microbody transition, as do the enzymes in the matrix. 1Present address: School of Agriculture, Nagoya University Chikusa,Nagoya, 464-01 Japan.  相似文献   

19.
Biochemical, electrophoretic and immunological studies were made among peroxisomal enzymes in three organs of soybean [Glycine max (L.) Merr. cv. Centennial] to compare the enzyme distribution and characteristics of specialized peroxisomes in one species. Leaves, nodules and etiolated cotyledons were compared with regard to several enzymes localized solely in their peroxisomes: catalase (EC 1.11.1.6), malate synthase (EC 4.1.3.2), glycolate oxidase (EC 1.1.3.1), and urate oxidase (EC 1.7.3.3). Catalase activity was found in all tissue extracts. Electrophoresis on native polyacrylamide gels indicated that leaf catalase migrated more anodally than nodule or cotyledon catalase as shown by both activity staining and Western blotting. Malate synthase activity and immunologically detectable protein were present only in the cotyledon extracts. Western blots of denaturing (lithium dodecyl sulfate) gels probed with anti-cotton malate synthase antiserum, reveal a single subunit of 63 kDa in both cotton and soybean cotyledons. Glycolic acid oxidase activity was present in all three organs, but ca 20-fold lower (per mg protein) in both nodule and cotyledon extracts compared to leaf extracts. Electrophoresis followed by activity staining on native gels indicated one enzyme form with the same mobility in nodule, cotyledon and leaf preparations. Urate oxidase activity was found in nodule extracts only. Native gel electrophoresis showed a single band of activity. Novel electrophoretic systems had to be developed to resolve the urate oxidase and glycolate oxidase activities; both of these enzymes moved cathodally in the gel system employed while most other proteins moved anodally. This multifaceted study of enzymes located within three specialized types of peroxisomes in a single species has not been undertaken previously, and the results indicate that previous comparisons between the enzyme content of specialized peroxisomes from different organisms are mostly consistent with that for a single species, soybean.  相似文献   

20.
cDNA cloning and differential gene expression of three catalases in pumpkin   总被引:5,自引:0,他引:5  
Three cDNA clones (cat1, cat2, cat3) for catalase (EC 1.11.1.6) were isolated from a cDNA library of pumpkin (Cucurbita sp.) cotyledons. In northern blotting using the cDNA-specific probe, the cat1 mRNA levels were high in seeds and early seedlings of pumpkin. The expression pattern of cat1 was similar to that of malate synthase, a characteristic enzyme of glyoxysomes. These data suggest that cat1 might encode a catalase associated with glyoxysomal functions. Furthermore, immunocytochemical analysis using cat1-specific anti-peptide antibody directly showed that cat1 encoding catalase is located in glyoxysomes. The cat2 mRNA was present at high levels in green cotyledons, mature leaf, stem and green hypocotyl of light-grown pumpkin plant, and correlated with chlorophyll content in the tissues. The tissue-specific expression of cat2 had a strong resemblance to that of glycolate oxidase, a characteristic enzyme of leaf peroxisomes. During germination of pumpkin seeds, cat2 mRNA levels increased in response to light, although the increase in cat2 mRNA by light was less than that of glycolate oxidase. cat3 mRNA was abundant in green cotyledons, etiolated cotyledons, green hypocotyl and root, but not in young leaf. cat3 mRNA expression was not dependent on light, but was constitutive in mature tissues. Interestingly, cat1 mRNA levels increased during senescence of pumpkin cotyledons, whereas cat2 and cat3 mRNAs disappeared during senescence, suggesting that cat1 encoding catalase may be involved in the senescence process. Thus, in pumpkin, three catalase genes are differentially regulated and may exhibit different functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号