首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Femtosecond transient absorption spectroscopy has been used to investigate the energy transfer and trapping processes in both intact membranes and purified detergent-isolated particles from a photosystem II deletion mutant of the cyanobacterium Synechocystis sp. PCC 6803, which contains only the photosystem I reaction center. Processes with similar lifetimes and spectra are observed in both the membrane fragments and the detergent-isolated particles, suggesting little disruption of the core antenna resulting from the detergent treatment. For the detergent-isolated particles, three different excitation wavelengths were used to excite different distributions of pigments in the spectrally heterogeneous core antenna. Only two lifetimes of 2.7-4.3 ps and 24-28 ps, and a nondecaying component are required to describe all the data. The 24-28 ps component is associated with trapping. The trapping process gives rise to a nondecaying spectrum that is due to oxidation of the primary electron donor. The lifetimes and spectra associated with trapping and radical pair formation are independent of excitation wavelength, suggesting that trapping proceeds from an equilibrated excited state. The 2.7-4.3 ps component characterizes the evolution from the initially excited distribution of pigments to the equilibrated excited state distribution. The spectrum associated with the 2.7-4.3 ps component is therefore strongly excitation wavelength dependent. Comparison of the difference spectra associated with the spectrally equilibrated state and the radical pair state suggests that the pigments in the photosystem I core antenna display some degree of excitonic coupling.  相似文献   

2.
3.
Photosynthesis powers nearly all life on Earth. Light absorbed by photosystems drives the conversion of water and carbon dioxide into sugars. In plants, photosystem I (PSI) and photosystem II (PSII) work in series to drive the electron transport from water to NADP+. As both photosystems largely work in series, a balanced excitation pressure is required for optimal photosynthetic performance. Both photosystems are composed of a core and light-harvesting complexes (LHCI) for PSI and LHCII for PSII. When the light conditions favor the excitation of one photosystem over the other, a mobile pool of trimeric LHCII moves between both photosystems thus tuning their antenna cross-section in a process called state transitions. When PSII is overexcited multiple LHCIIs can associate with PSI. A trimeric LHCII binds to PSI at the PsaH/L/O site to form a well-characterized PSI–LHCI–LHCII supercomplex. The binding site(s) of the “additional” LHCII is still unclear, although a mediating role for LHCI has been proposed. In this work, we measured the PSI antenna size and trapping kinetics of photosynthetic membranes from Arabidopsis (Arabidopsis thaliana) plants. Membranes from wild-type (WT) plants were compared to those of the ΔLhca mutant that completely lacks the LHCI antenna. The results showed that “additional” LHCII complexes can transfer energy directly to the PSI core in the absence of LHCI. However, the transfer is about two times faster and therefore more efficient, when LHCI is present. This suggests LHCI mediates excitation energy transfer from loosely bound LHCII to PSI in WT plants.

The light-harvesting antennae of photosystem I facilitate energy transfer from trimeric light-harvesting complex II to photosystem I in the stroma lamellae membrane.  相似文献   

4.
Mono- and divalent cations were found to increase the transfer of excitation energy within Photosystem I from the light-harvesting chlorophyll a molecules to P700. The P700-chlorophyll a protein of Shiozawa et al. (J. A. Shiozawa, R. S. Alberte, and J. P. Thornber, 1974, Arch. Biochem. Biophys.165, 388–397) was used for these studies. Cations stimulated the quantum yields for electron transport when the light-harvesting chlorophyll a molecules were irradiated. They also decreased chlorophyll a fluorescence. Half-maximal effects were observed at 0.5–0.6 mm for divalent cations and at 5–6 mm for monovalent cations. Triton X-100, 0.02%, also increased energy transfer. The increases in energy transfer are due to an intramolecular conformational change in the protein. A structural change is involved, since there is a correlation between the cation-induced changes in energy transfer and increases in 90 ° light scattering. However, there was no change in the molecular weight upon the addition of MgCl2. The molecular weight, as determined by gel filtration, was 105,000 in the presence of 0.05% Triton X-100. On the other hand, circular dichroism measurements showed an increase in the α-helical content from 51 to 63% when 5 mm MgCl2 was added. Changes in the absorption spectra were also observed. We believe that the cation regulation of Photosystem I activity provides a fine-tuning mechanism for the regulation of energy transfer.  相似文献   

5.
Excitation energy transfer in monomeric and trimeric forms of photosystem I (PSI) from the cyanobacterium Synechocystis sp. PCC 6803 in solution or immobilized on FTO conducting glass was compared using time-resolved fluorescence. Deposition of PSI on glass preserves bi-exponential excitation decay of ~4–7 and ~21–25 ps lifetimes characteristic of PSI in solution. The faster phase was assigned in part to photochemical quenching (charge separation) of excited bulk chlorophylls and in part to energy transfer from bulk to low-energy (red) chlorophylls. The slower phase was assigned to photochemical quenching of the excitation equilibrated over bulk and red chlorophylls. The main differences between dissolved and immobilized PSI (iPSI) are: (1) the average excitation decay in iPSI is about 11 ps, which is faster by a few ps than for PSI in solution due to significantly faster excitation quenching of bulk chlorophylls by charge separation (~10 ps instead of ~15 ps) accompanied by slightly weaker coupling of bulk and red chlorophylls; (2) the number of red chlorophylls in monomeric PSI increases twice—from 3 in solution to 6 after immobilization—as a result of interaction with neighboring monomers and conducting glass; despite the increased number of red chlorophylls, the excitation decay accelerates in iPSI; (3) the number of red chlorophylls in trimeric PSI is 4 (per monomer) and remains unchanged after immobilization; (4) in all the samples under study, the free energy gap between mean red (emission at ~710 nm) and mean bulk (emission at ~686 nm) emitting states of chlorophylls was estimated at a similar level of 17–27 meV. All these observations indicate that despite slight modifications, dried PSI complexes adsorbed on the FTO surface remain fully functional in terms of excitation energy transfer and primary charge separation that is particularly important in the view of photovoltaic applications of this photosystem.  相似文献   

6.
《Biophysical journal》2023,122(3):470-483
We evaluated excitation energy transfer (EET) coupling (J) between all pairs of chlorophylls (Chls) and pheophytins (Pheos) in the protein environment of photosystem II based on the time-dependent density functional theory with a quantum mechanical/molecular mechanics approach. In the reaction center, the EET coupling between Chls PD1 and PD2 is weaker (|J(PD1/PD2)| = 79 cm?1), irrespective of a short edge-to-edge distance of 3.6 Å (Mg-to-Mg distance of 8.1 Å), than the couplings between PD1 and the accessory ChlD1 (|J(PD1/ChlD2)| = 104 cm?1) and between PD2 and ChlD2 (|J(PD2/ChlD1)| = 101 cm?1), suggesting that PD1 and PD2 are two monomeric Chls rather than a “special pair”. There exist strongly coupled Chl pairs (|J| > ~100 cm?1) in the CP47 and CP43 core antennas, which may be candidates for the red-shifted Chls observed in spectroscopic studies. In CP47 and CP43, Chls ligated to CP47-His26 and CP43-His56, which are located in the middle layer of the thylakoid membrane, play a role in the “hub” that mediates the EET from the lumenal to stromal layers. In the stromal layer, Chls ligated to CP47-His466, CP43-His441, and CP43-His444 mediate the EET from CP47 to ChlD2/PheoD2 and from CP43 to ChlD1/PheoD1 in the reaction center. Thus, the excitation energy from both CP47 and CP43 can always be utilized for the charge-separation reaction in the reaction center.  相似文献   

7.
Agarwala  Neva  Makita  Hiroki  Luo  Lujun  Xu  Wu  Hastings  Gary 《Photosynthesis research》2020,145(2):97-109
Photosynthesis Research - In photosystem I (PSI) complexes at room temperature electron transfer from A1– to FX is an order of magnitude faster on the B-branch compared to the A-branch. One...  相似文献   

8.
《BBA》2023,1864(3):148984
Photosystem I (PSI) of the cyanobacterium Acaryochloris marina is capable of performing an efficient photoelectrochemical conversion of far-red light due to its unique suite of cofactors. Chlorophyll d (Chl-d) has been long known as the major antenna pigment in the PSI from A. marina, while the exact cofactor composition of the reaction centre (RC) was established only recently by cryo-electron microscopy. The RC consists of four Chl-d molecules, and, surprisingly, two molecules of pheophytin a (Pheo-a), which provide a unique opportunity to resolve, spectrally and kinetically, the primary electron transfer reactions. Femtosecond transient absorption spectroscopy was here employed to observe absorption changes in the 400–860 nm spectral window occurring in the 0.1–500 ps timescale upon unselective antenna excitation and selective excitation of the Chl-d special pair P740 in the RC. A numerical decomposition of the absorption changes, including principal component analysis, allowed the identification of P740(+)Chld2(−) as the primary charge separated state and P740(+)Pheoa3(−) as the successive, secondary, radical pair. A remarkable feature of the electron transfer reaction between Chld2 and Pheoa3 is the fast, kinetically unresolved, equilibrium with an estimated ratio of 1:3. The energy level of the stabilised ion-radical state P740(+)Pheoa3(−) was determined to be ~60 meV below that of the RC excited state. In this regard, the energetics and the structural implications of the presence of Pheo-a in the electron transfer chain of PSI from A. marina are discussed, also in comparison with those of the most diffused Chl-a binding RC.  相似文献   

9.
The kinetics of thylakoid membrane protein phosphorylation in the presence of light and adenosine triphosphate is correlated to an incease in the 77 °K fluorescence emission at 735 nm (F735) relative to that at 685 nm (F685). Analysis of detergent-derived submembrane fractions indicate phosphorylation only of the polypeptides of Photosystem II, and the light-harvesting chlorophyll-protein complex serving Photosystem II (LHC-II). Although several polypeptides are phosphorylated, only the dephosphorylation kinetics of LHC-II follow the kinetics of the decrease of the F735F685 fluorescence emission ratios. The relative quantum yield of Photosystem II was significantly lower in phosphorylated membranes compared to dephosphorylated membranes. Reversible LHC-II phosphorylation thus provides the physiological mechanism for the control of the distribution of absorbed excitation energy between the two photosystems.  相似文献   

10.
K. Satoh  R. Strasser  W.L. Butler 《BBA》1976,440(2):337-345
Photosystem I activity of Tris-washed chloroplasts was measured at room temperature as the rate of photoreduction of NADP and as the rate of oxygen uptake mediated by methyl viologen in both cases using dichlorophenolindophenol plus ascorbate as the source of electrons for Photosystem I. With both assay systems the rate of electron transport by Photosystem I was stimulated approx. 20 % by the addition of 3-(3,4-dichlorophenyl)-1, 1-dimethylurea which caused the Photosystem II reaction centers to close. Photosystem I activity of chloroplasts was measured at low temperature as the rate of photooxidation of P-700. Chloroplasts suspended in the presence of hydroxylamine and 3-(3,4-dichlorophenyl)-1, 1-dimethylurea were frozen to ?196 °C after adaptation to darkness or after a preillumination at room temperature. The Photosystem II reaction centers of the frozen dark-adapted sample were all open; those of the preilluminated sample were all closed. The rate of photooxidation of P-700 at ?196 °C with the preilluminated sample was approx. 25 % faster than with the dark-adapted sample. We conclude from both the room temperature and the low temperature experiments that there is greater energy transfer from Photosystem II to Photosystem I when the Photosystem II reaction centers are closed and that these results are a direct demonstration of spillover.  相似文献   

11.
12.
In this work, we have investigated the role of the individual antenna complexes and of the low-energy forms in excitation energy transfer and trapping in Photosystem I of higher plants. To this aim, a series of Photosystem I (sub)complexes with different antenna size/composition/absorption have been studied by picosecond fluorescence spectroscopy. The data show that Lhca3 and Lhca4, which harbor the most red forms, have similar emission spectra (λmax = 715–720 nm) and transfer excitation energy to the core with a relative slow rate of ∼25/ns. Differently, the energy transfer from Lhca1 and Lhca2, the “blue” antenna complexes, occurs about four times faster. In contrast to what is often assumed, it is shown that energy transfer from the Lhca1/4 and the Lhca2/3 dimer to the core occurs on a faster timescale than energy equilibration within these dimers. Furthermore, it is shown that all four monomers contribute almost equally to the transfer to the core and that the red forms slow down the overall trapping rate by about two times. Combining all the data allows the construction of a comprehensive picture of the excitation-energy transfer routes and rates in Photosystem I.  相似文献   

13.
We present a systematic study of the effect of antenna size on energy transfer and trapping in photosystem II. Time-resolved fluorescence experiments have been used to probe a range of particles isolated from both higher plants and the cyanobacterium Synechocystis 6803. The isolated reaction center dynamics are represented by a quasi-phenomenological model that fits the extensive time-resolved data from photosystem II reaction centers and reaction center mutants. This representation of the photosystem II "trapping engine" is found to correctly predict the extent of, and time scale for, charge separation in a range of photosystem II particles of varying antenna size (8-250 chlorins). This work shows that the presence of the shallow trap and slow charge separation kinetics, observed in isolated D1/D2/cyt b559 reaction centers, are indeed retained in larger particles and that these properties are reflected in the trapping dynamics of all larger photosystem II preparations. A shallow equilibrium between the antennae and reaction center in photosystem II will certainly facilitate regulation via nonphotochemical quenching, and one possible interpretation of these findings is therefore that photosystem II is optimized for regulation rather than for efficiency.  相似文献   

14.
A. Ried  B. Hessenberg  H. Metzler  R. Ziegler 《BBA》1977,459(2):175-186
Action spectra of light reaction I and light reaction II from red algae (marine members of Florideae and Bangiales) were measured with 550 nm (light 2) or 699 nm (light 1) background light, using a Teflon-covered platinum electrode for O2 measurement. Care was taken to ensure that maximum enhancement was reached by the background light.The action spectra of light reaction I, we found under these conditions, are very similar to the thallus absorption, whilst the action spectra of light reaction II show, besides strong bands of the phycobilins, only minor bands of chlorophyll a, which account for only 10–20% of the total chlorophyll.The spectra are discussed on the basis of two main types of models of energy distribution over both photosynthetic systems. If this distribution is considered to be invariable (models 1a and b), one has to assume that almost exactly half of the total chlorophyll is not involved in the supply of the non-cyclic electron transport with excitation energy. This part, however, has to be thought of as incorporated in the thylakoid membrane in a similar manner to the chlorophyll in photosystem I. However, if one supposes an almost complete equilibration in the energy distribution over both systems as long as the primary absorption in photosystem II prevails (models 2a and b), there is no need for the assumption of such photosynthetically ‘inactive’ or less active chlorophyll. Some evidence is shown that strongly supports model 2.  相似文献   

15.
The redox potentials of the two electron transfer (ET) active quinones in the central part of photosystem I (PSI) were determined by evaluating the electrostatic energies from the solution of the Poisson-Boltzmann equation based on the crystal structure. The calculated redox potentials are -531 mV for A1A and -686 mV for A1B. From these results we conclude the following. (i) Both branches are active with a much faster ET in the B-branch than in the A-branch. (ii) The measured lifetime of 200-290 ns of reduced quinones agrees with the estimate for the A-branch and corroborates with an uphill ET from this quinone to the iron-sulfur cluster as observed in recent kinetic measurements. (iii) The electron paramagnetic resonance spectroscopic data refer to the A-branch quinone where the corresponding ET is uphill in energy. The negative redox potential of A1 in PSI is primarily because of the influence from the negatively charged FX, in contrast to the positive shift on the quinone redox potential in bacterial reaction center and PSII that is attributed to the positively charged non-heme iron atom. The conserved residue Asp-B575 changes its protonation state after quinone reduction. The difference of 155 mV in the quinone redox potentials of the two branches were attributed to the conformation of the backbone with a large contribution from Ser-A692 and Ser-B672 and to the side chain of Asp-B575, whose protonation state couples differently with the formation of the quinone radicals.  相似文献   

16.
We examined energy transfer dynamics from the photosystem II reaction center (PSII-RC) in intact red algae cells of Porphyridium cruentum, Bangia fuscopurpurea, Porphyra yezoensis, Chondrus giganteus, and Prionitis crispata. Time resolved fluorescence measurements were conducted in the range of 0-80ns at -196°C. The delayed fluorescence spectra were then determined, where the delayed fluorescence was derived from the charge recombination between P680(+) and pheophytin a in PSII-RC. Therefore, the delayed fluorescence spectrum reflected the energy migration processes including PSII-RC. All samples examined showed prominent distribution of delayed fluorescence in PSII and PSI, which suggests that a certain amount of PSII attaches to PSI to share excitation energy in red algae. The energy transfer from PSII to PSI was found to be dominant when the amount of phycoerythrobilin was increased.  相似文献   

17.
Rochaix J  Fischer N  Hippler M 《Biochimie》2000,82(6-7):635-645
The photosystem I (PSI) complex is a multisubunit protein-pigment complex embedded in the thylakoid membrane which acts as a light-driven plastocyanin/cytochrome c(6)-ferredoxin oxido-reductase. The use of chloroplast transformation and site-directed mutagenesis coupled with the biochemical and biophysical analysis of mutants of the green alga Chlamydomonas reinhardtii with specific amino acid changes in several subunits of PSI has provided new insights into the structure-function relationship of this important photosynthetic complex. In particular, this molecular-genetic analysis has identified key residues of the reaction center polypeptides of PSI which are the ligands of some of the redox cofactors and it has also provided important insights into the orientation of the terminal electron acceptors of this complex. Finally this analysis has also shown that mutations affecting the donor side of PSI are limiting for overall electron transfer under high light and that electron trapping within the terminal electron acceptors of PSI is highly deleterious to the cells.  相似文献   

18.
Utschig LM  Tiede DM  Poluektov OG 《Biochemistry》2010,49(45):9682-9684
Electron paramagnetic resonance (EPR) was used to study light-induced electron transfer in Photosystem I-flavodoxin complexes. Deuteration of flavodoxin enables the signals of the reduced flavin acceptor and oxidized primary donor, P(700)(+), to be well-resolved at X- and D-band EPR. In dark-adapted samples, photoinitiated interprotein electron transfer does not occur at 5 K. However, for samples prepared in dim light, significant interprotein electron transfer occurs at 5 K and a concomitant loss of the spin-correlated radical pair P(+)A(1A)(-) signal is observed. These results indicate a light-induced reorientation of flavodoxin in the PSI docking site that allows a high quantum yield efficiency for the interprotein electron transfer reaction.  相似文献   

19.
Photosynthesis Research - Recently, we isolated a complex consisting of photosystem II (PSII) and light-harvesting complexes (LHCs) from Nannochloropsis granulata (Umetani et al. Photosynth Res...  相似文献   

20.
The effects of high temperature (30-52.5 degrees C) on excitation energy transfer from phycobilisomes (PBS) to photosystem I (PSI) and photosystem II (PSII) in a cyanobacterium Spirulina platensis grown at 30 degrees C were studied by measuring 77 K chlorophyll (Chl) fluorescence emission spectra. Heat stress had a significant effect on 77 K Chl fluorescence emission spectra excited either at 436 or 580 nm. In order to reveal what parts of the photosynthetic apparatus were responsible for the changes in the related Chl fluorescence emission peaks, we fitted the emission spectra by Gaussian components according to the assignments of emission bands to different components of the photosynthetic apparatus. The 643 and 664 nm emissions originate from C-phycocyanin (CPC) and allophycocyanin (APC), respectively. The 685 and 695 nm emissions originate mainly from the core antenna complexes of PSII, CP43 and CP47, respectively. The 725 and 751 nm band is most effectively produced by PSI. There was no significant change in F725 and F751 during heat stress, suggesting that heat stress had no effects on excitation energy transfer from PBS to PSI. On the other hand, heat stress induced an increase in the ratio of Chl fluorescence yield of PBS to PSII, indicating that heat stress inhibits excitation energy transfer from PBS to PSII. However, this inhibition was not associated with an inhibition of excitation energy transfer from CPC to APC since no significant changes in F643 occurred at high temperatures. A dramatic enhancement of F664 occurring at 52.5 degrees C indicates that excitation energy transfer from APC to the PSII core complexes is suppressed at this temperature, possibly due to the structural changes within the PBS core but not to a detachment of PBS from PSII, resulting in an inhibition of excitation energy transfer from APC to PSII core complexes (CP47 + CP43). A decrease in F685 and F695 in heat-stressed cells with excitation at 436 nm seems to suggest that heat stress did not inhibit excitation energy transfer from the Chl a binding proteins CP47 and CP43 to the PSII reaction center and the decreased Chl fluorescence yields from CP43 and CP47 could be explained by the inhibition of the energy transfer from APC to PSII core complexes (CP47 + CP43).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号