首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the most important factors affecting the development of honey bee colonies is infectious diseases such as American foulbrood (AFB) caused by the spore forming Gram-positive bacterium Paenibacillus larvae. Colony inspections for AFB clinical symptoms are time consuming. Moreover, diseased cells in the early stages of the infection may easily be overlooked. In this study, we investigated whether it is possible to determine the sanitary status of a colony based on analyses of different materials collected from the hive. We analysed 237 bee samples and 67 honey samples originating from 71 colonies situated in 13 apiaries with clinical AFB occurrences. We tested whether a difference in spore load among bees inside the whole hive exists and which sample material related to its location inside the hive was the most appropriate for an early AFB diagnosis based on the culture method. Results indicated that diagnostics based on analysis of honey samples and bees collected at the hive entrance are of limited value as only 86% and 83%, respectively, of samples from AFB-symptomatic colonies were positive. Analysis of bee samples collected from the brood nest, honey chamber, and edge frame allowed the detection of all colonies showing AFB clinical symptoms. Microbiological analysis showed that more than one quarter of samples collected from colonies without AFB clinical symptoms were positive for P. larvae. Based on these results, we recommend investigating colonies by testing bee samples from the brood nest, edge frame or honey chamber for P. larvae spores.  相似文献   

2.
The application of smoke to honey bee(Apis mellifera) antennae reduced the subsequent electroantennograph response of the antennae to honey bee alarm pheromones, isopentyl acetate, and 2-heptanone. This effect was reversible, and the responsiveness of antennae gradually returned to that of controls within 10–20 min. A similar effect occurred with a floral odor, phenylacetaldehyde, suggesting that smoke interferes with olfaction generally, rather than specifically with honey bee alarm pheromones. A reduction in peripheral sensitivity appears to be one component of the mechanism by which smoke reduces nest defense behavior of honey bees.  相似文献   

3.
In polyandrous social insects such as honey bees, a worker’s affinity for a particular task may be genetically infl uenced and so some patrilines may have lower stimulus thresholds for commencing a task than others. We used simulation models to investigate the effects of intracolonial diversity in the task thresholds that stimulate workers to engage in heating and cooling during nest thermoregulation. First, we simulated colonies comprised of one or 15 patrilines that were engaged in heating the brood nest, and observed that single patriline colonies maintained, on average, less stable brood nest temperatures than multiple patriline colonies. Second we simulated colonies with five patrilines that were engaged in cooling their nest, recording the proportions of bees of different patrilines that engaged in nest cooling in response to changing temperatures. Both of our simulations show remarkably similar qualitative patterns to those that we have previously observed empirically. This provides further support for the hypothesis that geneticallybased variability in task thresholds among patrilines within honey bee colonies is an important contributor to the ability of colonies to precisely thermoregulate their nests, and we suggest that diversity is important for optimal expression of a range of other colony-level phenotypes. Received 17 June 2005; revised 27 October 2005; accepted 23 December 2005.  相似文献   

4.
5.
During the waggle dance of the honeybee, the dancer is able to tell her nestmates the distance and direction to a rich food source (Frisch, 1967). Little is known about how waggle dance followers are able to read the waggle dance in the darkness of a hive. Initial observations showed that not all of the bees that appear to be dance followers behave the same. Some bees maneuver themselves behind the dancer, while others do not. The paths of a single dancer, trained to an artificial food source, and her followers were traced during the waggle runs. The success of these dance followers was compared to their position relative to the dancer. The results of this study show that during a waggle run a dance follower must position itself within a 30° arc behind the dancer in order to obtain the dance information. The results suggest that bees are using the position of their own bodies to determine direction.  相似文献   

6.
Summary Queen attendance behavior of workers from selected honey bee colonies with high and low worker retinue response to synthetic queen mandibular gland pheromone (QMP) was investigated. Antennating, licking, grooming, and feeding of the queen by workers from high and low responding colonies were examined. High and low QMP responding workers did not attend the queen differently. However, workers originating from different colonies antennated and licked the queen more frequently than others, suggesting there may be a genetic basis for queen attendance behavior not necessarily associated with response to QMP. The median age of queen attendance was independent of strain.  相似文献   

7.
Summary. This paper considers a little-studied topic in the biology of social insects: the formation of self-assemblages. It focuses on the mechanisms whereby the outermost workers in a bivouacked swarm of honey bees, when rained upon, form a water repellent curtain of bees over the swarm cluster. Specifically, we analyzed how the worker bees in the mantle of a swarm cluster adjust their body orientation, wing spread, and inter-individual spacing to form a protective curtain when wetted. When warm and dry, the mantle bees orient their bodies weakly with respect to gravity, do not tuck their heads under adjacent bees, have high variability in wing spread, and space themselves widely. In contrast, when warm and wet, the mantle bees orient uniformly with head upward, tuck their heads beneath the abdomens of bees above, hold their wings together, and press tightly together. This produces a surface that closely resembles a tiled roof. When cool and dry, the mantle bees generally orient their bodies with head upward, press their heads into the interior of the cluster, hold their wings wide apart, and draw close together. We also examined the age distribution of the mantle bees. Older bees are more likely than younger bees to be found in the mantle of a swarm, perhaps because younger bees are more important than older bees to colony survival after swarming and so occupy a more sheltered position in a swarm. Finally, we tested whether swarm clusters that have formed a protective curtain shed water more effectively than ones that have not formed a curtain. We found that this is the case.Received 28 November 2003; revised 29 February 2004; accepted 11 April 2004.  相似文献   

8.
Anarchistic queen honey bees have normal queen mandibular pheromones   总被引:3,自引:0,他引:3  
Summary. Anarchistic honey bees are a line developed by recurrent selection in which workers frequently lay eggs. In unselected colonies, workers refrain from reproduction in response to pheromonal signals that indicate the presence of brood and a queen. We show that queen type (anarchistic or wild type) has no effect on rates of ovary activation of anarchistic or wild type workers. In addition, we show that an important component of the queens signalling system, the queen mandibular gland pheromone, is similar in wild type and anarchistic queens. Anarchistic larvae do not inhibit worker ovary development to the same degree as wild type larvae, however all colonies in this experiment contained only wild type larvae. Anarchistic workers had greater rates of ovary activation than wild type workers in colonies headed by either queen type. We therefore conclude that there must be differences in the transmission or reception of queen pheromones, or worker sensitivity to these compounds. These results clearly demonstrate that anarchy is a complex syndrome, not simply the result of reduced pheromone production by anarchist queens and larvae.Received 23 December 2003; revised 14 May 2004; accepted 1 June 2004.  相似文献   

9.
Summary In the polyandrous honey bee, Apis mellifera, workers can potentially increase their inclusive fitness by rearing full-sister queens. If the mother queen dies suddenly, workers feed a few larvae in worker cells with royal jelly and rear them into queens (emergency queen rearing). Using DNA microsatellite markers we determined the patriline of emergency queens reared in two colonies headed by naturally-mated queens before being made queenless. We found that some patrilines were reared more than others in one colony, but not in the other. These differences between colonies suggest that selective rearing is not always present and this might explain the mixed results of previous nepotism studies in the honey bee.Received 10 February 2003; revised 7 March 2003; accepted 17 March 2003.  相似文献   

10.
Experimental colonies of honey bees consisting of two patrilines were observed as they reared worker brood. Seven behavior patterns that relate to brood care were recorded. Worker bees biased the care they provided to eggs and larvae destined to become workers on the basis of brood patrilines. Both patrilineal and antipatrilineal preferences in various behavioral patterns were observed. There was variation among colonies that may have been the result of the frequencies of brood of each patriline and the total amount of brood available to be reared. In addition, there were some differences between workers of the two patrilines in the way that they cared for the two patrilines of brood.  相似文献   

11.
The experience of foraging under natural conditions increases the volume of mushroom body neuropil in worker honey bees. A comparable increase in neuropil volume results from treatment of worker honey bees with pilocarpine, an agonist for muscarinic-type cholinergic receptors. A component of the neuropil growth induced by foraging experience is growth of dendrites in the collar region of the calyces. We show here, via analysis of Golgi-impregnated collar Kenyon cells with wedge arborizations, that significant increases in standard measures of dendritic complexity were also found in worker honey bees treated with pilocarpine. This result suggests that signaling via muscarinic-type receptors promotes the increase in Kenyon cell dendritic complexity associated with foraging. Treatment of worker honey bees with scopolamine, a muscarinic inhibitor, inhibited some aspects of dendritic growth. Spine density on the Kenyon cell dendrites varied with sampling location, with the distal portion of the dendritic field having greater total spine density than either the proximal or medial section. This observation may be functionally significant because of the stratified organization of projections from visual centers to the dendritic arborizations of the collar Kenyon cells. Pilocarpine treatment had no effect on the distribution of spines on dendrites of the collar Kenyon cells.  相似文献   

12.
Virus infections in Brazilian honey bees   总被引:1,自引:0,他引:1  
This work describes the first molecular-genetic evidence for viruses in Brazilian honey bee samples. Three different bee viruses, Acute bee paralysis virus (ABPV), Black queen cell virus (BQCV), and Deformed wing virus (DWV) were identified during a screening of RNAs from 1920 individual adult bees collected in a region of southeastern Brazil that has recently shown unusual bee declines. ABPV was detected in 27.1% of colony samples, while BQCV and DWV were found in 37% and 20.3%, respectively. These levels are substantially lower than the frequencies found for these viruses in surveys from other parts of the world. We also developed and validated a multiplex RT-PCR assay for the simultaneous detection of ABPV, BQCV, and DWV in Brazil.  相似文献   

13.
Summary. Foragers inhibit the behavioural development of young adult worker honey bees, delaying the age at onset of foraging. But the similar effect caused by pheromones produced by both the queen and brood raised the possibility that some of the previously attributed forager effects might be due to queen, brood, or both. Here we studied whether physical contacts between young bees and old foragers can inhibit behavioural development while controlling for queen and brood effects. Results demonstrated that foragers inhibit the behavioural development of young adult worker bees independent of the queen and brood, via a mechanism that requires physical contact.Received 24 November 2003; revised 27 March 2004; accepted 21 April 2004.  相似文献   

14.
Nosema ceranae is a recently described pathogen of Apis mellifera and Apis cerana. Relatively little is known about the distribution or prevalence of N. ceranae in the United States. To determine the prevalence and potential impact of this new pathogen on honey bee colonies in Virginia, over 300 hives were sampled across the state. The samples were analyzed microscopically for Nosema spores and for the presence of the pathogen using real-time PCR. Our studies indicate that N. ceranae is the dominant species in Virginia with an estimated 69.3% of hives infected. Nosema apis infections were only observed at very low levels (2.7%), and occurred only as co-infections with N. ceranae. Traditional diagnoses based on spore counts alone do not provide an accurate indication of colony infections. We found that 51.1% of colonies that did not have spores present in the sample were infected with N. ceranae when analyzed by real-time PCR. In hives that tested positive for N. ceranae, average CT values were used to diagnose a hive as having a low, moderate, or a heavy infection intensity. Most infected colonies had low-level infections (73%), but 11% of colonies had high levels of infection and 16% had moderate level infections. The prevalence and mean levels of infection were similar in different regions of the state.  相似文献   

15.
Queenless honey bee (Apis mellifera) colonies are often characterized by the presence of multiple eggs in brood cells. This is surprising because only one egg can be reared to maturity per cell. Moreover, worker honey bees cannot produce many eggs per day. There are several reasons that could explain the presence of multiple eggs in single cells: a) workers cannot control how many eggs they release; in this case we would expect all eggs to be from the same mother; b) excess eggs could be provided as food for the first larva to hatch in the absence of adequate brood care and this would again result in all eggs in one cell sharing the same mother; c) the number of cells available for oviposition may be limiting, obliging workers to lay eggs in cells that already contain eggs, resulting in eggs of mixed maternity. Here we show that the majority of brood cells in queenless colonies contain eggs from multiple mothers. Therefore our results suggest that the presence of multiple eggs in brood cells arises from a limitation on the number of suitable cells available for oviposition. Received 29 September 2008; revised 21 November 2008; accepted 24 November 2008.  相似文献   

16.
Forager honey bees communicate the distance of food sources to nest mates through waggle dances, but how do bees measure these distances? Recent work suggests that bees measure distance flown in terms of the extent of image motion (integrated optic flow) that is experienced during flight. However, it is known that optic flow also regulates the speed of flight. Therefore, the duration of the flight to a destination is likely to co-vary with the optic flow that is experienced en route. This makes it difficult to tease apart the potential roles of flight duration and optic flow as cues in estimating distance flown. Here we examine whether flight duration alone can serve as an indicator of distance. We trained bees to visit feeders at two sites located in optically different environments, but positioned such that the flight durations to the two sites were similar. The distance estimates for the two sites, as reported in the waggle dance, were compared. We found that dances differed significantly between the two sites, even though flight times were similar. Flight time perse was a poor predictor of waggle dance behaviour. We conclude that foraging bees do not simply signal flight time as their measure of distance in the waggle dance; the environment through which they fly plays a dominant role. Received 11 April 2005; revised 16 May 2005; accepted 3 June 2005.  相似文献   

17.
Genetic and environmental influences on the worker honey bee retinue response to queen mandibular gland pheromone (QMP) were investigated. Worker progeny were reared from queens originating from four sources: Australia, New Zealand, and two locations in British Columbia, Canada (Simon Fraser University and Vancouver Island). Progeny from New Zealand queens responded significantly higher (P < 0.05) than progeny from Australia in a QMP retinue bioassay. Retinue response was not related to queen production of pheromone or colony environment, and the strain-dependent differences in retinue bioassay responses were maintained over a wide range of dosages. Selected high- and low-responding colonies were bioassayed over the course of 1 year. High-responding colonies contacted QMP lures more frequently than low-responding colonies (P < 0.05) throughout the year except in late summer. We conclude that there is a strong genetic component to QMP response by worker honey bees, as well as a seasonal effect on response.  相似文献   

18.
Summary Kin recognition and nepotism between honeybee workers (Apis mellifera L.) was analysed in a trophallactic bio-assay. Donor workers were fed dyed sugar syrup and introduced into a recipient group consisting of 12 to 15 workers of the same colony. After allowing for 1 hour of trophallaxis, the distribution of the dyed food was analysed with spectrophotometry. The subfamily composition in the recipient group was varied such that the donor bees had to discriminate between workers of 2 to 7 different patrilines. Donor bees preferentially fed super sisters if few patrilines were present in the recipient group. However, preferential feeding was not observed if the recipient group consisted of workers of more than three subfamilies. Since the natural degree of polyandry causes intracolonial genetic variance to exceed the genetic variability in the experiments, nepotistic behaviour among workers may not reveal intranidal subfamily recognition in honeybees.  相似文献   

19.
Octopamine influences honey bee foraging preference   总被引:1,自引:0,他引:1  
Colony condition and differences in individual preferences influence forage type collected by bees. Physiological bases for the changing preferences of individual foragers are just beginning to be examined. Recently, for honey bees octopamine is shown to influence age at onset of foraging and probability of dance for rewards. However, octopamine has not been causally linked with foraging preference in the field. We tested the hypothesis that changes in octopamine may alter forage type (preference hypothesis). We treated identified foragers orally with octopamine or its immediate precursor, tyramine, or sucrose syrup (control). Octopamine-treated foragers switched type of material collected; control bees did not. Tyramine group results were not different from the control group. In addition, sugar concentrations of nectar collected by foragers after octopamine treatment were lower than before treatment, indicating change in preference. In contrast, before and after nectar concentrations for bees in the control group were similar. These results, taken together, support the preference hypothesis.  相似文献   

20.
Interactions between pathogens might contribute to honey bee colony losses. Here we investigated if there is an association between the microsporidian Nosema ceranae and the deformed wing virus (DWV) in different body sections of individual honey bee workers (Apis mellifera ligustica) under exclusion of the vector Varroa destructor. Our data provide correlational evidence for antagonistic interactions between the two pathogens in the midgut of the bees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号