首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have measured the absolute molar rates of synthesis, accumulation, and turnover of blowfly salivary gland heterodisperse RNA. Twelve- and 84-hr-stage third-instar Calliphora erythrocephala larvae were injected with [3H]adenosine, and its flow into glandular ATP, heterodisperse RNA, and polyadenylated RNA was each quantitated over a 360-min time course. The results of these experiments indicate that at least 80% of the newly synthesized heterodisperse RNA mass is a >28 S nuclear species whose average first-order half-life is approximately 20 min. The remaining 20% of the heterodisperse RNA has a 6–28 S size distribution, accumulates in the cytoplasm, and is associated with functional polysomes. The average first-order half-life of this more stable species is 20–25 hr. In addition, we have independently quantitated by optical methods the developmental change in the content of polysome-associated mRNA. The mRNA in these studies also has an average first-order half-life of 25 hr and accounts for 25–55% of the mRNA mass predicted by the incorporation-kinetic analysis of the pulse-labeled heterodisperse RNA. Despite the increased polyteny of the older stage glands, the rates of synthesis and accumulation of each of the individual heterodisperse RNA classes are the same at the 12- and 84-hr stages. Collectively, these results demonstrate that salivary gland functional specialization results from the accumulation of long-lived mRNA and not from changes in the overall rate of mRNA synthesis.  相似文献   

2.
The rates of total RNA synthesis and accumulation have been measured in the polytenic salivary gland cells of the blowfly, Calliphora erythrocephala, by three methods: (1) injecting larvae with [2-3H]adenosine and determining its flow into the cellular ATP pool and RNA, (2) measuring the increase in glandular RNA optically, and (3) measuring the rate of flow of ATP out of the cellular pool. The size of the steady-state pool of rapidly turning over RNA and its half-life, were calculated from these kinetic data and, also, by an independent measurement of the steady-state content of nuclear RNA. These parameters were compared at a number of developmental stages which differed in degree of chromosomal polytenization. The results indicate that these polytenic cells synthesize RNA at a rate approximately 103 times those of other diploid eukaryotic cells. This rate is independent of the increase in chromosomal polyteny that accompanies larval development. Approximately 67% of the newly synthesized salivary gland RNA is an unstable component with an average first-order half-life of 20–25 min. The remainder is a long-lived species with an estimated average first-order half-life of about 30 hr.  相似文献   

3.
A specific inhibitor of ribosomal RNA (rRNA) synthesis was partially purified from an acid-soluble fraction of Xenopus laevis blastulae. Effects of this inhibitor on 5S rRNA synthesis of isolated neurula cells of the same species were investigated. The results show that the synthesis of both 5S rRNA and 4S RNA proceeds normally when both 18 and 28S rRNA are almost completely inhibited. Failure of the inhibitor to suppress 5S rRNA synthesis suggests that it plays an important role in the regulation of 18 and 28S rRNA synthesis during development and that the synthesis of 5S rRNA is not coordinated to that of 18 and 28S rRNA.  相似文献   

4.
5.
A new method for separating Drosophila egg chambers into different developmental classes (Jacobs-Lorena and Crippa, 1977) made it possible to study changes in the rate of ribosomal RNA (rRNA), 5S RNA, and tRNA synthesis and the changes in ribosomal gene number during oogenesis. Synthesis of RNA was measured by [3H]uridine incorporation in vivo and subsequent analysis on sucrose gradients or gel electrophoresis. Specific radioactivity of nucleotide pools has also been determined. Ribosomal gene number has been measured by hybridization of egg chamber DNA to rRNA of high specific radioactivity. Our findings led us to conclude that in Drosophila melanogaster: (i) rRNA, 5S RNA, and tRNA are synthesized in all stages of oogenesis. (ii) In every stage, rRNA is the main RNA species synthesized. (iii) The rate of rRNA, 5S RNA, and tRNA synthesis increases greatly during oogenesis and is paralleled by a similar increase in ribosomal gene number resulting from the polyploidization of the nurse cell nuclei.  相似文献   

6.
7.
Low molecular weight RNA species are described in isolated nuclear components and cytoplasm of salivary gland cells of Chironomus tentans. In addition to 4S and 5S RNA and RNA in the 4–5S range previously described, at least three other components in the range below 16S are present. RNA, the molecular weight of which was estimated to 2.3 x 105 and designed 10S RNA, can be observed only in nucleoli; other RNA, the molecular weight of which was estimated to 1.3 x 105 and designed 8S RNA, was detected in the chromosomes, the nuclear sap, and the cytoplasm but not in the nucleoli; and a third type of RNA, the molecular weight of which was estimated to 8.5 x 104 and designed 7S RNA, was present in nucleoli, chromosomes, nuclear sap, and cytoplasm. The substituted benzimidazole, 5,6-dichloro-1 (β-D-ribofuranosyl)benzimidazole (DRB), which gives a differential inhibition of the labeling of heterodisperse, mainly high molecular weight RNA in the chromosomes, does not inhibit the labeling of 8S RNA. The relative amounts of label in 8S RNA and 4–5S RNA (including 4S RNA and 5S RNA) in different isolated chromosomes, are distributed in proportion to the chromosomal DNA contents. The 8S RNA as well as the 7S RNA show a relative accumulation in chromosomes and nuclear sap with prolonged incubation time and are in this respect similar to intranuclear low molecular weight RNA species described by previous workers. Our data suggest, however, that these two types of RNA may differ in an important aspect from the previously described types since they are also present in the cytoplasm.  相似文献   

8.
The frequency of incorporation of the cytokinin N6-[p-3H]benzyladenine into major RNA species of tobacco (Nicotiana tabacum cv W 38) cells steadily increased as a function of its concentration in the culture medium, up to a 10 micromolar cytostatic overdose. During a 55-hour incubation of cells with 0.4 micromolar benzyladenine (BA), which is the optimal concentration for cell division, the incorporation frequency increased to one BA per 1.5 to 2.0 × 104 conventional bases in total RNA. Frequencies of BA incorporation into 18S and 25S rRNA and into RNA precursors were very similar, 2- to 3-fold higher than the frequency of BA incorporation into the 4S + 5S RNA fraction. In cells incubated with 10 micromolar BA, the rate of RNA synthesis between 24 and 55 hours was lower than at optimal growth conditions; 18S and 25S rRNA synthesis was depressed more than the synthesis of 4S + 5S RNA. At 55 hours, BA was incorporated into total RNA at the steady state frequency of one per 1,300 conventional bases. All major RNA species were BA-labeled to approximately the same level, except that the labeling of the RNA precursors was 2-fold higher than the labeling of mature RNA species. These results may reflect an alteration in the processing of the RNA precursors at supra-optimal cytokinin concentration.  相似文献   

9.
Ribosomal RNAs (28 + 18S and 5S) and 4S RNA extracted from the chironomid Glyptotendipes barbipes were iodinated in vitro with 125I and hybridized to the salivary gland chromosomes of G. barbipes and Drosophila melanogaster. Iodinated 18 + 28 S RNA labeled three puffed sites with associated nucleoli on chromosomes IR, IIL, and IIIL of G. barbipes and the nucleolar organizer of Drosophila. Labeled 5S RNA hybridized to three sites on chromosome IIIR, two sites on chromosome IIR and one site in a Balbiani ring on chromosome IV of Glyptotendipes. Most of the label produced by this RNA was localized seven bands away from the centromere on the right arm of chromosome III, and we consider this to be the main site complementary to 5S RNA in the chironomid. This same RNA preparation specifically labeled the 56 EF region of chromosome IIR of Drosophila which has been shown previously to be the only site labeled when hybridized with homologous 5S RNA. Hybridization of G. barbipes chromosomes with iodinated 4S RNA produced no clearly localized labeled sites over the exposure periods studied.  相似文献   

10.
Precursors of 5 S ribosomal RNA in Bacillus subtilis   总被引:8,自引:0,他引:8  
Bacillus subtilis 168 accumulates subnormal quantities of mature 5 S ribo-somal RNA in the presence of inhibitors of protein synthesis, such as chloramphenicol, or during pulse-labeling experiments. However, two RNA species, evidently precursors of m5 rRNA and therefore designated as p5A and p5B, do accumulate under these conditions. These RNA species are substantially longer than B. subtilis m5 rRNA: p5A is about 179 nucleotides in length and p5B is composed of approximately 152 nucleotides. The sum of p5A, p5B and m5 rRNA accumulating in the absence of protein synthesis, less excess chain length associated with p5A and p5B, equals the expected quantities of m5 rRNA in growing cells. p5A and p5PB both contain all t1 RNase-generated oligonucleotides characteristic of m5 rRNA plus additional sequences. At least the 5′ termini of p5A and p5B differ from that of m5. If chloramphenicol is removed from a culture in which p5A and p5B have accumulated and further RNA synthesis is inhibited, then a quantitative reciprocal loss of p5A and p5B occurs as m5 rRNA accumulates. No evidence suggests any p5A to p5B transition under these conditions.  相似文献   

11.
12.
The distribution of sites hybridizing with mitochondrial 4 S RNA molecules on mitochondrial DNA of Xenopus laevis has been mapped in relation to the ribosomal RNA genes and EcoRI restriction endonuclease sites. RNA molecules linked to ferritin were employed for this purpose. We have obtained evidence for 15 4 S RNA sites on the H-strand and six sites on the L-strand of X. laevis mtDNA. An indication of the possible existence of one additional site on the H-strand and four additional sites on the L-strand has been obtained. One 4 S RNA site is located in the gap between the two rRNA genes, and one site flanks each outside end of the rRNA genes. The other 4 S RNA sites are distributed almost evenly throughout both strands of the mtDNA. A comparison with the map of 4 S RNA sites on the mtDNA of HeLa cells (Angerer et al., 1976) suggests considerable evolutionary conservation of site organization.  相似文献   

13.
Human N-acetyltransferase 10 (NAT10) is known to be a lysine acetyltransferase that targets microtubules and histones and plays an important role in cell division. NAT10 is highly expressed in malignant tumors, and is also a promising target for therapies against laminopathies and premature aging. Here we report that NAT10 is an ATP-dependent RNA acetyltransferase responsible for formation of N4-acetylcytidine (ac4C) at position 1842 in the terminal helix of mammalian 18 S rRNA. RNAi-mediated knockdown of NAT10 resulted in growth retardation of human cells, and this was accompanied by high-level accumulation of the 30 S precursor of 18 S rRNA, suggesting that ac4C1842 formation catalyzed by NAT10 is involved in rRNA processing and ribosome biogenesis.  相似文献   

14.
15.
RNA synthesis was studied mainly in the proximal sections of Rhynchosciara salivary glands in late fourth instar at two typical periods of development. These are characterized either by the absence or presence of the so-called “DNA puffs” in the salivary gland chromosomes. It was found that simultaneously with the appearance of the DNA puffs there is a great increase in the synthesis of all RNA species. The greatest increase was found to take place in the rate of synthesis of messenger-like RNA. Four main classes of messenger-like RNA were detected, having mobilities corresponding to 33, 23, 16, and 14 S RNA. There is a correlation between the abundance of the 16 S messenger-like RNA and the degree of opening of the B-2 DNA puff. This species might therefore be transcribed from this puff.  相似文献   

16.
The possible location of RNA in the ribosomal attachment site for the eukaryotic elongation factor EF-2 was analysed. Stable EF-2 · ribosome complexes formed in the presence of the non-hydrolysable GTP analogue GuoPP[CH2]P were cross-linked with the short (4 Å between the reactive groups) bifunctional reagent, diepoxybutane. Non-cross-linked EF-2 was removed and the covalent factor-ribosome complex isolated. No interaction between EF-2 and 18 S or 28 S rRNA could be demonstrated. However, density gradient centrifugation of the cross-linked ribosomal complexes showed an increased density (1.25 g/cm3) of the factor, as expected from a covalent complex between EF-2 and a low-molecular-weight RNA species. Treatment of the covalent ribosome-factor complexes with EDTA released approx 50% of the cross-linked EF-2 from the ribosome together with the 5 S rRNA · protein L5 complex. Furthermore, the complex co-migrated with the 5S rRNA · L5 particle in sucrose gradients. Polyacrylamide gel electrophoresis showed that EF-2 was directly linked to 5 S rRNA in the 5 S rRNA · L5 complex, as well as in the complexes isolated by density gradient centrifugation. No traces of 5.8 S rRNA or tRNA could be demonstrated. The data indicate that the ribosomal binding domain for EF-2 contains the 5 S rRNA · protein L5 particle and that EF-2 is located in close proximity to 5 S rRNA within the EF-2 · GuoPP[CH2]P · ribosome complex.  相似文献   

17.
In Drosophila melanogaster there is one nucleolar organizer (NO) on each X and Y chromosome. Experiments were carried out to compare the ribosomal RNAs derived from the two nucleolar organizers. 32PO4-labelled ribosomal RNA was isolated from two strains of D. melanogaster, one containing only the X chromosome NO, the other containing only the Y chromosome NO. 28 S and 18 S RNA from the two strains were subjected to a variety of “fingerprinting” and sequencing procedures. Fingerprints of 28 S RNA were very different from those of 18 S RNA. Fingerprints of “X” and “Y” 28 S RNA were indistinguishable from each other, as also were fingerprints of “X” and “Y” 18 S RNA. In combined “T1 plus pancreatic” RNAase fingerprints several distinctive products were characterized and quantitated. Identical products were obtained from X and Y RNA, and the molar yields of the products were indistinguishable. Together these findings imply that the rRNA sequences encoded by the X and Y NOs are closely similar and probably identical to each other.Two further findings were of interest in “T1 plus pancreatic” RNAase fingerprints: (1) in 28 S (as well as in 18 S) fingerprints several distinctive products were recovered in approximately unimolar yields. This indicates that 28 S RNA does not consist of two identical half molecules, though it does consist of two non-identical half molecules together with a “5.8 S” fragment. (2) Several methylated components in Drosophila rRNA also occur in rRNA from HeLa cells and yeast. This suggests that certain features of rRNA structure involving methylated nucleotides may be highly conserved in eukaryotic evolution.  相似文献   

18.
19.
Nucleic acids in the degenerating posterior silk gland of Bombyx mori were analysed during the period from larval maturation to early pupal stage, by methylated albumin column chromatography and sucrose density gradient centrifugation. During the first half of the period, the amount of RNA decreased rapidly, but no accumulation of degradation products was detected. The ratio 26S17S rRNA decreased slightly. A decrease of sRNA-like polynucleotide (∼4S RNA) was faster than that of rRNA. During the latter half of the period, rRNA continued to decrease, while ∼4S RNA increased in content. This probably resulted from the degradation of rRNA. There was a significant fall in the ratio of 26S17S, suggesting that rRNA, at least in part, was degraded by the scheme of 26 S→17 S→∼ 4S. The possibility that a part of rRNA may be released outside the tissue without complete decomposition is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号