首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
When grown under K+ limitation, Escherichia coli induces the K+-translocating KdpFABC complex. The stimulation of ATPase activity by NH4+ ions was shown for the first time. Substitutions in KdpA, which is responsible for K+ binding and translocation, revealed that enzyme complexes KdpA:G232A and KdpA:G232S have completely lost their cation selectivity.  相似文献   

2.
The conventional procedure for the purification of the high affinity K+ uptake ATPase (KdpABC) from Escherichia coli involves a tedious three-column protocol (final enzyme purity, approximately 90%; activity yield, 6.5% (Siebers, A., and Altendorf, K. (1988) Eur. J. Biochem. 178, 131-140)). We have now developed a highly effective one-column (Fractogel TSK AF-Red) protocol yielding an enzyme preparation of comparable purity with severalfold higher activity yield. A further increase in enzyme purity up to 98% was achieved by a two-column protocol involving elution over DEAE-Sepharose CL-6B prior to TSK AF-Red affinity chromatography. The reduction of preparation time minimized KdpB protein degradation and led to hitherto unequaled values of specific activity (up to 2000 mumols x g-1 x min-1) and enrichment factors (up to 30-fold). Our results confirm the usefulness of triazine dye matrices for the purification of transport ATPases.  相似文献   

3.
The prokaryotic KdpFABC complex from the enterobacterium Escherichia coli represents a unique type of P-type ATPase composed of four different subunits, in which a catalytically active P-type ATPase has evolutionary recruited a potassium channel module in order to facilitate ATP-driven potassium transport into the bacterial cell against steep concentration gradients. This unusual composition entails special features with respect to other P-type ATPases, for example the spatial separation of the sites of ATP hydrolysis and substrate transport on two different polypeptides within this multisubunit enzyme complex, which, in turn, leads to an interesting coupling mechanism. As all other P-type ATPases, also the KdpFABC complex cycles between the so-called E1 and E2 states during catalysis, each of which comprises different structural properties together with different binding affinities for both ATP and the transport substrate. Distinct configurations of this transport cycle have recently been visualized in the working enzyme. All typical features of P-type ATPases are attributed to the KdpB subunit, which also comprises strong structural homologies to other P-type ATPase family members. However, the translocation of the transport substrate, potassium, is mediated by the KdpA subunit, which comprises structural as well as functional homologies to MPM-type potassium channels like KcsA from Streptomyces lividans. Subunit KdpC has long been thought to exhibit an FXYD protein-like function in the regulation of KdpFABC activity. However, our latest results are in favor of the notion that KdpC might act as a catalytical chaperone, which cooperatively interacts with the nucleotide to be hydrolyzed and, thus, increases the rather untypical weak nucleotide binding affinity of the KdpB nucleotide binding domain.  相似文献   

4.
Ahnert F  Schmid R  Altendorf K  Greie JC 《Biochemistry》2006,45(36):11038-11046
P-Type ATPases catalyze the transport of cations across the cell envelope via site-specific hydrolysis of ATP. Modulation of enzyme activity by additional small subunits and/or a second regulatory nucleotide binding site is still a subject of discussion. In the K(+)-transporting KdpFABC complex of Escherichia coli, KdpB resembles the catalytic P-type ATPase subunit, but ATP binding also occurs in the essential but noncatalytic subunit, KdpC. For further characterization, the soluble portion of KdpC (KdpC(sol), residues Asn39-Glu190) was synthesized separately and purified to homogeneity via affinity and size exclusion chromatography. Protein integrity was confirmed by N-terminal sequencing, mass spectrometry, and circular dichroism spectroscopy, which revealed an alpha-helical content of 44% together with an 8% beta-sheet conformation consistent with the values deduced from the primary sequence. The overall protein structure was not affected by the addition of ATP to a concentration of up to 2 mM. In contrast, labeling of KdpC(sol) with the photoreactive ATP analogue 8-azido-ATP resulted in the specific incorporation of one molecule of 8-azido-ATP per peptide. No labeling could be observed upon denaturation of the protein with 0.2% sodium dodecyl sulfate, which suggests the presence of a structured nucleotide binding site. Labeling could be inhibited by preincubation with either ATP, ADP, AMP, GTP, or CTP, thus demonstrating a low specificity for nucleotides. Following 8-azido-ATP labeling and tryptic digestion of KdpC(sol), mass spectrometry showed that ATP binding occurred within the Val144-Lys161 peptide located within the C-terminal part of KdpC, thereby further demonstrating a defined nucleotide binding site. On the basis of these findings, a cooperative model in which the soluble part of KdpC activates catalysis of KdpB is suggested.  相似文献   

5.
6.
A short sequence motif rich in glycine residues, Gly-X-X-X-X-Gly-Lys-Thr/Ser, has been found in many nucleotide-binding proteins including the beta subunit of Escherichia coli H(+)-ATPase (Gly-Gly-Ala-Gly-Val-Gly-Lys-Thr, residues 149-156). The following mutations were introduced in this region of the cloned E. coli unc operon carried by a plasmid pBWU1: Ala-151----Pro or Val; insertion of a Gly residue between Lys-155 and Thr-156; and replacement of the region by the corresponding sequence of adenylate kinase (Gly-Gly-Pro-Gly-Ser-Gly-Lys-Gly-Thr) or p21 ras protein (ras) (Gly-Ala-Gly-Gly-Val-Gly-Lys-Ser). All F0F1 subunits were synthesized in the deletion strain of the unc operon-dependent on pBWU1 with mutations, and essentially the same amounts of H(+)-ATPase with these mutant beta subunits were found in membranes. The adenylate kinase and Gly insertion mutants showed no oxidative phosphorylation or ATPase activity, whereas the Pro-151 mutants had higher ATPase activity than the wild-type, and the Val-151 and ras mutants had significant activity. It is striking that the enzyme with the ras mutation (differing in three amino acids from the beta sequence) had about half the membrane ATPase activity of the wild-type. These results together with the simulated three-dimensional structures of the wild-type and mutant sequences suggest that in mutant beta subunits with no ATPase activity projection of Thr-156 residues was opposite to that in the wild-type, and that the size and direction of projection of residue 151 are important for the enzyme activity.  相似文献   

7.
Replacement of glycine residue 232 with aspartate in the KdpA subunit of the K(+)-translocating KdpFABC complex of Escherichia coli leads to a transport complex that has reduced affinity for K(+) and has lost the ability to discriminate Rb(+) ions (, J. Biol. Chem. 270:6678-6685). This glycine residue is the first in a highly conserved GGG motif that was aligned with the GYG sequence of the selectivity filter (P- or H5-loop) of K(+) channels (, Nature. 371:119-122). Investigations with the purified and reconstituted KdpFABC complex using the potential sensitive fluorescent dye DiSC(3)(5) and the "caged-ATP/planar bilayer method" confirm the altered ion specificity observed in uptake measurements with whole cells. In the absence of cations a transient current was observed in the planar bilayer measurements, a phenomenon that was previously observed with the wild-type enzyme and with another kdpA mutant (A:Q116R) and most likely represents the movement of a protein-fixed charge during a conformational transition. After addition of K(+) or Rb(+), a stationary current could be observed, representing the continuous pumping activity of the KdpFABC complex. In addition, DiSC(3)(5) and planar bilayer measurements indicate that the A:G232D Kdp-ATPase also transports Na(+), Li(+), and H(+) with a reduced rate. Similarities to mutations in the GYG motif of K(+) channels are discussed.  相似文献   

8.
The Kdp complex, a high affinity ATP-driven K(+) transport system of Escherichia coli, is composed of the four membrane-bound subunits KdpF, KdpA, KdpB and KdpC. Whereas the role of KdpB (catalytical subunit), KdpA (K(+)-translocating subunit) and KdpF (stabilizing peptide) is well understood, the function of KdpC is still unknown. Therefore, a kdpC deletion strain was constructed and complementation experiments were performed using different kdpC constructs. Truncations of the kdpC gene revealed that only one derivative, which lacks base pairs coding for the four C-terminal amino acids, was able to complement the chromosomal deletion of kdpC. Furthermore, complementation was also observed with kdpC of Mycobacterium tuberculosis, but not with kdpC from Clostridium acetobutylicum or Synechocystis sp. PCC6803. Sequence alignment of 17 different KdpC proteins led to the construction of hybrids between kdpC of E. coli and that of C. acetobutylicum. Complementation revealed that the N-terminal transmembrane segment as well as the C-terminal-third of the protein can be exchanged between both species, but only one after the other. A simultaneous substitution of both regions was not possible.  相似文献   

9.
Subunit b is indispensable for the formation of a functional H(+)-translocating F(O) complex both in vivo and in vitro. Whereas the very C-terminus of subunit b interacts with F(1) and plays a crucial role in enzyme assembly, the C-terminal region is also considered to be necessary for proper reconstitution of F(O) into liposomes. Here, we show that a synthetic peptide, residues 1-34 of subunit b (b(1-34)) [Dmitriev, O., Jones, P.C., Jiang, W. & Fillingame, R.H. (1999) J. Biol. Chem.274, 15598-15604], corresponding to the membrane domain of subunit b was sufficient in forming an active F(O) complex when coreconstituted with purified ac subcomplex. H(+) translocation was shown to be sensitive to the specific inhibitor N,N'-dicyclohexylcarbodiimide, and the resulting F(O) complexes were deficient in binding of isolated F(1). This demonstrates that only the membrane part of subunit b is sufficient, as well as necessary, for H(+) translocation across the membrane, whereas the binding of F(1) to F(O) is mainly triggered by C-terminal residues beyond Glu34 in subunit b. Comparison of the data with former reconstitution experiments additionally indicated that parts of the hydrophilic portion of the subunit b dimer are not involved in the process of ion translocation itself, but might organize subunits a and c in F(O) assembly. Furthermore, the data obtained functionally support the monomeric NMR structure of the synthetic b(1-34).  相似文献   

10.
The Kdp K+ uptake system of Escherichia coli is induced by limitation for K+ and/or high osmolarity. In the present study, the regulation of the activity of the Kdp system has been investigated in E. coli mutants possessing only the Kdp system as the mechanism of K+ accumulation. Cells grown in the presence of low K+ (0.1-1 mM) exhibit normal growth. However, growth inhibition results from exposure of cells to moderate levels of external K+ (> 5 mM). Measurement of the cytoplasmic pH, of K+ pools and of transport via the Kdp system demonstrates that the Kdp system is rapidly and irreversibly inhibited by moderate external K+. Concentrations of K+ greater than 2 mM are sufficient to cause inhibition of Kdp. At pH 6, this results in rapid lowering of the capacity for pH homeostasis, but at pH 7 the intracellular pH is unaffected. Parallel analysis of the expression of the Kdp system in a Kdp+/kdpFABC-lacZ strain shows that levels of K+ that are sufficient to inhibit Kdp activity also repress expression. As a result, growth inhibition of strains solely possessing Kdp arises jointly from inhibition of Kdp activity and repression of Kdp gene expression. These data identify an important aspect of the regulation of potassium transport via the Kdp system and also provide support for a model of regulation of Kdp expression via at least two mechanisms: sensing of both turgor and external K+ concentration.  相似文献   

11.
12.
Expression of the Kdp system sensitizes cells to methylglyoxal (MG) whether this electrophile is added externally or is synthesized endogenously. The basis of this enhanced sensitivity is the maintenance of a higher cytoplasmic pH (pHi) in cells expressing Kdp. In such cells, MG elicits rapid cytoplasmic acidification via KefB and KefC, but the steady-state pHi attained is still too high to confer protection Lowering pHi further by incubation with acetate increases the sensitivity of cells to MG.  相似文献   

13.
During ATP hydrolysis the K+-translocating Kdp-ATPase from Escherichia coli forms a phosphorylated intermediate as part of the catalytic cycle. The influence of effectors (K+, Na+, Mg2+, ATP, ADP) and inhibitors (vanadate, N-ethylmaleimide, bafilomycin A1) on the phosphointermediate level and on the ATPase activity was analyzed in purified wild-type enzyme (apparent Km = 10 microM) and a KdpA mutant ATPase exhibiting a lower affinity for K+ (Km = 6 mM). Based on these data we propose a minimum reaction scheme consisting of (i) a Mg2+-dependent protein kinase, (ii) a Mg2+-dependent and K+-stimulated phosphoprotein phosphatase, and (iii) a K+-independent basal phosphoprotein phosphatase. The findings of a K+-uncoupled basal activity, inhibition by high K+ concentrations, lower ATP saturation values for the phosphorylation than for the overall ATPase reaction, and presumed reversibility of the phosphoprotein formation by excess ADP indicated similarities in fundamental principles of the reaction cycle between the Kdp-ATPase and eukaryotic E1E2-ATPases. The phosphoprotein was tentatively characterized as an acylphosphate on the basis of its alkali-lability and its sensitivity to hydroxylamine. The KdpB polypeptide was identified as the phosphorylated subunit after electrophoretic separation at pH 2.4, 4 degrees C of cytoplasmic membranes or of purified ATPase labeled with [gamma-32P]ATP.  相似文献   

14.
A nuclear gene encoding a 9.8 kDa subunit of complex I, the homologue of mammalian MWFE protein, was identified in the genome of Neurospora crassa. The gene was cloned and inactivated in vivo by the generation of repeat-induced point mutations. Fungal mutant strains lacking the 9.8 kDa polypeptide were subsequently isolated. Analyses of mitochondrial proteins from mutant nuo9.8 indicate that the membrane and peripheral arms of complex I fail to assemble. Respiration of mutant mitochondria on matrix NADH is rotenone-insensitive, confirming that the 9.8 kDa protein is required for the assembly and activity of complex I. We found a similarity between the MWFE homologues and the C-terminal part of the nqrA subunit of bacterial Na(+)-translocating NADH:quinone oxidoreductases (Na(+)-NQR), suggesting a link between proton-pumping and sodium-pumping NADH dehydrogenases.  相似文献   

15.
16.
The interaction of FaeE, a periplasmic chaperone involved in K8B biosynthesis, and the major fimbrial subunit FaeG was Investigated. The genes encoding the two proteins were subcloned together in the expression vector pINIIIA1, Cells expressing the sub-cloned genes accumulated in their periplasm a complex of FaeE and FaeG. This complex was purified by isoelectric focusing and anion-exchange fast-protein liquid chromatography. SOS-PAGE, native gel etectrophoresis, immunoblotting and determination of the N-terminal amino acid sequences and the molar ratio of the W-terminal amino acid residues revealed that the complex is a heterotrimer consisting of two molecules of FaeE and one molecule of FaeG. The periplasmic chaperone FaeE was purified from the periplasm of cells expressing only the subcloned faeE gene. Gel filtration, protein cross-linking analysis and a biophysical approach in which the rotation diffusion coefficient of the purified FaeE was determined led to the conclusion that the native FaeE chaperone is a homodimer.  相似文献   

17.
Mutations in any one of three genes, kdpA, -B, or -C, in Escherichia coli abolish the activity of Kdp, a multisubunit K+-ATPase that belongs to the P-type ATPase family of cation transporters. We found in this study that expression in vivo of a 135-amino-acid-long N-terminal fragment (KdpA'), less than one-quarter the length of native KdpA, was able to mediate an improvement in K+-limited growth rates in two different contexts, even in the absence of both KdpC and the ATPase subunit KdpB. The first context was when KdpA' was overexpressed in cells from a heterologous inducible promoter, and the second was when KdpA' was provided with a C-terminally altered extension (following a spontaneous genetic rearrangement). Our results suggest that KdpA' provides an incipient pathway for K+ translocation which can serve to transport K+ into the cells in response to the cytoplasmic membrane potential.  相似文献   

18.
19.
The Kdp-ATPase of Escherichia coli is a four-subunit P-type ATPase that accumulates K(+) with high affinity and specificity. Residues clustered in four regions of the KdpA subunit of Kdp were implicated as critical for K(+) binding from the analysis of mutants with reduced affinity for K(+) (Buurman, E., Kim, K.-T., and Epstein, W. (1995) J. Biol. Chem. 270, 6678-6685). K(+) binding by this pump has been analyzed in detail by site-directed mutagenesis. We have examined 83 of the 557 residues in KdpA, from 11 to 34 residues in each of four binding clusters known to affect K(+) binding. Amber mutations were constructed in a plasmid carrying the kdpFABC structural genes. Transferring these plasmids to 12 suppressor strains, each inserting a different amino acid at amber codons, created 12 different substitutions at the mutated sites. This study delineates the four clusters and confirms that they are important for K(+) affinity but have little effect on the rate of transport. At only 21 of the residues studied did at least three substitutions alter affinity for K(+), an indication that a residue is in or very near a K(+) binding site. At many residues lysine was the only substitution that altered its affinity. The effect of lysine is most likely a repulsive effect of this cationic residue on K(+) and thus reflects the effective distance between a residue and the site of binding or passage of K(+) in KdpA. Once a crystallographic structure of Kdp is available, this measure of effective distance will help identify the path of K(+) as it moves through the KdpA subunit to cross the membrane.  相似文献   

20.
The Kdp system is a three-subunit member of the E1-E2 family of transport ATPases. There is sequence homology of the 72 kDa KdpB protein, the largest subunit of Kdp, with the other members of this family. The predicted structure of the 21 kDa KdpC subunit resembles that of the beta subunit of the Na+,K(+)-ATPase, suggesting that these subunits may have a similar function. The 59 kDa KdpA subunit has no known homologue; it is very hydrophobic and is predicted to cross the membrane 10-12 times. Genetic studies implicate this subunit in the binding of K+. As the binding site must be close to the beginning of the transmembrane channel, we suggest that KdpA also forms most or all of the latter. KdpA may have evolved from a K+/H+ antiporter that was recruited by the KdpB precursor to achieve the high affinity and specificity for K+, and the activation of transport by low turgor pressure characteristic of Kdp. Turgor pressure controls the expression of Kdp. This action is dependent on the 70 kDa KdpD and 23 kDa KdpE proteins. We are in the process of sequencing these genes. KdpE is homologous to the smaller protein of other members of a family of pairs of regulatory proteins implicated in control of a variety of bacterial processes such as porin synthesis, phosphate regulon expression, nitrogen metabolism, chemotaxis and nodule formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号