首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presence of topoisomerase II inhibition activities in the intracellular extract of Streptomyces flavoviridis was investigated. One active compound inhibiting relaxation activity of topoisomerase II was determined to be a protein. This active principle was purified to homogeneity by gel filtration followed by ion exchange chromatography. The apparent molecular mass was 42 kDa as determined by SDS-PAGE. MALDI TOF peptide mass fingerprinting analysis confirmed this topoisomerase II inhibitor, as glucose-inhibited division protein A (GidA) by MOWSE score of 72. The effects of purified GidA protein on DNA relaxation and decatenation by topoisomerase II were investigated. It inhibited topoisomerase II activity and acted as a topoisomerase poison that significantly stabilized the covalent DNA-topoisomerase II reaction intermediate “cleavable complex”, as observed with etoposide. Collectively, these findings indicate that GidA is a potent inhibitor of topoisomerase II enzyme, which can be exploited for rational drug design in human carcinomas.  相似文献   

2.
Poly(ADP-ribosylation) of a DNA topoisomerase   总被引:11,自引:0,他引:11  
A DNA topoisomerase activity, copurifying with poly(ADP-ribose) synthetase from calf thymus, is greater than 95% inhibited if extensive poly(ADP-ribosylation) is allowed to occur. The inhibited DNA topoisomerase, which has drastically different elution properties on hydroxylapatite, can be reactivated by mild alkaline treatment. These results are consistent with a poly(ADP-ribosylation) of the DNA topoisomerase and covalent attachment of the poly(ADP-ribose) moieties to the topoisomerase by alkali-labile bonds.  相似文献   

3.
Escherichia coli DNA topoisomerase I catalyzes relaxation of negatively supercoiled DNA. The reaction proceeds through a covalent intermediate, the cleavable complex, in which the DNA is cleaved and the enzyme is linked to the DNA via a phosphotyrosine linkage. Each molecule of E. coli DNA topoisomerase I has been shown to have three tightly bound zinc(II) ions required for relaxation activity (Tse-Dinh, Y.-C., and Beran-Steed, R.K. (1988) J. Biol. Chem. 263, 15857-15859). It is shown here that Cd(II) could replace Zn(II) in reconstitution of active enzyme from apoprotein. The role of metal was analyzed by studying the partial reactions. The apoenzyme was deficient in sodium dodecyl sulfate-induced cleavage of supercoiled PM2 phage DNA. Formation of covalent complex with linear single-stranded DNA was also reduced in the absence of metal. However, the cleavage of small oligonucleotide was not affected, and the apoenzyme could religate the covalently bound oligonucleotide to another DNA molecule. Assay of noncovalent complex formation by retention of 5'-labeled DNA on filters showed that the apoenzyme was not inhibited in noncovalent binding to DNA. It is proposed that zinc(II) coordination in E. coli DNA topoisomerase I is required for the transition of the noncovalent complex with DNA to the cleavable state.  相似文献   

4.
5.
The TOP3 gene of the yeast Saccharomyces cerevisiae was postulated to encode a DNA topoisomerase, based on its sequence homology to Escherichia coli DNA topoisomerase I and the suppression of the poor growth phenotype of top3 mutants by the expression of the E. coli enzyme (Wallis, J.W., Chrebet, G., Brodsky, G., Golfe, M., and Rothstein, R. (1989) Cell 58, 409-419). We have purified the yeast TOP3 gene product to near homogeneity as a 74-kDA protein from yeast cells lacking DNA topoisomerase I and overexpressing a plasmid-borne TOP3 gene linked to a phosphate-regulated yeast PHO5 gene promoter. The purified protein possesses a distinct DNA topoisomerase activity: similar to E. coli DNA topoisomerases I and III, it partially relaxes negatively but not positively supercoiled DNA. Several experiments, including the use of a negatively supercoiled heteroduplex DNA containing a 29-nucleotide single-stranded loop, indicate that the activity has a strong preference for single-stranded DNA. A protein-DNA covalent complex in which the 74-kDa protein is linked to a 5' DNA phosphoryl group has been identified, and the nucleotide sequences of 30 sites of DNA-protein covalent complex formation have been determined. These sequences differ from those recognized by E. coli DNA topoisomerase I but resemble those recognized by E. coli DNA topoisomerase III. Based on these results, the yeast TOP3 gene product can formally be termed S. cerevisiae DNA topoisomerase III. Analysis of supercoiling of intracellular yeast plasmids in various DNA topoisomerase mutants indicates that yeast DNA topoisomerase III has at most a weak activity in relaxing negatively supercoiled double-stranded DNA in vivo, in accordance with the characteristics of the purified enzyme.  相似文献   

6.
Vaccinia topoisomerase forms a covalent protein-DNA intermediate at 5'-CCCTT downward arrow sites in duplex DNA. The T downward arrow nucleotide is linked via a 3'-phosphodiester bond to Tyr-274 of the enzyme. Here, we report that mutant enzymes containing glutamate, cysteine or histidine in lieu of Tyr-274 catalyze endonucleolytic cleavage of a 60 bp duplex DNA at the CCCTT downward arrow site to yield a 3' phosphate-terminated product. The Cys-274 mutant forms trace levels of a covalent protein-DNA complex, suggesting that the DNA cleavage reaction may proceed through a cysteinyl-phosphate intermediate. However, the His-274 and Glu-274 mutants evince no detectable accumulation of a covalent protein-DNA adduct. Glu-274 is the most active of the mutants tested. The pH dependence of the endonuclease activity of Glu-274 (optimum pH = 6.5) is distinct from that of the wild-type enzyme in hydrolysis of the covalent adduct (optimum pH = 9.5). At pH 6.5, the Glu-274 endonuclease reaction is slower by 5-6 orders of magnitude than the rate of covalent adduct formation by the wild-type topoisomerase, but is approximately 20 times faster than the rate of hydrolysis by the wild-type covalent adduct. We discuss two potential mechanisms to account for the apparent conversion of a topoisomerase into an endonuclease.  相似文献   

7.
Vaccinia topoisomerase forms a covalent protein-DNA intermediate at sites containing the sequence 5'-CCCTT. The T nucleotide is linked via a 3'-phosphodiester bond to Tyr-274 of the enzyme. Here, we report that the enzyme catalyzes hydrolysis of the covalent intermediate, resulting in formation of a 3'-phosphate-terminated DNA cleavage product. The hydrolysis reaction is pH-dependent (optimum pH = 9.5) and is slower, by a factor of 10(-5), than the rate of topoisomerase-catalyzed strand transfer to a 5'-OH terminated DNA acceptor strand. Mutants of vaccinia topoisomerase containing serine or threonine in lieu of the active site Tyr-274 form no detectable covalent intermediate and catalyze no detectable DNA hydrolysis. This suggests that hydrolysis occurs subsequent to formation of the covalent protein-DNA adduct and not via direct attack by water on DNA. Vaccinia topoisomerase also catalyzes glycerololysis of the covalent intermediate. The rate of glycerololysis is proportional to glycerol concentration and is optimal at pH 9.5.  相似文献   

8.
DNA topoisomerases are important clinical targets for antibacterial and anticancer therapy. At least one type IA DNA topoisomerase can be found in every bacterium, making it a logical target for antibacterial agents that can convert the enzyme into poison by trapping its covalent complex with DNA. However, it has not been possible previously to observe the consequence of having such a stabilized covalent complex of bacterial topoisomerase I in vivo. We isolated a mutant of recombinant Yersinia pestis topoisomerase I that forms a stabilized covalent complex with DNA by screening for the ability to induce the SOS response in Escherichia coli. Overexpression of this mutant topoisomerase I resulted in bacterial cell death. From sequence analysis and site-directed mutagenesis, it was determined that a single amino acid substitution in the TOPRIM domain changing a strictly conserved glycine residue to serine in either the Y. pestis or E. coli topoisomerase I can result in a mutant enzyme that has the SOS-inducing and cell-killing properties. Analysis of the purified mutant enzymes showed that they have no relaxation activity but retain the ability to cleave DNA and form a covalent complex. These results demonstrate that perturbation of the active site region of bacterial topoisomerase I can result in stabilization of the covalent intermediate, with the in vivo consequence of bacterial cell death. Small molecules that induce similar perturbation in the enzyme-DNA complex should be candidates as leads for novel antibacterial agents.  相似文献   

9.
The study of biochemical pathways requires the isolation and characterization of each and every intermediate in the pathway. For the site-specific recombination reactions catalyzed by the bacteriophage lambda tyrosine recombinase integrase (Int), this has been difficult because of the high level of efficiency of the reaction, the highly reversible nature of certain reaction steps, and the lack of requirements for high-energy cofactors or metals. By screening synthetic peptide combinatorial libraries, we have identified two related hexapeptides, KWWCRW and KWWWRW, that block the strand-cleavage activity of Int but not the assembly of higher-order intermediates. Although the peptides bind DNA, their inhibitory activity appears to be more specifically targeted to the Int-substrate complex, insofar as inhibition is resistant to high levels of non-specific competitor DNA and the peptides have higher levels of affinity for the Int-DNA substrate complex than for DNA alone. The peptides inhibit the four pathways of Int-mediated recombination with different potencies, suggesting that the interactions of the Int enzyme with its DNA substrates differs among pathways. The KWWCRW and KWWWRW peptides also inhibit vaccinia virus topoisomerase, a type IB enzyme, which is mechanistically and structurally related to Int. The peptides differentially affect the forward and reverse DNA transesterification steps of the vaccinia topoisomerase. They block formation of the covalent vaccinia topoisomerase-DNA intermediate, but have no apparent effect on DNA religation by preformed covalent complexes. The peptides also inhibit Escherichia coli topoisomerase I, a type IA enzyme. Finally, the peptides inhibit the bacteriophage T4 type II topoisomerase and several restriction enzymes with 2000-fold lower potency than they inhibit integrase in the bent-L pathway.  相似文献   

10.
DNA topoisomerases play essential roles in many DNA metabolic processes. It has been suggested that topoisomerases play an essential role in DNA repair. Topoisomerases can introduce DNA damage upon exposure to drugs that stabilize the covalent protein-DNA intermediate of the topoisomerase reaction. Lesions in DNA are also able to trap topoisomerase-DNA intermediates, suggesting that topoisomerases have the potential to either assist in DNA repair by locating sites of damage or exacerbating DNA damage by generation of additional damage at the site of a lesion. We have shown that overexpression of yeast topoisomerase I (TOP1) conferred hypersensitivity to methyl methanesulfonate and other DNA-damaging agents, whereas expression of a catalytically inactive enzyme did not. Overexpression of topoisomerase II did not change the sensitivity of cells to these DNA-damaging agents. Yeast cells lacking TOP1 were not more resistant to DNA damage than cells expressing wild type levels of the enzyme. Yeast topoisomerase I covalent complexes can be trapped efficiently on UV-damaged DNA. We suggest that TOP1 does not participate in the repair of DNA damage in yeast cells. However, the enzyme has the potential of exacerbating DNA damage by forming covalent DNA-protein complexes at sites of DNA damage.  相似文献   

11.
H Tamura  Y Ikegami  K Ono  K Sekimizu  T Andoh 《FEBS letters》1990,261(1):151-154
Inhibition of mammalian DNA topoisomerase I by phospholipids was investigated using purified enzyme. Acidic phospholipids inhibited the DNA relaxation activity of topoisomerase I whereas neutral phospholipid, phosphatidylethanolamine, did not. Accumulation of a protein-DNA cleavable complex, an intermediate which is known to accumulate upon inhibition by a specific inhibitor camptothecin, did not occur. The filter binding assay revealed that the DNA binding activity of the enzyme was inhibited by acidic phospholipids. Moreover, direct binding of phosphatidylglycerol to topoisomerase I was demonstrated. These results indicated that the inhibitory effect of acidic phospholipids on topoisomerase I was due to the loss of the DNA binding of the enzyme as a result of direct interaction between phospholipids and the enzyme.  相似文献   

12.
Although the formation of a covalent enzyme-cleaved DNA complex is a prerequisite for the essential functions of topoisomerase II, this reaction intermediate has the potential to destabilize the genome. Consequently, all known eukaryotic type II enzymes maintain this complex at a low steady-state level. Recently, however, a novel topoisomerase II was discovered in Paramecium bursaria chlorella virus-1 (PBCV-1) that has an exceptionally high DNA cleavage activity [Fortune et al. (2001) J. Biol. Chem. 276, 24401-24408]. If robust DNA cleavage is critical to the physiological functions of chlorella virus topoisomerase II, then this remarkable characteristic should be conserved throughout the viral family. Therefore, topoisomerase II from Chlorella virus Marburg-1 (CVM-1), a distant family member, was expressed in yeast, isolated, and characterized. CVM-1 topoisomerase II is 1058 amino acids in length, making it the smallest known type II enzyme. The viral topoisomerase II displayed a high DNA strand passage activity and a DNA cleavage activity that was approximately 50-fold greater than that of human topoisomerase IIalpha. High DNA cleavage appeared to result from a greater rate of scission rather than promiscuous DNA site utilization, inordinately tight DNA binding, or diminished religation rates. Despite the fact that CVM-1 and PBCV-1 topoisomerase II share approximately 67% amino acid sequence identity, the two enzymes displayed clear differences in their DNA cleavage specificity/site utilization. These findings suggest that robust DNA cleavage is intrinsic to the viral enzyme and imply that chlorella virus topoisomerase II plays a physiological role beyond the control of DNA topology.  相似文献   

13.
Type IA DNA topoisomerases, typically found in bacteria, are essential enzymes that catalyse the DNA relaxation of negative supercoils. DNA gyrase is the only type II topoisomerase that can carry out the opposite reaction (i.e. the introduction of the DNA supercoils). A number of diverse molecules target DNA gyrase. However, inhibitors that arrest the activity of bacterial topoisomerase I at low concentrations remain to be identified. Towards this end, as a proof of principle, monoclonal antibodies that inhibit Mycobacterium smegmatis topoisomerase I have been characterized and the specific inhibition of Mycobacterium smegmatis topoisomerase I by a monoclonal antibody, 2F3G4, at a nanomolar concentration is described. The enzyme-bound monoclonal antibody stimulated the first transesterification reaction leading to enhanced DNA cleavage, without significantly altering the religation activity of the enzyme. The stimulated DNA cleavage resulted in perturbation of the cleavage-religation equilibrium, increasing single-strand nicks and protein-DNA covalent adducts. Monoclonal antibodies with such a mechanism of inhibition can serve as invaluable tools for probing the structure and mechanism of the enzyme, as well as in the design of novel inhibitors that arrest enzyme activity.  相似文献   

14.
Cadmium (Cd2+) is a highly toxic and carcinogenic metal that is an environmental and occupational hazard. DNA topoisomerase II is an essential nuclear enzyme and its inhibition can result in the formation of genotoxic and recombinogenic DNA double strand breaks. In this study we showed that cadmium chloride strongly inhibited the DNA decatenation activity of human topoisomerase IIα in the low micromolar concentration range and that its inhibitory effects were reduced by glutathione. Because the activity of topoisomerase II is strongly inhibited by thiol-reactive compounds this result suggested that cadmium may be binding to critical topoisomerase II cysteine thiols. Cadmium, however, did not stabilize DNA-topoisomerase II covalent complexes, as measured by the lack of formation of DNA double strand breaks. Hence, it is not likely to be a topoisomerase II poison. Consistent with the idea that cadmium cytotoxicity may be modulated by glutathione levels, buthionine sulfoximine pretreatment to decrease glutathione levels resulted in a greatly increased cadmium-induced cytotoxicity in K562 cells. The results of this study suggest that cadmium may exert some of its cell growth inhibitory, and possibly its toxicity and carcinogenicity, by inhibiting topoisomerase IIα through reaction with critical cysteine thiols.  相似文献   

15.
Camptothecin, a cytotoxic antitumor compound, has been shown to produce protein-linked DNA breaks mediated by mammalian topoisomerase I. We have investigated the mechanism by which camptothecin disrupts DNA processing by topoisomerase I and have examined the effect of certain structurally related compounds on the formation of a DNA-topoisomerase I covalent complex. Enzyme-mediated cleavage of supercoiled plasmid DNA in the presence of camptothecin was completely reversed upon the addition of exogenous linear DNA or upon dilution of the reaction mixture. Camptothecin and topoisomerase I produced the same amount of cleavage from supercoiled DNA or relaxed DNA. In addition, the alkaloid decreased the initial velocity of supercoiled DNA relaxation mediated by catalytic quantities of topoisomerase I. Inhibition occurred under conditions favoring processive catalysis as well as under conditions favoring distributive catalysis. By use of [3H]camptothecin and an equilibrium dialysis assay, the alkaloid was shown to bind reversibly to a DNA-topoisomerase I complex, but not to isolated enzyme or isolated DNA. These results are consistent with a model in which camptothecin reversibly traps an intermediate involved in DNA unwinding by topoisomerase I and thereby perturbs a set of equilibria, resulting in increased DNA cleavage. By examining certain compounds that are structurally related to camptothecin, it was found that the 20-hydroxy group, which has been shown to be essential for antitumor activity, was also necessary for stabilization of the covalent complex between DNA and topoisomerase I. In contrast, no such correlation existed for UV-light-induced cleavage of DNA by Cu(II)-camptothecin derivatives.  相似文献   

16.
Topoisomerase I adjusts torsional stress in the genome by breaking and resealing one strand of the helix through a transient covalent coupling between enzyme and DNA. Camptothecin, a specific topoisomerase I poison, traps this covalent intermediate, thereby damaging the genome. Here we examined the activity of topoisomerase I at telomeric repeats to determine whether telomere structures are targets for DNA damage. We show that topoisomerase I is catalytically active in cleaving the G-rich telomeric strand in vitro in the presence of camptothecin but not in cleaving the C-rich strand. The topoisomerase I cleavage site is 5'-TT (downward arrow) AGGG-3' (cleavage site marked by the downward arrow). We also show that endogenous topoisomerase I can access telomeric DNA in vivo and form camptothecin-dependent covalent complexes. Therefore, each telomeric repeat represents a potential topoisomerase I cleavage site in vivo. Because telomere structures are comprised of a large number of repeats, telomeres in fact represent a high concentration of nested topoisomerase I sites. Therefore, more telomeric DNA damage by camptothecin could occur in cells with longer telomeres when cells possess equivalent levels of topoisomerase I. The evidence presented here suggests that DNA damage at telomeric repeats by topoisomerase I is a prominent feature of cell killing by camptothecin and triggers camptothecin-induced apoptosis.  相似文献   

17.
DNA topoisomerase is involved in DNA repair and replication. In this study, a novel ATP-independent 30-kDa type I DNA topoisomerase was purified and characterized from a marine methylotroph, Methylophaga sp. strain 3. The purified enzyme composed of a single polypeptide was active over a broad range of temperature and pH. The enzyme was able to relax only negatively supercoiled DNA. Mg(2+) was required for its relaxation activity, while ATP gave no effect. The enzyme was clearly inhibited by camptothecin, ethidium bromide, and single-stranded DNA, but not by nalidixic acid and etoposide. Interestingly, the purified enzyme showed Mn(2+)-activated endonuclease activity on supercoiled DNA. The N-terminal sequence of the purified enzyme showed no homology with those of other type I enzymes. These results suggest that the purified enzyme is an ATP-independent type I DNA topoisomerase that has, for the first time, been characterized from a marine methylotroph.  相似文献   

18.
A method has been used to quantitate the reaction between eukaryotic type I DNA topoisomerase and topological forms of DNA. This procedure (Trask, D.K., DiDonato, J.D. and Muller, M.T. (1984) Eur. Mol. Biol. Organ. J. 3, 671-676) measures the efficiency of DNA cleavage and concurrent formation of a covalent enzyme/DNA complex. Eukaryotic type I topoisomerases react preferentially by 5-10-fold with supercoiled DNA. The effect of supercoiling is clearly evident in that both the initial rate and final extent of the reaction is elevated. Because the dissociation rate is much lower than the association rate, it is possible to isolate native topoisomerase/DNA complexes. These complexes are comprised of enzyme molecules which are catalytically active when challenged with a second supercoiled DNA substrate. Collectively, the data support the conclusion that a functional intermediate in the reaction sequence is being detected and that the avian topoisomerase I preferentially cleaves supercoiled DNA.  相似文献   

19.
A nuclear type I topoisomerase from mouse leukemia L1210 cells has been partially purified and characterized. The sedimentation coefficient of the enzyme by velocity sedimentation is 4.3 S, consistent with a globular protein of 68 kDa. Enzyme activity is stimulated 20-fold in the presence of magnesium over that achieved in KCl alone. The enzyme is completely inhibited in the presence of the berenil congeners HOE 13548 and 15030 while berenil itself caused only partial inhibition at concentrations below 200 micrograms/ml. An acid soluble protein of 30 kDa (by SDS-polyacrylamide gel electrophoresis) co-purified with the topoisomerase but could be separated by precipitation in a low salt buffer. This protein, as well as a protein of similar characteristics, histone H1, stimulated topoisomerase activity over a narrow concentration range. The role of topoisomerase in the DNA strand scission observed in L1210 cells following exposure to intercalating agents remains conjectural as the purified enzyme did not produce nicks in plasmid DNA in the presence of adriamycin.  相似文献   

20.
M Saijo  T Enomoto  F Hanaoka  M Ui 《Biochemistry》1990,29(2):583-590
Type II topoisomerase has been purified from mouse FM3A cells by using P4 phage knotted DNA as a substrate. Analysis of the purified enzyme by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed two bands of apparent molecular masses of 167 and 151 kDa. Partial digestion of the two bands with Staphylococcus aureus V8 protease indicated that the two polypeptides were structurally related. The enzyme required ATP and Mg2+ for activity. dATP could substitute for ATP, and ITP was slightly effective at 5-10 mM. The activity was sensitive to 4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA), coumermycin, and ethidium bromide. A protein kinase activity was detected in the partially purified topoisomerase II fraction, and this protein kinase was further purified. The protein kinase phosphorylated the purified topoisomerase II, and the phosphorylation of topoisomerase II by the kinase increased the activity by 8.6-fold over that of the unmodified enzyme. The treatment of the purified topoisomerase II with alkaline phosphatase abolished the enzyme activity almost completely, and the treatment of the dephosphorylated topoisomerase II with the protein kinase restored the enzyme activity. The protein kinase activity was not stimulated by Ca2+ or cyclic nucleotides, and the aminoacyl residue phosphorylated by the kinase was serine. Enzymatic properties of the kinase were very similar to those of the kinase reported to be tightly associated with the Drosophila topoisomerase II [Sander, M., Nolan, J. M., & Hsieh, T.-S. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 6938-6942]. The immunoprecipitation of nuclear extracts prepared from 32P-labeled cells with anti-mouse topoisomerase II antiserum indicated that DNA topoisomerase II existed in mouse cells as a phosphoprotein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号