首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
19-nor-deoxycorticosterone (19-nor-DOC) is a potent salt retaining and hypertensinogenic mineralocorticoid that is excreted in the urine. While the precursor of 19-nor-DOC, 19-oxo-DOC, is produced by the adrenal cortex, conversion to 19-nor-DOC does not occur in the adrenal gland. We have examined the hypothesis that 19-nor-DOC is synthesized from precursors in the kidney. 19-oxo-DOC was added to the perfusate of isolated rat kidney preparations (n = 5) at a concentration of 10 μM. During 1 h of perfusion following addition of 19-oxo-DOC, 71 ± 6% of the precursor was converted to 19-oic-DOC, an immediate precursor of 19-nor-DOC, and 8.3 ± 1.8% was converted to 19-nor-DOC. This represents the first definitive evidence that 19-nor-DOC is produced in the kidney from adrenal precursors.  相似文献   

2.
19-Nordeoxycorticosterone (19-nor-DOC) is a mineralocorticoid with several unresolved physiologic questions. First, is 19-nor-DOC synthesized in the kidney from a circulating adrenocortical precursor (19-oicdeoxycorticosterone [19-oic-DOC] or 19-oxodeoxycorticosterone [19-oxo-DOC])? Second, does 19-nor-DOC, synthesized in the kidney, have mineralocorticoid activity or is it excreted in the urine without biologic activity? To answer this question, we administered two of the putative 19-nor-DOC precursors (19-oxo-DOC and 19-oic-DOC) to adrenalectomized rats and measured the formation of 19-nor-DOC and bioactivity as the urinary Na+ to K+ ratio. Each of the 10-microgram steroid treatments produced an elevation of urinary-free 19-nor-DOC (0 to 2 hours), whereas at the 1-micrograms dose only 19-oic-DOCA produced an increased UF 19-nor-DOC. None of the treatments led to an increase of conjugated 19-nor-DOC except 10 microgram 19-oic-DOCA. Increased mineralocorticoid activity (decreased urinary Na+ to K+ ratio) was produced by aldosterone, 1 and 10 micrograms 19-nor-DOC, and 10 micrograms 19-oic-DOCA over the same time period. An anti-mineralocorticoid effect (increased urinary Na+ to K+ ratio) was produced by 1 microgram 19-oxo-DOC. Urinary-free 19-nor-DOC, but not conjugated 19-nor-DOC, correlated with the urinary mineralocorticoid effect (decreased Na+ to K+ ratio). These data support the contention that 19-oic-DOC is the circulating 19-nor-DOC precursor and that, at least at the higher dose, it has a mineralocorticoid action on the kidney.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
19-Nor-deoxycorticosterone (19-nor-DOC) is a mineralocorticoid present in both rat and human urine, and it is elevated in some forms of experimental and human hypertension. Although the exact steps in the biosynthesis of 19-nor-DOC are uncertain, it is probably produced from a 19-oxygenated derivative of DOC, which undergoes 19-desmolation in the kidney. Since DOC biosynthesis is partly due to renal 21-hydroxylation of progesterone (Prog), we sought to determine whether a parallel pathway could exist for the biosynthesis of 19-hydroxy-DOC, a precursor to 19-nor-DOC. In order to test this hypothesis, authentic 19-hydroxy-progesterone was incubated with homogenized renal tissues from either rat or human sources. Formation of 19-hydroxy-DOC was found to be the major metabolite in both rat and human incubations, as demonstrated by an HPLC retention time identical to authentic 19-hydroxy-DOC. 19-Hydroxy-DOC formation was further verified by GC/MS analysis with highly sensitive selected ion recording. Since it has been demonstrated that the placenta can convert progesterone to 19-hydroxy-progesterone, the renal 21-hydroxylation of 19-hydroxy-progesterone to 19-hydroxy-DOC could be an alternate pathway of 19-nor-DOC production especially during pregnancy.  相似文献   

4.
19-Nor-deoxycorticosterone in the neutral fraction of human urine   总被引:1,自引:0,他引:1  
S L Dale  M M Holbrook  J C Melby 《Steroids》1981,37(1):103-109
19-Nor-deoxycorticosterone (19-nor-DOC), in the neutral fraction of human urine, was isolated and quantitated as the acetate derivative using ultraviolet absorption of the peak emerging from a high-pressure liquid chromatographic column. Identification of 19-nor-DOC in a pooled collection of urine after ACTH administration included identical chromatographic mobilities as the parent compound and acetate derivative compared to authentic 19-nor-DOC and mass spectral analysis of the acetate derivative. Values obtained for control and post-ACTH urines were 528 +/- 100 (SE) ng/24 hours and 8851 +/- 824 ng/24 hours, respectively. One patient with primary aldosteronism excreted 1894 ng/24 hours.  相似文献   

5.
Metabolism of 11-deoxycorticosterone (DOC) by hamster adrenal mitochondria gives 19-hydroxy-DOC and corticosterone (via 11-hydroxylation) in approximately equal yields. The ratio of 19- to 11-hydroxylation was invariant with changes in concentration of substrate or a competitive inhibitor. It is most likely, therefore, that a single 11,19-hydroxylase catalyzes both oxidations. Both primary products are further oxidized to the corresponding carbonyl analogs, 19-oxo-DOC and 11-dehydrocorticosterone, at rates that are approx. 20% of their rates of formation. The oxidation of 11-dehydrocorticosterone is catalyzed by a dehydrogenase utilizing either NAD or NADP while the oxidation of 19-hydroxy-DOC is catalyzed by an oxidase requiring NADPH. The 11-dehydrocorticosterone is stable in this enzyme preparation while 19-oxo-DOC is metabolized to two additional products, which are tentatively identified as 19-oic-DOC and 19-norcorticosterone. 19-nor-DOC was found to be hydroxylated at a rate that is 20% faster than the rate for DOC under the same conditions. It is therefore possible that 19-norcorticosterone can arise from 19-oic-DOC via decarboxylation to 19-nor-DOC and subsequent 11-hydroxylation, but the kinetics of its formation suggest that it may actually be formed directly from 19-oxo-DOC without free intermediates. 4-Androstene-3,17-dione and 17-hydroxy-DOC were also substrates for this 11,19-hydroxylase, but 18-hydroxy-DOC was not. Maintenance of hamsters on a low sodium diet had no effect on the metabolism of DOC by the isolated adrenal mitochondria.  相似文献   

6.
19-Norethisterone (NET) accelerated and enhanced the hypertensinogenic action of 19-hydroxyandrostenedione (19-OH-A) when administered to rats simultaneously with 19-OH-A, but maintained the plasma concentration of 19-OH-A at higher levels than that of rats treated with 19-OH-A alone. The effects of NET may be attributed to a decrease in the metabolic clearance rate of 19-OH-A in peripheral tissues.  相似文献   

7.
D J Morris  J Gorsline  P A Tresco  M Harnik 《Steroids》1985,46(6):1003-1010
The relative hypertensinogenic potencies of recently synthesized 19-nor-aldosterone and its precursor 19-OH-aldosterone were assessed in comparison to that of aldosterone (Aldo) in young (6-week-old) adrenalectomized (ADX) spontaneously hypertensive rats (SHR). Infusion of 19-nor-aldosterone for 2 weeks by Alza mini-osmotic pumps caused significant, dose-dependent increases in the systolic blood pressure (BP) of young ADX SHR; dosages of 0.1 and 0.5 microgram/day raised the BP from 127 +/- 2 mmHg to 164 +/- 9 and 180 +/- 11 mmHg, respectively. During this period, control ADX SHR receiving vehicle only remained normotensive. Similar increases in BP were seen only with infusion of slightly higher dosages of Aldo (0.5 and 1.0 micrograms/day). In contrast, 19-OH-aldosterone infused at higher dosages (10 or 25 micrograms/day) caused little change in BP of ADX SHR. Full suppression of plasma renin activity (PRA) was observed with 0.1 and 0.5 microgram/day 19-nor-aldosterone, whereas Aldo caused similar decreases in PRA only at dosages of 0.5 microgram/day and higher. Interestingly, although infusions of 19-OH-aldosterone did not cause a significant change in BP, these dosages (10 and 25 micrograms/day) significantly suppressed PRA. These studies which show that 19-nor-aldosterone is equipotent to Aldo, and perhaps slightly more active in ADX SHR, indicate that 19-nor-aldosterone is a potentially important hypertensinogenic steroid.  相似文献   

8.
An enzyme immunoassay of 19-nor-deoxycorticosterone in rat serum was established. The normal value of 19-nor-DOC in rat serum obtained from 9:00 am to 10:00 am was 148 +/- 30 ng/dl (mean +/- SE,n = 10). Serum levels of this steroid decreased in rats with adrenal regeneration hypertension during the course of the experiment up to 8 weeks, while systolic blood pressure rose progressively. We concluded that this mineralocorticoid is not involved at least as a circulating hormone in the pathogenesis of adrenal regeneration hypertension in rats.  相似文献   

9.
The recently synthesized 18-C-steroid derivative, 19-nor-aldosterone(19-nor- aldo) and 18-hydroxy-19-nor-corticosterone(18-OH-19-nor-corticosterone) possess mineralocoroticoid and hypertensinogenic activity. They and an additional newly synthesized steriod, 18,19-dihydroxycorticosterone[18,19(OH)2-corticosterone], may play a role in the etiology and pathogenesis of disorders thought to be caused by steroids with mineralocorticoid and hypertensionogenic properties. In this study we provide evidence that 19-nor-aldo, 18-OH-19-nor-corticosterone and 18,19(OH)2-corticosterone are produced in vitro by aldosterone-producing adrenal adenomas and adenomas and adenoma of Cushing's syndrome. "silent" adrenal adenomas and the adjacent adrenal tissue. Measurable amounts of these steroids were found in the incubation fluids of adrenal tissues using specific RIAs performed after a sequence of HPLC systems. The rates of production of the three steroids were high in the aldosterone-producing adrenal adenomas and in adrenal hyperplasia compared with in either Cushing's adenoma or "silent" adenoma.  相似文献   

10.
The changes of plasma 19-hydroxyandrostenedione (19-OH-A-dione) and 6 beta-hydroxyandrostenedione (6 beta-OH-A-dione) during the infusion of angiotensin II were evaluated and were compared with those of plasma aldosterone in man. Angiotensin II was infused into 5 normal subjects with an infusion pump at rates of 0.5, 1.0, 2.0 and 4.0 ng/kg per min. Each dose was infused for 20 min. Plasma 19-OH-A-dione rose significantly following the infusion of angiotensin II at a rate of 0.5 ng/kg per min and plasma 6 beta-OH-A-dione rose significantly following the infusion of angiotensin II at a rate of 1.0 ng/kg per min. In contrast, plasma aldosterone did not change significantly until the infusion rate reached 4.0 ng/kg per min. These results indicate that the secretion of 19-OH-A-dione and 6 beta-OH-A-dione is under the control of angiotensin II and the release of 19-OH-A-dione and 6 beta-OH-A-dione is induced earlier by the smaller doses of angiotensin II prior to the secretion of aldosterone. As 19-OH-A-dione and 6 beta-OH-A-dione amplify the action of aldosterone in bioassays using adrenalectomized rats and work as sodium-retaining and hypertensinogenic agents in intact rats, they are newly recognized biologically active steroids which are regulated by the renin-angiotensin system in man.  相似文献   

11.
We have previously reported that adrenocortical steroids raise blood pressure by a ‘hypertensinogenic’ mechanism of action which is not simply related to their classical ‘mineralocorticoid’ or ‘glucocorticoid’ actions. This study presents evidence for specific antagonism of this ‘hypertensinogenic’ activity. The effects of separate IV infusions of prednisolone (P) 100 mg/d and 9α-fluoro-prednisolone (9αF-P) 0.6 mg/d on mean arterial pressure (MAP), plasma [K], plasma [glucose] and urinary NA excretion (UNaV) after 2 days were studied in sheep. In the same group of sheep which received P alone for 2 days, 9αF-P was given for a further 2 days while continuing the P infusion (P + 9αF-P). P alone had no effect on MAP or plasma [K] or UNaV but increased plasma [glucose], effects which are characteristic of ‘glucocorticoid’ activity. 9αF-P alone increased MAP by 14 mmHg (P<0.001) and reduced plasma [K] and UNaV but had no effect on plasma [glucose]. Thus 9αF-P exhibited both ‘hypertensinogenic’ and ‘mineralocorticoid’ activity. In the sheep which received the combined P + 9αF-P infusion, the increase in MAP normally produced by 9αF-P was blocked. Although pretreatment with P blocked the pressor effect of 9αF-P, it did not alter the ‘mineralocorticoid’ effects, namely hypokalaemia and urinary Na retention, produced when 9αF-P was infused alone. These results provide further evidence for our concept of a ‘hypertensinogenic’ class of steroid activity and are the first demonstration of specific antagonism of steroid induced hypertension.  相似文献   

12.
Previous studies in sheep have provided evidence for a separate "hypertensinogenic" class of adrenocortical steroid activity which is not simply related to their classical mineralocorticoid (MC) and/or glucocorticoid (GC) actions. This study investigated the structure-activity relationships of the effects of structural analogues of prednisolone on mean arterial pressure (MAP), and MC and GC actions in sheep. Infusions of these synthetic GC at 0.6 and 24 mg/day produced variable pressor effects which were dissociated from their MC and GC actions. In other experiments, the minimum adrenocortical steroid requirement to reproduce the onset of ACTH-dependent hypertension was determined. Infusion of cortisol, aldosterone, 17 alpha-hydroxy progesterone and 17 alpha,20 alpha-dihydroxy-4-pregnene-3-one was found to be sufficient to reproduce the hypertensive response to ACTH administration in sheep. A subsequent experiment showed that substitution of cortisol by the more potent synthetic GC, prednisolone had no effect on MAP. Therefore, cortisol appears to exert an essential action in ACTH hypertension which is not dependent on its GC activity. Other studies have found that prednisolone (100 mg/day) antagonized 9 alpha-fluoro-prednisolone (0.6 mg/day) induced hypertension but not its MC effects. The effect of progesterone (500 mg/day) and the progesterone analogues, norethisterone, medroxy-progesterone and 16 alpha-methyl progesterone on ACTH (5 micrograms/kg per day) hypertension was investigated. Progesterone completely blocked the hypertension and MC effects of ACTH infusion, while medroxy-progesterone partially blocked the increase in MAP. These data support our concept of a "hypertensinogenic" class of steroid activity.  相似文献   

13.
To identify the genes responsible for blood pressure in the spontaneously hypertensive rat strain, we performed a cosegregation analysis between the genotype and blood pressure in a set of male F2 rats obtained by crossmating SHR with Wistar-Kyoto rats, a parental normotensive strain. Our investigation revealed that the phospholipase C-delta 1 polymorphism, which resulted in missense mutation, cosegregates with the lower blood pressure in SHR, and that PLC-delta 1 gene is located on chromosome 8. On the other hand, we found the lack of cosegregation between blood pressure and the nerve growth factor receptor gene, which is linked to a hypertensinogenic gene locus (denoted as BP/SP-1) on chromosome 10. We propose that PLC-delta 1 gene itself of closely linked gene on chromosome 8 is a new candidate with the hypotensive effect, and that BP-SP1 locus does not directly contribute to blood pressure elevation in original SHR.  相似文献   

14.
It is now well accepted that alterations in kidney function, due either to primary renal disease or to inappropriate hormonal influences on the kidney, are a cardinal characteristic in all forms of hypertension, and lead to a reduced ability of the kidneys to excrete sodium and the consequent development of elevated arterial pressures. However, it is also apparent that many extrarenal factors are important contributors to altered kidney function and hypertension. Central to many hypertensinogenic processes is the inappropriate activation of the renin-angiotensin system (RAS) and its downstream consequences by various pathophysiologic mechanisms. There may also be derangements in arachidonic acid metabolites, endothelium derived factors such as nitric oxide and carbon monoxide, and various paracrine and neural systems that normally interact with or provide a counteracting balance to the actions of the RAS. Thus, when the capacity of the kidneys to maintain sodium balance and extracellular fluid volume within appropriate ranges is compromised, increases in arterial pressure become necessary to re-establish normal balance.  相似文献   

15.
Mineralocorticoid receptors (MR) have equal affinity for the mineralocorticoid aldosterone, and the physiological glucocorticoids cortisol and corticosterone. In epithelial tissues in vivo, MR are protected against glucocorticoid occupancy by the enzyme 11β-hydroxysteroid dehydrogenase, allowing access by the lower circulating levels of the physiological mineralocorticoid aldosterone. In non-epithelial tissues, including the heart and most areas of the central nervous system, MR are not so protected, and their physiological ligand is cortisol/corticosterone. Intracerebroventricular infusion studies have shown that aldosterone occupancy of such unprotected circumventricular MR is necessary for mineralocorticoid hypertension, and the hypertensinogenic effects of peripherally infused aldosterone can be blocked by intracerebroventricular infusion of the MR antagonist RU28318. Prolonged (8 weeks) administration of mineralocorticoids to salt-loaded rats has been shown to be followed by hypertension, cardiac hypertrophy and cardiac fibrosis. Whether the hypertrophy and fibrosis reflect primary effects of aldosterone via cardiac MR, or effects secondary to occupancy of protected, epithelial MR, remains to be determined, as does the mechanism of action of salt loading in this model of mineralocorticoid hypertension.  相似文献   

16.
J Sáiz  B Lara  A Torres  A Sánchez 《Life sciences》1987,41(20):2261-2268
The effects of high sodium intake (drinking 1% NaCl), DOCA and DOCA + 1%NaCl for 6 weeks on renal alpha 1- and alpha 2-adrenoceptors and on systolic blood pressure (SBP) were examined in young spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY). On normal sodium intake, SHR rats had higher renal alpha 1 (p less than .001) and alpha 2-adrenoceptor densities (p less than .001) and SBP (p less than .001) than WKY rats. Although, WKY rats given either 1% NaCl, DOCA, and DOCA + 1% NaCl developed hypertension after 6 weeks of treatment, only 1% NaCl administration for the same period produced an increase in the alpha 1- and alpha 2-adrenoceptor densities when compared to the control (p less than .01 and p less than .001, respectively). In the SHR rats, to the contrary, ingestion of 1% NaCl and DOCA + 1% NaCl increased the already elevated alpha 2-adrenoceptor density (p less than .001) and SBP even more in this strain after 6 weeks of treatment. Equilibrium dissociation constants (KD), however, were similar for both classes of receptors in experimental and control rats. This study indicates that postweaning exposure of the WKY and SHR rats to a high salt treatment and DOCA can influence the renal alpha-adrenoceptor densities. Although the functional significance of the changes is unclear, it is reasonable to speculate that postweaning exposure to a hypertensinogenic stimuli such as a 1% NaCl and/or DOCA may ultimately interfere with the functional development of the kidney differently in rats genetically predisposed to hypertension (SHR) from normotensive (WKY) rats.  相似文献   

17.
The syndrome of 17α-hydroxylase deficiency is due to the inability to synthesize cortisol and is associated with enhanced secretion of both corticosterone and 11-deoxy-corticosterone (DOC). In humans, corticosterone and its 5α-Ring A-reduced metabolites are excreted via the bile into the intestine and transformed by anaerobic bacteria to 21-dehydroxylated products: 11β-OH-progesterone or 11β-OH-(allo)-5α-preganolones (potent inhibitors of 11β-HSD2 and 11β-HSD1 dehydrogenase). Neomycin blocks the formation of these steroid metabolites and can blunt the hypertension in rats induced by either ACTH or corticosterone. 3α,5α-Tetrahydro-corticosterone, 11β-hydroxy-progesterone, and 3α,5α-tetrahydro-11β-hydroxy-progesterone strongly inhibit 11β-HSD2 and 11β-HSD1 dehydrogenase activity; all these compounds are hypertensinogenic when infused in adrenally intact rats.Urine obtained from a patient with 17α-hydroxylase deficiency demonstrated markedly elevated levels of endogenous glycyrrhetinic acid-like factors (GALFs) that inhibit 11β-HSD2 and 11β-HSD1 dehydrogenase activity (>300 times greater, and >400 times greater, respectively, than those in normotensive controls). Thus, in addition to DOC, corticosterone and its 5α-pathway products as well as the 11-oxygenated progesterone derivatives may play a previously unrecognized role in the increased Na+ retention and BP associated with patients with 17α-hydroxylase deficiency.  相似文献   

18.
Pressor and cardioaccelerator effects of gamma MSH and related peptides   总被引:1,自引:0,他引:1  
We have recently demonstrated that the hypertensinogenic and natriuretic actions of ACTHI-39 can be found in a non-steroidogenic fragment of ACTH, ACTH4-10. These effects of ACTH or ACTH4-10 may be due to their ability to act as weak agonists of gamma MSH. gamma MSH is found in the 16K N-terminus of pro-opiocortin, and contains a sequence analogous to ACTH4-10, gamma MSH3-9. We investigated the cardiovascular effects of gamma 2MSH, gamma MSH3-9, and sterically restricted analogs of ACTH4-10. The results indicate that gamma MSH3-9, had essentially the same activities as ACTH4-10. The addition of five other amino acid residues to gamma MSH3-9 (gamma 2MSH) resulted in significant enhancement of pressor and cardioaccelerator activity. Steric restriction of the ACTH4-10 sequence by the substitution of a D-Phe in place of an L-Phe residue in position #7, or cyclization of the peptide by a half-Cys4, half Cys10 intramolecular disulfide-bridge derivatization, resulted in increased cardiovascular activities. Based on these data, the cardiovascular actions of ACTH4-10, gamma MSH3-9, and gamma 2MSH are predicted to be due to the assumption of a reverse-turn three-dimensional structure. The additional residues in gamma 2MSH appear to specifically enhance the cardiovascular activities of gamma MSH3-9. The results suggest the existence of a new class of hypophyseal peptides with cardiovascular activities, which require the assumption of a defined three-dimensional structure.  相似文献   

19.
In addition to inhibition of the Na-K ATPase, ouabain activates a signal transduction function, triggering growth and proliferation of cultured cells even at nanomolar concentrations. An isomer of ouabain (EO) circulates in mammalians at subnanomolar concentrations, and increased levels are associated with cardiac hypertrophy and hypertension. We present here a study of cardiac and renal hypertrophy induced by ouabain infused into rats for prolonged periods and relate this effect to the recently described ouabain-induced activation of the Src-EGFr-ERK signaling pathway. Ouabain infusion into rats (15 microg/kg/day for 18 weeks) doubled plasma ouabain levels from 0.3 to 0.7 nm and increased blood pressure by 20 mm Hg (p < 0.001), cardiac left ventricle (+11%, p < 0.05), and kidney weight (+9%, p < 0.01). These effects in vivo are associated with a significant enrichment of alpha1, beta1, gammaa Na-K ATPase subunits together with Src and EGFr in isolated renal caveolae membranes and activation of ERK1/2. In caveolae, direct Na-K ATPase/Src interactions can be demonstrated by co-immunoprecipitation. The interaction is amplified by ouabain, at a high affinity binding site, detectable in caveolae but not in total rat renal membranes. The high affinity site for ouabain is associated with Src-dependent tyrosine phosphorylation of rat alpha1 Na-K ATPase. The antihypertensive compound, PST 2238, antagonized all ouabain-induced effects at 10 microg/kg/day in vivo or 10(-10)-10(-8) m in vitro. These findings provide a molecular mechanism for the in vivo pro-hypertrophic and hypertensinogenic activity of ouabain, or by analogy those of EO in humans. They also explain the pharmacological basis for PST 2238 treatment.  相似文献   

20.
PEX19 is a chaperone and import receptor for newly synthesized, class I peroxisomal membrane proteins (PMPs). PEX19 binds these PMPs in the cytoplasm and delivers them to the peroxisome for subsequent insertion into the peroxisome membrane, indicating that there may be a PEX19 docking factor in the peroxisome membrane. Here we show that PEX3 is required for PEX19 to dock at peroxisomes, interacts specifically with the docking domain of PEX19, and is required for recruitment of the PEX19 docking domain to peroxisomes. PEX3 is also sufficient to dock PEX19 at heterologous organelles and binds PEX19 via a conserved motif that is essential for this docking activity and for PEX3 function in general. Not surprisingly, transient inhibition of PEX3 abrogates class I PMP import but has no effect on class II PMP import or peroxisomal matrix protein import. Taken together, these results suggest that PEX3 plays a selective, essential, and direct role in PMP import as a docking factor for PEX19.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号