首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Substantially higher rates of protein and fluid volume transport for microfiltration of yeast suspensions were possible with improved hydrodynamics using centrifugal fluid instabilities called Dean vortices. Under constant permeate flux operation with suspended yeast cells, a helical module exhibited 19 times the filtration capacity of a linear module. For feed containing both BSA and beer yeast under constant transmembrane pressure with diafiltration, about twice as much protein (BSA and other proteins from cell lysis) was transported out of the feed by the helical module as compared with the linear module. The volumetric permeation flux improvements for the helical over the linear module ranged from 18 to 43% for yeast concentrations up to 4.5 dry wt %.  相似文献   

2.
The presence of positive correlative connection between death rate of Escherichia coli M-17 cells and the density of their suspension have been estimated. It has been shown, that the accumulation in extracellular medium (ECM) of death-stimulating (DS) metabolites, the concentration of which was higher in the suspensions of higher densities, was the immediate cause of the acceleration of death in suspensions with densities higher than 1 x 10(9) cells/ml. DS metabolites could be removed from ECM by adsorption or dialysis, and, thus, they had comparably low molecular mass. The presence of DS metabolites led to the acceleration of death of test-cultures E. coli M-17. The filtrates of ECM of suspensions with density lower than 1 x 10(9) cells/ml did not accelerate the death rate of test-cultures, and, most probably, did not contain any DS-substances. It is supposed, that the role of DS-substances is the maintenance of optimal size of the population of bacteria. The low effective concentrations of these substances make it possible to consider that their functions are nothing but regulatory.  相似文献   

3.
Crossflow membrane filtration was used to process recombinant Escherichia coli cell lysates containing protein inclusion bodies after high pressure homogenization. The number of passes through the high pressure homogenizer changed the viscosities and average particle sizes of the cell lysates. The different cell lysates were processed with a hollow fiber unit containing microfiltration membranes and a plate and frame unit with either ultrafiltration or microfiltration membranes. There were differences in permeate flux and protein transmission for the various membranes with the best performing membranes giving permeate fluxes greater than 60 L m(-2) h(-1) and protein transmissions greater than 90%. For a given membrane, no differences were observed between the cell lysates following homogenization with one, two, and three passes at 83 MPa. The lack of a difference between the three lysates is due to their similarities with respect to the released macromolecules and the presence of small (<0.1 mum) cell debris. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 304-310, 1997.  相似文献   

4.
The ribosomal stalk complex in Escherichia coli consists of L10 and four copies of L7/L12, and is largely responsible for binding and recruiting translation factors. Structural characterisation of this stalk complex is difficult, primarily due to its dynamics. Here, we apply mass spectrometry to follow post-translational modifications and their effect on structural changes of the stalk proteins on intact ribosomes. Our results show that increased acetylation of L12 occurs during the stationary phase on ribosomes harvested from cells grown under optimal conditions. For cells grown in minimal medium, L12 acetylation and processing is altered, resulting in deficient removal of N-terminal methionine in ∼ 50% of the L12 population, while processed L12 is almost 100% acetylated. Our results show also that N-acetylation of L12 correlates with an increased stability of the stalk complex in the gas phase. To investigate further the basis of this increased stability, we applied a solution phase hydrogen deuterium exchange protocol to compare the rate of deuterium incorporation in the proteins L9, L10, L11 and L12 as well as the acetylated form of L12 (L7), in situ on the ribosome. Results show that deuterium incorporation is consistently slower for L7 relative to L12 and for L10 when L7 is predominant. Our results imply a tightening of the interaction between L7 and L10 relative to that between L12 and L10. Since acetylation is predominant when cells are grown in minimal medium, we propose that these modifications form part of the cell's strategy to increase stability of the stalk complex under conditions of stress. More generally, our results demonstrate that it is possible to discern the influence of a 42 Da post-translational modification by mass spectrometry and to record subtle changes in hydrogen/deuterium exchange within the context of an intact 2.5 MDa particle.  相似文献   

5.
6.
7.
We have demonstrated the presence of hydrophobic sites on the surface of Escherichia coli ribosomes by means of hydrophobic chromatography on Octyl-Sepharose. Both 30-S and 50-S ribosomal subunits adsorb to Octyl-Sepharose at a low salt concentration, and can be eluted from it with a nonionic detergent without substantial changes in structure or activity. By testing a series of LiCl-derived ribosomal cores for their ability to adsorb to Octyl-Sepharose we have shown that the interaction of ribosomal particles with Octyl-Sepharose is dependent on the presence of certain ribosomal proteins; the core particles which lack these proteins do not bind to Octyl-Sepharose. The binding of a series of different ribosomal cores to nitrocellulose filters (Millipore) yielded the same pattern as was observed with Octyl-Sepharose, i.e. the more protein-depleted the particles, the less they were adsorbed. Thus, the adsorption of ribosomes to Millipore filters and to Octyl-Sepharose is presumably of the same hydrophobic nature.  相似文献   

8.
9.
Conclusions The E. coli adhesions show a remarkable tissue tropism in the human urinary tract. This obviously relates to the known compartmentation of glycoconjugates in the kidney. To function as a virulence factor in human urinary tract infections, an adhesin must evidently recognize such receptors at uroepithelia that are not excreted in soluble form in urine. This prerequisite is filled by P fimbriae but not by type-1 or S fimbriae. Most of the tissue interactions of E.coli adhesins involve binding to carbohydrate receptors, whereas the binding of the 075X adhesin to type IV collagen appears to rely on protein-protein interactions. Binding of P fimbriae to immobilized fibronectin is independent of the lectin activity of the fimbriae and suggests of an additional function for the fimbrillin in mediating interaction with matrix and basement membrane proteins. Such interaction might be useful after colonization and disruption of epithelial surfaces, when the lectin activity of the fimbriae is not any more important.  相似文献   

10.
The alpha-ketoglutarate dehydrogenase complex from Escherichia coli catalyzes the hydrolysis of S-succinyl-CoA to succinate and CoASH. The reaction rate is dependent upon the presence of thiamin pyrophosphate and NADH, as well as the functional integrity of the alpha-lipoyl groups associated with the enzyme. The Km value for S-succinyl-CoA is 9.3 X 10(-5) M, and the maximum velocity is 0.02 mumol X min-1 X mg of protein-1 at pH 7 and 25 degrees C. This hydrolysis can be rationalized on the basis that succinyl thiamin pyrophosphate is generated under reductive succinylation conditions. Occasional diversion of succinyl thiamin pyrophosphate to hydrolysis produces succinate.  相似文献   

11.
12.
13.
14.
15.
The ternary complex comprising MutS, MutL, and DNA is a key intermediate in DNA mismatch repair. We used chemical cross-linking and fluorescence resonance energy transfer (FRET) to study the interaction between MutS and MutL and to shed light onto the structure of this complex. Via chemical cross-linking, we could stabilize this dynamic complex and identify the structural features of key events in DNA mismatch repair. We could show that in the complex between MutS and MutL the mismatch-binding and connector domains of MutS are in proximity to the N-terminal ATPase domain of MutL. The DNA- and nucleotide-dependent complex formation could be monitored by FRET using single cysteine variants labeled in the connector domain of MutS and the transducer domain of MutL, respectively. In addition, we could trap MutS after an ATP-induced conformational change by an intramolecular cross-link between Cys-93 of the mismatch-binding domain and Cys-239 of the connector domain.  相似文献   

16.
17.
EPEC (enteropathogenic Escherichia coli) and EHEC (enterohaemorrhagic Escherichia coli) are attaching and effacing pathogens frequently associated with infectious diarrhoea. EPEC and EHEC use a T3SS (type III secretion system) to translocate effectors that subvert different cellular processes to sustain colonization and multiplication. The eukaryotic proteins NHERF2 (Na(+)/H(+) exchanger regulatory factor 2) and AnxA2 (annexin A2), which are involved in regulation of intestinal ion channels, are recruited to the bacterial attachment sites. Using a stable HeLa-NHERF2 cell line, we found partial co-localization of AnxA2 and NHERF2; in EPEC-infected cells, AnxA2 and NHERF2 were extensively recruited to the site of bacterial attachment. We confirmed that NHERF2 dimerizes and found that NHERF2 interacts with AnxA2. Moreover, we found that AnxA2 also binds both the N- and C-terminal domains of the bacterial effector Tir through its C-terminal domain. Immunofluorescence of HeLa cells infected with EPEC showed that AnxA2 is recruited to the site of bacterial attachment in a Tir-dependent manner, but independently of Tir-induced actin polymerization. Our results suggest that AnxA2 and NHERF2 form a scaffold complex that links adjacent Tir molecules at the plasma membrane forming a lattice that could be involved in retention and dissemination of other effectors at the bacterial attachment site.  相似文献   

18.
Initiator DnaA and DNA bending proteins, Fis and IHF, comprise prereplication complexes (pre-RC) that unwind the Escherichia coli chromosome's origin of replication, oriC. Loss of either Fis or IHF perturbs synchronous initiation from oriC copies in rapidly growing E. coli. Based on dimethylsulphate (DMS) footprinting of purified proteins, we observed a dynamic interplay among Fis, IHF and DnaA on supercoiled oriC templates. Low levels of Fis inhibited oriC unwinding by blocking both IHF and DnaA binding to low affinity sites. As the concentration of DnaA was increased, Fis repression was relieved and IHF rapidly redistributed DnaA to all unfilled binding sites on oriC. This behaviour in vitro is analogous to observed assembly of pre-RC in synchronized E. coli. We propose that as new DnaA is synthesized in E. coli, opposing activities of Fis and IHF ensure an abrupt transition from a repressed complex with unfilled weak affinity DnaA binding sites to a completely loaded unwound complex, increasing both the precision of DNA replication timing and initiation synchrony.  相似文献   

19.
Amensal indirect interactions between a Klebsiella pneumoniae microcin-producing strain and several Escherichia coli strains, all of intestinal origin, were studied. Mixed batch cultures of both microcin-producing and microcin-sensitive strains showed that microcin production and excretion into the medium allowed the producer strain to prevail over sensitive strains, even when initial competition conditions were highly unfavourable for the producer. Mixed cultures also showed the production of a microcin-antagonist by the same microcin-producing strain when the nutrients in the medium had been depleted. The antagonist apparently promoted the viability of sensitive cells already damaged by microcin. These results have likely ecological implications.  相似文献   

20.
The temperature-jump method was used to measure the thermodynamic and kinetic parameters of the yeast tRNAAsp (anticodon GUC) duplex, which involves a U/U mismatch in the middle position of the quasi self-complementary anticodon, and of the yeast tRNAAsp (GUC)-Escherichia coli tRNAVal (GAC) complex, in which the tRNAs have complementary anticodons. The existence of the tRNAAsp duplex involving GUC-GUC interactions as evidenced in the crystal structure has now been demonstrated in solution. However, the value of its association constant (Kass = 10(4)M-1 at 0 degrees C) is characteristic of a rather weak complex, when compared with that between tRNAAsp and tRNAVal (Kass = 4 X 10(6) M-1 at 0 degrees C), the effect being essentially linked to differences in the rate constant for dissociation. tRNAAsp split in the anticodon by T1 ribonuclease gives no relaxation signal, indicating that the effects observed with intact tRNA were entirely due to anticodon interactions. No duplex formation was observed with other tRNAs having quasi self-complementary GNC anticodons (where N is C, A or G), such as E. coli tRNAGly (GCC), E. coli tRNAVal (GAC) or E. coli tRNAAla (GGC). This is compatible with the idea that, probably as in the crystal structure, a short double helix is formed in solution between the two GUC anticodons. Because of steric effects, such a complex formation would be hindered if a cytosine, adenine or guanine residue were located in the middle position of the anticodon. Escherichia coli tRNAAsp possessing a modified G residue, the Q base, at the first position of the anticodon, showed a weaker self-association than yeast tRNAAsp but its complex with E. coli tRNAVal was found to be only 1.5 times less stable than that between yeast tRNAAsp and E. coli tRNAVal. Temperature-jump experiments conducted under conditions mimicking those used for the crystallization of yeast tRNAAsp (in the presence of 1.6 M-ammonium sulphate and 3mM-spermine) revealed an important stabilization of the yeast and E. coli tRNAAsp duplexes or of their complexes with E. coli tRNAVal. The effect is due exclusively to ammonium sulphate; it is entropy driven and its influence is reflected on the association rate constant; no influence on the dissociation rate constant was observed. For all tRNA-tRNA complexes, the melting temperature upon addition of ammonium sulphate was considerably increased. This study permits the definition of solution conditions in which tRNAs with appropriate anticodons exist mainly as anticodon-anticodon dimers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号