首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary All Agrobacterium tumefaciens strains studied up to now transfer an active 6b gene to plant cells. However, the role of this gene in natural tumour induction is unknown. Various effects of 6b on plant cell growth have been described, but the precise mechanism by which 6b causes these effects has not been elucidated. Earlier experiments indicated that the 6b gene might increase auxin sensitivity as do the A. rhizogenes rol genes. The 6b gene from Tm4 (T-6b) was therefore compared with the rolB and rolABC genes. Although T-6b was unable to induce root formation, it strongly interfered with root induction and root elongation. In rolABC/T-6b coinfection experiments on carrots, T-6b-transformed cells stimulated root outgrowth of rolABC-transformed cells, indicating that the biologically active T-6b product is diffusible. Carrot rolABC roots containing the T6b gene rapidly developed into unorganized calli. Nicotiana rustica roots with rolABC and T-6b continued their development, but became very large. Fragments of such roots formed callus at -naphthaleneacetic acid concentrations which inhibited growth of rolABC and normal root fragments, suggesting that the role of 6b genes in natural tumour induction may be to reduce the inhibitory effects of high auxin levels and to keep cells in an undifferentiated state.  相似文献   

2.
Summary The T-region located 6b gene of Agrobacterium tumefaciens has been found to interfere with cytokinin effects produced by the cotransferred ipt gene. We have compared the biological activity of three different 6b genes: A-6b from Ach5 (octopine, biotype 1), C-6b from C58 (nopaline, biotype 1) and T-6b from Tm4 (octopine, biotype III) by using different biological assays. Each 6b gene was inserted into a disarmed vector and tested on tobacco stems in coinfection experiments with the Ach5 cytokinin (ipt) gene (A-ipt). A-ipt/C-6b coinfections produced tumours with shoots, A-ipt/A-6b coinfections green tumours and A-ipt/T-6b coinfections tumours with a necrotic surface. The tumour phenotypes obtained were independent of the 6b/A-ipt coinfection ratios, indicating that the strain-specific 6b effects result from the activity of a non-diffusible 6b encoded product. Studies with ipt-less Tm4 mutants showed that 6b genes affect other tumour genes besides the ipt gene and pointed to an influence of T-6b on auxin effects resulting from the Tm4 iaa system. T-iaa/T-6b coinfection experiments showed that T-6b did indeed strongly increase tumour formation by the Tm4 iaa genes. The three 6b genes also have effects which do not require other T-region genes. The complex role of the 6b gene in crown gall induction and Agrobacterium host range will be discussed.  相似文献   

3.
The tumour-inducing T-DNA gene 4 (T-cyt gene) of the nopaline Ti plasmid pTiC58 was cloned and introduced into tobacco cells by leaf disc transformation using Agrobacterium plasmid vectors. Tobacco shoots exposed to elevated cytokinin levels were unable to develop roots and lacked apical dominance. Using exogenously applied phytohormone manipulations we were able to regenerate morphologically normal transgenic tobacco plants which differed in endogenous cytokinin levels from normal untransformed plants. Although T-cyt gene mRNA levels, as revealed by dot-blot hybridization data, in these rooting plants were only about half those in primary transformed shoots the total amount of cytokinins was much lower than in crown gall tissue or cytokinin-type transformed shoots as reported by others. Nevertheless the cytokinin content in T-cyt plants was about 3 times greater than in control tobacco plants.Elevated cytokinin levels have been shown to change the expression of several plant genes, including some nuclear genes encoding chloroplast proteins. Our results show that the mRNA levels of chloroplast rbcL gene increase in cytokinin-type transgenic tobacco plants as compared with untransformed plants. Data obtained suggest that T-cyt transgenic plants are a good model for studying plant gene activity in different parts of the plant under endogenous cytokinin stress.  相似文献   

4.
Summary Stem pieces and leaf disks of Vitis spp. were cocultured with Agrobacterium tumefaciens strains carrying the UidA (ß-glucuronidase = GUS) gene. The transformation efficiency was highly increased by using a modified T-6b gene (a gene from pTiTm4) which interferes with normal growth and allows regeneration of normal Nicotiana rustica plants (Tinland 1990). The strains first tested on stem segments were subsequently tested in a leaf explant system. On leaves the transformation efficiency of the strains was much lower than with stems. Both the T-6b gene and the hsp 70-T-6b gene (a modified T-6b gene under the control of a heat shock promoter) allowed the initiation of GUS-positive buds.Abbreviations GUS ß-glucuronidase - BAP benzylaminopurine - X-gluc 5-bromo-4-chloro-3-indolyl glucuronide  相似文献   

5.
Two-dimensional gel electrophoresis of in vitro translation products was used to examine differences between the steady state RNA populations of an untransformed tobacco plant line and a non-rooting tobacco shoot line transformed with a T l -DNA segment from Agrobacterium tumefaciens carrying the cytokinin gene (T-cyt). The analysis comprised about 240 translation products representing the more abundant mRNAs. Approximately 8% of the translation products were found to have significantly different concentrations, due to both increases and decreases, when the shoot parts of the transformed and untransformed lines were compared. Only a few of these differences were specific for the comparison of transformed and untransformed shoots. Most of the differences were also observed when the shoot and root parts of the untransformed line were compared. This implies that the shoot or root prevalence of several mRNA species in normal plants is altered in transgenic T-cyt shoots. The observed changes in the mRNA population of transgenic T-cyt shoots are discussed in relation to the transformed phenotype and previously cloned mRNAs showing similar changes in tissue-specific prevalence.  相似文献   

6.
The promoter region of the Agrobacterium tumefaciens T-cyt gene was fused to a -glucuronidase (gusA) reporter gene and introduced into tobacco plants. Detection of gusA expression in transgenic F1 progeny revealed that the T-cyt promoter is active in many, if not all, cell types in leaves, stems and roots of fully developed plants. Developmental stage-dependent promoter activity was observed in seedlings. Analysis of 5-deleted promoter fragments showed that sequences located between positions–185 and –139 with respect to the T-cyt translational start codon are essential for T-cyt promoter activity in transfected tobacco protoplasts as well as in transformed tobacco plants.  相似文献   

7.
The promoter region of the Agrobacterium tumefaciens T-cyt gene was linked in a translational fusion to the coding DNA of the reporter gene uidA (for -glucuronidase or GUS protein; EC 3.2.1.31) and to nos 3 flanking DNA. The chimaeric gene was introduced by Agrobacterium transformation into potato (Solanum tuberosum L. cv. Désirée). In nine transgenic lines, the average GUS levels were highest in extracts from stems and roots of in vitro grown plants (ca. 11 000 GUS activity units per pmol MU per mg protein per min) but lower in leaves of the in vitro grown plants (ca. 7000 units). GUS activity was intermediate in stems and roots of plants grown in soil as well as in in vitro crown galls (ca. 3000 units). Activity was low in tubers, irrespective of whether these developed in vitro or in soil (both ca. 100 units), and lowest of all in leaves of soil-grown plants (ca. 10–15 units). However, in shoot cultures reestablished from soil-grown plants, GUS activity in the leaves increased to that determined in the original shoot cultures. Hence, plant culture conditions strongly influenced the expression of the T-cyt-uidA-nos gene. In particular, it was silenced in leaves of soil-grown plants. The results are compared with previous analyses of the promoter region of the wild-type T-cyt gene and with the growth properties of a large number of crown gall cell lines and crown-gall-derived plants, including over forty S. tuberosum cv. Désirée cell lines isolated in the present study that were transformed with the wild-type T-cyt gene and six promoter-mutated derivatives. A number of implications are discussed for crown gall formation and for control of expression of plant genes which contain Activator or G-box type 5 expression control sequences.  相似文献   

8.
Agrobacterium 6b oncogenes induce tumours and modify plant growth in various ways. Here we show that the AB-6b gene from strain AB4 placed under 2x35S promoter control (2x35S-AB-6b) induces a complex enation syndrome in transgenic Nicotiana tabacum plants, that also occurs in a few rare cases of genetic enations. In Arabidopsis thaliana, 2x35S-AB-6b induced radially symmetrical tubes on the abaxial side of the leaves, which must therefore be considered as the Arabidopsis equivalents of enations on other plant species. Tobacco and Arabidopsis 2x35S-AB-6b leaves contained small, supernumerary densely packed cells between the spongy mesophyll and the abaxial epidermis, close to vascular strands arising at an early stage of leaf development. On tobacco, the 2x35S-AB-6b enation syndrome could be transmitted across graft junctions to growing tissues of untransformed plants, both acropetally and basipetally. We propose that the AB-6b gene encodes the synthesis of one or more enation factor(s) that are transported by the phloem and modify the growth of developing tissues.  相似文献   

9.
Summary The physiological function in planta of T-DNA gene 6b was studied under various experimental conditions. For this purpose the coding region of gene 6b was cloned behind the 1-promoter of the TR-DNA to enhance expression of the gene product in transformed plant cells. Expression of the recombinant gene in leaf discs of Nicotiana tabacum altered the capacity for shoot formation of the discs, induced by exogenous (i.e. BAP in the growth medium or agrobacterial trans-zeatin produced under control of gene tzs) or endogenous cytokinins (i.e. isopentenyladenosine produced under control of T-DNA gene 4). The data obtained indicate a reduction of cytokinin activity within the plant cells by the product of T-DNA gene 6b.Abbreviations AMP adenosine-5-monophosphate - BAP 6-benzylaminopurine  相似文献   

10.
11.
Cao JS  Yu XL  Ye WZ  Lu G  Xiang X 《Plant cell reports》2006,24(12):715-723
In our earlier work, a cytochrome P450 CYP86MF gene was isolated from floral bud of Chinese cabbage (Brassica campestris L. ssp. chinensis Makino, syn. B. rapa L.) by mRNA differential display PCR (DD-PCR) and rapid amplification of cDNA ends (RACE). To unravel the biological function of CYP86MF gene, the antisense fragment from the CYP86MF gene was transferred into Chinese cabbage pak-choi (B. campestris ssp. chinensis var. communis Tsen et Lee). Out of 22 plants transformed with the antisense gene constructed from the CYP86MF, 20 reached to flowering stage. Morphological investigations showed that the transgenic plants developed the normal floral organ. However, they remained self-infertile, even when artificial self-pollination was performed in the bud stage. Pollen germination test indicated that the pollen from the transgenic line TB-2 could not germinate normally. Further physiological, biochemical and cytological analyses showed that only significant difference was detectable in contents of the endogenous hormones, and a layer of unknown material adhered to the surface of microspore. The present studies thus provided valuable clues for understanding the biological function of the CYP86C subfamily genes. Furthermore, our studies also demonstrate a novel method for obtaining artificial male sterility line of Chinese cabbage.  相似文献   

12.
The donor-recipient protoplast fusion method was used to produce cybrid plants and to transfer cytoplasmic male sterility (CMS) from two cytoplasmic male-sterile lines MTC-5A and MTC-9A into a fertile japonica cultivar, Sasanishiki. The CMS was expressed in the cybrid plants and was stably transmitted to their progenies. Only cytoplasmic traits of the male-sterile lines, especially the mitochondrial DNAs, were introduced into the cells of the fertile rice cultivar. More than 80% of the cybrid plants did not set any seeds upon selfing. Sterile cybrid plants set seeds only when they were fertilized with normal pollen by hand and yielded only sterile progenies. This maternally inherited sterility of the cybrid plants showed that they were characterized by CMS. The CMS of cybrid plants could be restored completely by crossing with MTC-10R which had the single dominant gene Rf-1 for restoring fertility. These results indicated that CMS was caused by the mitochondrial genome introduced through protoplast fusion. The introduced CMS was stably transmitted to their progenies during at least eight backcross generations. These results demonstrate that cybrids generated by the donor-recipient protoplast fusion technique can be used in hybrid rice breeding for the creation of new cytoplasmic male-sterile rice lines.  相似文献   

13.
Valencia orange [Citrus sinensis (L.) Osbeck] is the leading commercial citrus species in the world for processed juice products; however, the presence of thermostable pectin methylesterase (TSPME) reduces its juice quality. A long-term strategy of this work is to eliminate or greatly reduce TSPME activity in Valencia orange. Previous work resulted in the isolation of a putative TSPME gene, CsPME4, associated with a thermostable protein fraction of Valencia orange juice. To begin research designed to overexpress CsPME4 to verify the thermostability of the protein product and/or to downregulate the gene, a sense gene cassette containing a gene-specific sequence from a putative TSPME cDNA and the enhanced green fluorescent protein (GFP) as a selectable marker was constructed (M2.1). In the work reported here, M2.1 plasmid DNA was transformed (polyethylene glycol-mediated) into protoplasts isolated from an embryogenic suspension culture of Valencia somaclone line B6-68, in an effort to obtain transgenic Valencia lines. A vigorous transformed line was identified via GFP expression, physically separated from non-transformed tissue, and cultured on somatic embryogenesis induction medium. One transgenic proembryo expressing GFP was recovered and multiple shoots were regenerated. The recovery of multiple transgenic plants was expedited by in vitro grafting. Polymerase chain reaction analysis revealed the presence of the PME gene in transgenic plants, and subsequent Southern blot analysis confirmed the presence of the eGFP gene. These transgenic plants show normal growth and minor morphological variation. The thermostability of PME in these plants will be assessed after flowering and fruit set. This is the first successful transfer of a target fruit-quality gene by protoplast transformation with recovery of transgenic plants in citrus. This method of transformation has the advantage over Agrobacterium-mediated transformation in that it requires no antibiotic-resistance genes.  相似文献   

14.
The ubiquitous grapevine-associated octopine/cucumopine Ti plasmids of biotype III Agrobacterium tumefaciens strains carry two T regions, TA and TB, with a complex oncogene arrangement. Within the octopine/cucumopine group, two main strain types were identified: large TA strains with a TA region resembling the TL region of the biotype I octopine strain Ach5 and small TA strains with a similar T region organization as the large TA strains but with a large internal TA deletion. Structural and functional studies of the representative large TA strain Tm4 revealed six oncogenes. Each oncogene was inserted in a disarmed vector and tested for biological activity using the corresponding oncogenes of Ach5 as standards. Five Tm4 oncogenes, TA-iaaM, T-ipt, T-6b, TB-iaaH and TB-iaaM, were shown to be active, the IS-interrupted TA-iaaH gene was inactive. To study the role of each gene in the pTiTm4 context, several single and multiple pTiTm4 mutations were constructed. It was shown that whereas TA-iaaM and TB-iaaH are essential for tumour formation on grapevine, T-ipt, T-6b and TB-iaaM are not. The avirulence of the TA-iaaM - mutant was shown to be due to an inhibitory effect of the T-ipt gene, since a TA-iaaM - /T-ipt - double mutant was fully virulent. We conclude that the TA-iaaM gene of large TA strains is specifically required to counteract the tumour growth inhibiting activity of the T-ipt gene. Both TA-iaaM and T-ipt are absent from the small TA strains. A model on the roles and interactions of the different oncogenes in large TA and small TA strains is presented.  相似文献   

15.
16.
以质粒pMCB30为模板,扩增GFP基因,连接到载体pCMBIA2300-35S-OCS上,构建过量表达载体p35S:GFP,将其转入农杆菌GV3101.通过农杆菌介导法将p35S:GFP载体分别转入新疆特色植物小拟南芥和拟南芥中.T0代经含有卡那霉素的1/2MS培养基筛选,获得了T1代转基因小拟南芥2株,T1代转基因拟南芥9株.通过激光共聚焦显微镜观察,在转基因小拟南芥和拟南芥的根尖细胞中均可检测到GFP绿色荧光蛋白;对转基因植株进行PCR扩增,均可检测到GFP基因,表明GFP基因已成功转入小拟南芥和拟南芥中.该研究建立了小拟南芥的遗传转化体系,为进一步利用GFP基因和进一步研究小拟南芥的功能基因奠定基础.  相似文献   

17.
18.
Summary We have constructed several plasmid expression vectors to express foreign genes in stably transformed insect cells. Unlike baculovirus-based expression vectors by which genes of interest are expressed transiently before lysis of the virus-infected cells, genes can be expressed continuously over many passages in a stable cell line. Furthermore, the function of a gene or genes expressed in a stable cell line from an insect-specific promoter that is constitutively expressed can be studied in the absence of virus infection and viral gene expression. In this study, we have expressed a novel, selectable marker gene, puromycin acetyltransferase, under the control of the Drosophila melanogaster hsp70 promoter or under the control of the AcMNPV ie-1 promoter which is active in Spodoptera frugiperda cells in the absence of virus infection. In addition, we have constructed expression vectors which coexpress two genes from separate promoters, the pac gene which confers resistance to puromycin and a baculovirus gene which inhibits apoptosis, derived from Orygia pseudotsugata nuclear polyhedrosis virus. Both genes were expressed in stable populations of S. frugiperda cells in the absence of continuous drug selection.  相似文献   

19.
Summary Agrobacterium transformation of stem internodes of four monohaploid (839-79, 849-7, 851-23, 855-1) and two diploid (M9 and HH260) potato genotypes using hairy root-inducing single (LBA 1020, LBA 9365, LBA 9402) and binary (LBA 1060KG) vectors is reported. Various media and successive culture steps were tested for plant regeneration from different transformed root clones. The fate of introduced genetic markers in root clones and regenerated plants (hairy root phenotype, hormone autotrophy, opine production, kanamycin resistance, -glucuronidase activity), the ploidy stability and protoplast yield were analysed. The transformation efficiency of stem internodes (hairy root production) and the regeneration capacity of the transformed root clones greatly differed within and between the various potato genotypes. The regenerated plants obtained after transformation with both types of vectors often showed the absence of one or more genetic markers. However, transformation with the binary Agrobacterium vector generally resulted in the stable presence of the opines in all transformed root clones and most regenerated plants. In HH260, transformation efficiency, plant regeneration of transformed root clones, protoplast yield and ploidy stability were the highest as compared to the other genotypes. The application of these transformed plants as marker lines in gene mapping and gene expression studies is indicated.  相似文献   

20.
Gibberellins (GAs) are endogenous hormones that play a predominant role in regulating plant stature by increasing cell division and elongation in stem internodes. The product of the GA 2-oxidase gene from Phaseolus coccineus (PcGA2ox1) inactivates C19-GAs, including the bioactive GAs GA1 and GA4, by 2β-hydroxylation, reducing the availability of these GAs in plants. The PcGA2ox1 gene was introduced into Solanum melanocerasum and S. nigrum (Solanaceae) by Agrobacterium-mediated transformation with the aim of decreasing the amounts of bioactive GA in these plants and thereby reducing their stature. The transgenic plants exhibited a range of dwarf phenotypes associated with a severe reduction in the concentrations of the biologically active GA1 and GA4. Flowering and fruit development were unaffected. The transgenic plants contained greater concentrations of chlorophyll b (by 88%) and total chlorophyll (11%), although chlorophyll a and carotenoid contents were reduced by 8 and 50%, respectively. This approach may provide an alternative to the application of chemical growth retardants for reducing the stature of plants, particularly ornamentals, in view of concerns over the potential environmental and health hazards of such compounds. C. Dijkstra, E. Adams, A. Bhattacharya and A. F. Page contributed equally to this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号