首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The Mre11.Rad50.nibrin protein complex plays an essential role in the mammalian cellular response to DNA double-strand breaks. The disorder Nijmegen breakage syndrome (NBS) results from mutations in the NBS1 gene that encodes nibrin, and NBS cells are radiosensitive and defective in S-phase checkpoint activation following irradiation. In response to radiation, nibrin is phosphorylated by Atm, and the Mre11.Rad50.nibrin complex relocalizes to form punctate nuclear foci. The N terminus of nibrin contains a forkhead-associated (FHA) domain and a breast cancer C-terminal (BRCT) domain, the functions of which are unclear. To determine the role of the FHA and BRCT domains in nibrin function, we have performed site-directed mutagenesis of conserved residues in these motifs. Mutations in the nibrin FHA and BRCT domains did not affect interaction with Mre11.Rad50 or nuclear localization of the complex. However, mutation of conserved residues in either domain disrupted nuclear focus formation and blocked nibrin phosphorylation after irradiation, suggesting that these events may be functionally interdependent. Despite an effect on nibrin phosphorylation, expression of the FHA or BRCT mutants in NBS cells restored the downstream phosphorylation of Chk2 and Smc1, necessary for S-phase checkpoint activation. None of the mutations revealed separate functions for the FHA or BRCT domains, suggesting they do not function independently.  相似文献   

2.
The Atm protein kinase and Mre11-Rad50-nibrin (MRN) complex play an integral role in the cellular response to DNA double-strand breaks. Mutations in Mre11 and nibrin result in the radiosensitivity disorders ataxia-telangiectasia-like disorder (ATLD) and Nijmegen breakage syndrome (NBS), respectively. Cells from ATLD and NBS patients are deficient in activation of the Atm protein kinase and phosphorylation of downstream Atm targets following irradiation. However, the roles of individual MRN complex proteins in Atm function are not clear, because the mutations in NBS and ATLD cells result in global effects on the MRN complex. Previously we showed that the C-terminal 100 amino acids of nibrin were necessary and sufficient to translocate the MRN complex to the nucleus. Here we have taken advantage of this feature of nibrin to create isogenic cell lines lacking either nibrin or Mre11-Rad50 in the nucleus. We found that nuclear expression of Mre11-Rad50, but not nibrin, stimulated Atm activation at early times after low doses of radiation. At later times or higher doses of irradiation, Atm activation was independent of Mre11-Rad50 or nibrin. The requirement of MRN complex proteins for downstream Atm phosphorylation events following irradiation was more complex. Phosphorylation of nibrin and Chk2 by Atm required Mre11-Rad50 expression in the nucleus at early times after irradiation, reflecting the stimulation of Atm activation by Mre11-Rad50. By contrast, autophosphorylation of Chk2 and phosphorylation of Smc1 at Ser-957 was dependent on the MRN complex 60 min after irradiation, even though Atm was activated at that time point. These results indicate an independent role for Mre11-Rad50 in the activation of Atm and suggest nibrin and/or Mre11-Rad50 also act as adaptors for some downstream Atm phosphorylation events.  相似文献   

3.
The Atm protein kinase is central to the DNA double-strand break response in mammalian cells. After irradiation, dimeric Atm undergoes autophosphorylation at Ser 1981 and dissociates into active monomers. Atm activation is stimulated by expression of the Mre11/Rad50/nibrin complex. Previously, we showed that a C-terminal fragment of nibrin, containing binding sites for both Mre11 and Atm, was sufficient to provide this stimulatory effect in Nijmegen breakage syndrome (NBS) cells. To discriminate whether nibrin's role in Atm activation is to bind and translocate Mre11/Rad50 to the nucleus or to interact directly with Atm, we expressed an Mre11 transgene with a C-terminal NLS sequence in NBS fibroblasts. The Mre11-NLS protein complexed with Rad50, localized to the nucleus in NBS fibroblasts, and associated with chromatin. However, Atm autophosphorylation was not stimulated in cells expressing Mre11-NLS, nor were downstream Atm targets phosphorylated. To determine whether nibrin-Atm interaction is necessary to stimulate Atm activation, we expressed nibrin transgenes lacking the Atm binding domain in NBS fibroblasts. The nibrin DeltaAtm protein interacted with Mre11/Rad50; however, Atm autophosphorylation was dramatically reduced after irradiation in NBS cells expressing the nibrin DeltaAtm transgenes relative to wild-type nibrin. These results indicate that nibrin plays an active role in Atm activation beyond translocating Mre11/Rad50 to the nucleus and that this function requires nibrin-Atm interaction.  相似文献   

4.
The Nijmegen breakage syndrome (NBS), a chromosomal instability disorder, is characterized in part by cellular hypersensitivity to ionizing radiation. Repair of DNA double-strand breaks by radiation is dependent on a multifunctional complex containing Rad50, Mre11, and the NBS1 gene product, p95 (NBS protein, nibrin). The role of p95 in these repair processes is unknown. Here it is demonstrated that Mre11 is hyperphosphorylated in a cell cycle-independent manner in response to treatment of cells with genotoxic agents including gamma irradiation. This response is abrogated in two independently established NBS cell lines that have undetectable levels of the p95 protein. NBS cells are also deficient for radiation-induced nuclear foci containing Mre11, while those with Rad51 are unaffected. An analysis of the kinetic relationship between Mre11 phosphorylation and the appearance of its radiation-induced foci indicates that the former precedes the latter. Together, these data suggest that specific phosphorylation of Mre11 is induced by DNA damage, and p95 is essential in this process, perhaps by recruiting specific kinases.  相似文献   

5.
Yuan SS  Su JH  Hou MF  Yang FW  Zhao S  Lee EY 《DNA Repair》2002,1(2):137-142
Cancer-prone diseases ataxia-telangiectasia (AT), Nijmegen breakage syndrome (NBS) and ataxia-telangiectasia-like disorder (ATLD) are defective in the repair of DNA double-stranded break (DSB). On the other hand, arsenic (As) has been reported to cause DSB and to be involved in the occurrence of skin, lung and bladder cancers. To dissect the repair mechanism of As-induced DSB, wild type, AT and NBS cells were treated with sodium arsenite to study the complex formation and post-translational modification of Rad50/NBS1/Mre11 repair proteins. Our results showed that Mre11 went through cell cycle-dependent phosphorylation upon sodium arsenite treatment and this post-translational modification required NBS1 but not ATM. Defective As-induced Mre11 phosphorylation was rescued by reconstitution with full length NBS1 in NBS cells. Although As-induced Mre11 phosphorylation was not required for Rad50/NBS1/Mre11 complex formation, it might be required for the formation of Rad50/NBS1/Mre11 nuclear foci upon DNA damage.  相似文献   

6.
We previously identified a conserved multiprotein complex that includes hMre11 and hRad50. In this study, we used immunofluorescence to investigate the role of this complex in DNA double-strand break (DSB) repair. hMre11 and hRad50 form discrete nuclear foci in response to treatment with DSB-inducing agents but not in response to UV irradiation. hMre11 and hRad50 foci colocalize after treatment with ionizing radiation and are distinct from those of the DSB repair protein, hRad51. Our data indicate that an irradiated cell is competent to form either hMre11-hRad50 foci or hRad51 foci, but not both. The multiplicity of hMre11 and hRad50 foci is much higher in the DSB repair-deficient cell line 180BR than in repair-proficient cells. hMre11-hRad50 focus formation is markedly reduced in cells derived from ataxia-telangiectasia patients, whereas hRad51 focus formation is markedly increased. These experiments support genetic evidence from Saccharomyces cerevisiae indicating that Mre11-Rad50 have roles distinct from that of Rad51 in DSB repair. Further, these data indicate that hMre11-hRad50 foci form in response to DNA DSBs and are dependent upon a DNA damage-induced signaling pathway.  相似文献   

7.
The ATM/ATR kinases and the Mre11 (Mre11-Rad50-Nbs1) protein complex are central players in the cellular DNA damage response. Here we characterize possible interactions between Aspergillus nidulans uvsB(ATR) and the Mre11 complex (scaA(NBS1)). We demonstrate that there is an epistatic relationship between uvsB(ATR), the homolog of the ATR/MEC1 gene, and scaA(NBS1), the homolog of the NBS1/XRS2 gene, for both repair and checkpoint functions and that correct ScaA(NBS1) expression during recovery from replication stress depends on uvsB(ATR). In addition, we also show that the formation of UvsC foci during recovery from replication stress is dependent on both uvsB(ATR) and scaA(NBS1) function. Furthermore, ScaA(NBS1) is also dependent on uvsB(ATR) for nuclear focus formation upon the induction of DNA double-strand breaks by phleomycin. Our results highlight the extensive genetic interactions between UvsB and the Mre11 complex that are required for S-phase progression and recovery from DNA damage.  相似文献   

8.
The fission yeast checkpoint protein Crb2, related to budding yeast Rad9 and human 53BP1 and BRCA1, has been suggested to act as an adapter protein facilitating the phosphorylation of specific substrates by Rad3-Rad26 kinase. To further understand its role in checkpoint signaling, we examined its localization in live cells by using fluorescence microscopy. In response to DNA damage, Crb2 localizes to distinct nuclear foci, which represent sites of DNA double-strand breaks (DSBs). Crb2 colocalizes with Rad22 at persistent foci, suggesting that Crb2 is retained at sites of DNA damage during repair. Damage-induced Crb2 foci still form in cells defective in Rad1, Rad3, and Rad17 complexes, but these foci do not persist as long as in wild-type cells. Our results suggest that Crb2 functions at the sites of DNA damage, and its regulated persistent localization at damage sites may be involved in facilitating DNA repair and/or maintaining the checkpoint arrest while DNA repair is under way.  相似文献   

9.
Nijmegen breakage syndrome (NBS) is a chromosomal-instability syndrome associated with cancer predisposition, radiosensitivity, microcephaly, and growth retardation. The NBS gene product, NBS1, is a component of the MRE11-RAD50-NBS1 (MRN) complex, a central player associated with double strand break (DSB) repair. In response to radiation, NBS1 is phosphorylated by ATM, and the MRN complex relocalizes to form punctate nuclear foci for DNA repair. NBS1 controls both the nuclear localization of the MRN complexes and radiation-induced focus formation. We report here that the KPNA2 (importin alpha1) is important for the normal nuclear localization of the MRN complex and its proper formation of the nuclear foci. KPNA2 is the only member of the importin alpha family that physically interacts with NBS1, and the KPNA2-mediated nucleus localization sequence (NLS) is mapped to amino acid residues 461-467 of NBS1 that is sufficient for both the interaction with KPNA2 and the proper nuclear localization. Inhibition of KPNA2 or blockage of the KPNA2 interaction with NBS1 results in a reduction of radiation-induced nuclear focus accumulation, DSB repair, and cell cycle checkpoint signaling of NBS1. Collectively, our results strongly suggest that an interaction with KPNA2 contributes to nuclear localization and multiple tumor suppression functions of the NBS1 complex.  相似文献   

10.
Nijmegen breakage syndrome, a chromosomal instability disorder, is characterized in part by cellular hypersensitivity to ionizing radiation. The NBS1 gene product, p95 (NBS1 or nibrin) forms a complex with Rad50 and Mre11. Cells deficient in the formation of this complex are defective in DNA double-strand break repair, cell cycle checkpoint control, and telomere length maintenance. How the NBS1 complex is involved in telomere length maintenance remains unclear. Here we show that the C-terminal region of NBS1 interacts directly with a telomere repeat binding factor, TRF1, by both yeast two-hybrid and in vivo DNA-coimmunoprecipitation assays. NBS1 and Mre11 colocalize with TRF1 at promyelocytic leukemia (PML) nuclear bodies in immortalized telomerase-negative cell lines, but rarely in telomerase-positive cell lines. The translocation of NBS1 to PML bodies occurs specifically during late S to G(2) phases of the cell cycle and coincides with active DNA synthesis in these NBS1-containing PML bodies. These results suggest that NBS1 may be involved in alternative lengthening of telomeres in telomerase-negative immortalized cells.  相似文献   

11.
In response to replicative stress, cells relocate and activate DNA repair and cell cycle arrest proteins such as replication protein A (RPA, a three subunit protein complex required for DNA replication and DNA repair) and the MRN complex (consisting of Mre11, Rad50, and Nbs1; involved in DNA double-strand break repair). There is increasing evidence that both of these complexes play a central role in DNA damage recognition, activation of cell cycle checkpoints, and DNA repair pathways. Here we demonstrate that RPA and the MRN complex co-localize to discrete foci and interact in response to DNA replication fork blockage induced by hydroxyurea (HU) or ultraviolet light (UV). Members of both RPA and the MRN complexes become phosphorylated during S-phase and in response to replication fork blockage. Analysis of RPA and Mre11 in fractionated lysates (cytoplasmic/nucleoplasmic, chromatin-bound, and nuclear matrix fractions) showed increased hyperphosphorylated-RPA and phosphorylated-Mre11 in the chromatin-bound fractions. HU and UV treatment also led to co-localization of hyperphosphorylated RPA and Mre11 to discrete detergent-resistant nuclear foci. An interaction between RPA and Mre11 was demonstrated by co-immunoprecipitation of both protein complexes with anti-Mre11, anti-Rad50, anti-NBS1, or anti-RPA antibodies. Phosphatase treatment with calf intestinal phosphatase or lambda-phosphatase not only de-phosphorylated RPA and Mre11 but also abrogated the ability of RPA and the MRN complex to co-immunoprecipitate. Together, these data demonstrate that RPA and the MRN complex co-localize and interact after HU- or UV-induced replication stress and suggest that protein phosphorylation may play a role in this interaction.  相似文献   

12.
The Mre11-Rad50 complex is highly conserved, yet the mechanisms by which Rad50 ATP-driven states regulate the sensing, processing and signaling of DNA double-strand breaks are largely unknown. Here we design structure-based mutations in Pyrococcus furiosus Rad50 to alter protein core plasticity and residues undergoing ATP-driven movements within the catalytic domains. With this strategy we identify Rad50 separation-of-function mutants that either promote or destabilize the ATP-bound state. Crystal structures, X-ray scattering, biochemical assays, and functional analyses of mutant PfRad50 complexes show that the ATP-induced ‘closed’ conformation promotes DNA end binding and end tethering, while hydrolysis-induced opening is essential for DNA resection. Reducing the stability of the ATP-bound state impairs DNA repair and Tel1 (ATM) checkpoint signaling in Schizosaccharomyces pombe, double-strand break resection in Saccharomyces cerevisiae, and ATM activation by human Mre11-Rad50-Nbs1 in vitro, supporting the generality of the P. furiosus Rad50 structure-based mutational analyses. These collective results suggest that ATP-dependent Rad50 conformations switch the Mre11-Rad50 complex between DNA tethering, ATM signaling, and 5′ strand resection, revealing molecular mechanisms regulating responses to DNA double-strand breaks.  相似文献   

13.
Mre11, Rad50, and Nbs1form a tight complex which is homogeneously distributed throughout the nuclei of mammalian cells. However, after irradiation, the Mre11/Rad50/Nbs1 (M/R/N) complex rapidly migrates to sites of double strand breaks (DSBs), forming foci which remain until DSB repair is complete. Mre11 and Rad50 play direct roles in DSB repair, while Nbs1 appears to be involved in damage signaling. Hyperthermia sensitizes mammalian cells to ionizing radiation. Radiosensitization by heat shock is believed to be mediated by an inhibition of DSB repair. While the mechanism of inhibition of repair by heat shock remains to be elucidated, recent reports suggest that the M/R/N complex may be a target for inhibition of DSB repair and radiosensitization by heat. We now demonstrate that when human U-1 melanoma cells are heated at 42.5 or 45.5 degrees C, Mre11, Rad50, and Nbs1 are rapidly translocated from the nucleus to the cytoplasm. Interestingly, when cells were exposed to ionizing radiation (12 Gy of X-rays) prior to heat treatment, the extent and kinetics of translocation were increased when nuclear and cytoplasmic fractions of protein were analyzed immediately after treatment. The kinetics of the translocation and subsequent relocalization back into the nucleus when cells were incubated at 37 degrees C from 30 min to 7 h following treatment were different for each protein, which suggests that the proteins redistribute independently. However, a significant fraction of the translocated proteins exist as a triple complex in the cytoplasm. Treatment with leptomycin B (LMB) inhibits the translocation of Mre11, Rad50, and Nbs1 to the cytoplasm, leading us to speculate that the relocalization of the proteins to the cytoplasm occurs via CRM1-mediated nuclear export. In addition, while Nbs1 is rapidly phosphorylated in the nuclei of irradiated cells and is critical for a normal DNA damage response, we have found that Nbs1 is rapidly phosphorylated in the cytoplasm, but not in the nucleus, of heated irradiated cells. The phosphorylation of cytoplasmic Nbs1, which cannot be inhibited by wortmannin, appears to be a unique post-translational modification in heated, irradiated cells, and coupled with our novel observations that Mre11, Rad50, and Nbs1 translocate to the cytoplasm, lend further support for a role of the M/R/N complex in thermal radiosensitization and inhibition of DSB repair.  相似文献   

14.
Repair of DNA double-strand breaks by homologous recombination requires an extensive set of proteins. Among these proteins are Rad51 and Mre11, which are known to re-localize to sites of DNA damage into nuclear foci. Ionizing radiation-induced foci can be visualized by immuno-staining. Published data show a large variation in the number of foci-positive cells and number of foci per nucleus for specific DNA repair proteins. The experiments described here demonstrate that the time after induction of DNA damage influenced not only the number of foci-positive cells, but also the size of the individual foci. The dose of ionizing radiation influenced both the number of foci-positive cells and the number of foci per nucleus. Furthermore, ionizing radiation-induced foci formation depended on the cell cycle stage of the cells and the protein of interest that was investigated. Rad51 and Mre11 foci seemed to be mutually exclusive, though a small subset of cells did show co-localization of these proteins, which suggests a possible cooperation between the proteins at a specific moment during DNA repair.  相似文献   

15.
The Mre11-Rad50-Nbs1 protein complex has emerged as a central player in the human cellular DNA damage response, and recent observations suggest that these proteins are at least partially responsible for the linking of DNA damage detection to DNA repair and cell cycle checkpoint functions. Mutations in scaA(NBS1), which encodes the apparent homolog of human nibrin in Aspergillus nidulans, inhibit growth in the presence of the antitopoisomerase I drug camptothecin. This article describes the selection and characterization of extragenic suppressors of the scaA1 mutation, with the aim of identifying other proteins that interfere with the pathway or complex in which the ScaA would normally be involved. Fifteen extragenic suppressors of the scaA1 mutation were isolated. The topoisomerase I gene can complement one of these suppressors. Synergistic interaction between the scaA(NBS1) and scsA(TOP1) genes in the presence of DNA-damaging agents was observed. Overexpression of topoisomerase I in the scaA1 mutant causes increased sensitivity to DNA-damaging agents. The scsA(TOP1) and the scaA(NBS1) gene products could functionally interact in pathways that either monitor or repair DNA double-strand breaks.  相似文献   

16.
Mdm2 directly regulates the p53 tumor suppressor. However, Mdm2 also has p53-independent activities, and the pathways that mediate these functions are unresolved. Here we report the identification of a specific association of Mdm2 with Mre11, Nbs1, and Rad50, a DNA double strand break repair complex. Mdm2 bound to the Mre11-Nbs1-Rad50 complex in primary cells and in cells containing inactivated p53 or p14/p19ARF, a regulator of Mdm2. Further analysis revealed that Mdm2 directly bound to Nbs1 but not to Mre11 or Rad50. Amino acids 198-314 of Mdm2 were required for Mdm2/Nbs1 association, and neither the N terminus forkhead-associated and breast cancer C-terminal domains nor the C terminus Mre11 binding domain of Nbs1 mediated the interaction of Nbs1 with Mdm2. Mdm2 co-localized with Nbs1 to sites of DNA damage following gamma-irradiation. Notably, Mdm2 overexpression inhibited DNA double strand break repair, and this was independent of p53 and ARF, the alternative reading frame of the Ink4alocus. The delay in DNA repair imposed by Mdm2 required the Nbs1 binding domain of Mdm2, but the ubiquitin ligase domain in Mdm2 was dispensable. Therefore, Nbs1 is a novel p53-independent Mdm2 binding protein and links Mdm2 to the Mre11-Nbs1-Rad50-regulated DNA repair response.  相似文献   

17.
The human MRN complex is a multisubunit nuclease that is composed of Mre11, Rad50, and Nbs1 and is involved in homologous recombination and DNA damage checkpoints. Mutations of the MRN genes cause genetic disorders such as Nijmegen breakage syndrome. Here we identified a Schizosaccharomyces pombe nbs1(+) homologue by screening for mutants with mutations that caused methyl methanesulfonate (MMS) sensitivity and were synthetically lethal with the rad2Delta mutation. Nbs1 physically interacts with the C-terminal half of Rad32, the Schizosaccharomyces pombe Mre11 homologue, in a yeast two-hybrid assay. nbs1 mutants showed sensitivities to gamma-rays, UV, MMS, and hydroxyurea and displayed telomere shortening similar to the characteristics of rad32 and rad50 mutants. nbs1, rad32, and rad50 mutant cells were elongated and exhibited abnormal nuclear morphology. These findings indicate that S. pombe Nbs1 forms a complex with Rad32-Rad50 and is required for homologous recombination repair, telomere length regulation, and the maintenance of chromatin structure. Amino acid sequence features and some characteristics of the DNA repair function suggest that the S. pombe Rad32-Rad50-Nbs1 complex has functional similarity to the corresponding MRN complexes of higher eukaryotes. Therefore, S. pombe Nbs1 will provide an additional model system for studying the molecular function of the MRN complex associated with genetic diseases.  相似文献   

18.
Evans JD  Hearing P 《Journal of virology》2005,79(10):6207-6215
Adenovirus replication is controlled by the relocalization or modification of nuclear protein complexes, including promyelocytic leukemia protein (PML) nuclear domains and the Mre11-Rad50-Nbs1 (MRN) DNA damage machinery. In this study, we demonstrated that the E4 ORF3 protein effects the relocalization of both PML and MRN proteins to similar structures within the nucleus at early times after infection. These proteins colocalize with E4 ORF3. Through the analysis of specific viral mutants, we found a direct correlation between MRN reorganization at early times after infection and the establishment of viral DNA replication domains. Further, the reorganization of MRN components may be uncoupled from the ability of E4 ORF3 to rearrange PML. At later stages of infection, components of the MRN complex disperse within the nucleus, Nbs1 is found within viral replication centers, Rad50 remains localized with E4 ORF3, and Mre11 is degraded. The importance of viral regulation of the MRN complex is underscored by the complementation of E4 mutant viruses in cells that lack Mre11 or Nbs1 activity. These results illustrate the importance of nuclear organization in virus growth and suggest that E4 ORF3 regulates activities in both PML nuclear bodies and the MRN complex to stimulate the viral replication program.  相似文献   

19.
The Mre11 complex (Mre11-Rad50-Nbs1 or MRN) binds double-strand breaks where it interacts with CtIP/Ctp1/Sae2 and ATM/Tel1 to preserve genome stability through its functions in homology-directed repair, checkpoint signaling and telomere maintenance. Here, we combine biochemical, structural and in vivo functional studies to uncover key properties of Mre11-W243R, a mutation identified in two pediatric cancer patients with enhanced ataxia telangiectasia-like disorder. Purified human Mre11-W243R retains nuclease and DNA binding activities in vitro. X-ray crystallography of Pyrococcus furiosus Mre11 indicates that an analogous mutation leaves the overall Mre11 three-dimensional structure and nuclease sites intact but disorders surface loops expected to regulate DNA and Rad50 interactions. The equivalent W248R allele in fission yeast allows Mre11 to form an MRN complex that efficiently binds double-strand breaks, activates Tel1/ATM and maintains telomeres; yet, it causes hypersensitivity to ionizing radiation and collapsed replication forks, increased Rad52 foci, defective Chk1 signaling and meiotic failure. W248R differs from other ataxia telangiectasia-like disorder analog alleles by the reduced stability of its interaction with Rad50 in cell lysates. Collective results suggest a separation-of-function mutation that disturbs interactions amongst the MRN subunits and Ctp1 required for DNA end processing in vivo but maintains interactions sufficient for Tel1/ATM checkpoint and telomere maintenance functions.  相似文献   

20.
Krogh BO  Llorente B  Lam A  Symington LS 《Genetics》2005,171(4):1561-1570
The Mre11-Rad50-Xrs2 complex is involved in DNA double-strand break repair, telomere maintenance, and the intra-S phase checkpoint. The Mre11 subunit has nuclease activity in vitro, but the role of the nuclease in DNA repair and telomere maintenance remains controversial. We generated six mre11 alleles with substitutions of conserved residues within the Mre11-phosphoesterase motifs and compared the phenotypes conferred, as well as exonuclease activity and complex formation, by the mutant proteins. Substitutions of Asp16 conferred the most severe DNA repair and telomere length defects. Interactions between Mre11-D16A or Mre11-D16N and Rad50 or Xrs2 were severely compromised, whereas the mre11 alleles with greater DNA repair proficiency also exhibited stable complex formation. At all of the targeted residues, alanine substitution resulted in a more severe defect in DNA repair compared to the more conservative asparagine substitutions, but all of the mutant proteins exhibited <2% of the exonuclease activity observed for wild-type Mre11. Our results show that the structural integrity of the Mre11-Rad50-Xrs2 complex is more important than the catalytic activity of the Mre11 nuclease for the overall functions of the complex in vegetative cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号