首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is postulated that the organic nitrate vasodilator agents, including glyceryl trinitrate (GTN) and isosorbide dinitrate (ISDN), are prodrugs, such that biotransformation to the active inorganic metabolite, nitric oxide (NO), occurs prior to the onset of vasodilation. Furthermore, it is proposed that organic nitrate tolerance in vascular tissue involves decreased formation of NO. To test this latter hypothesis, we examined vasodilation induced by NO, GTN, and ISDN in non-tolerant, GTN-tolerant, and ISDN-tolerant rabbit aortic rings (RARs). Isolated RARs were contracted submaximally with phenylephrine; the time of onset of relaxation and percent relaxation of tissue were determined in response to NO (0.3 microM), GTN (0.03 microM), and ISDN (0.12 microM) before and after a 1-h treatment with 500 microM GTN, 500 microM ISDN, or buffer only. The data demonstrated that the response to NO was not changed in GTN-tolerant and ISDN-tolerant tissues, in which there was virtually no GTN-induced or ISDN-induced relaxation. These results are consistent with the postulate that organic nitrate vasodilator drugs must undergo biotransformation to NO before vasodilation can occur and that the mechanism of organic nitrate tolerance involves decreased formation of NO.  相似文献   

2.
We examined the effect of the cytochrome P-450 substrate, 7-ethoxyresorufin (7-ER), and its corresponding product, resorufin, on nitrovasodilator- and endothelium-dependent relaxation of isolated rat aorta. The EC50 value for glyceryl trinitrate (GTN) induced relaxation was increased over 100-fold by 7-ER and less than 3-fold by resorufin. The EC50 value for sodium nitroprusside (SNP) induced relaxation was increased approximately 12-fold by 7-ER, acetylcholine (ACh) induced relaxation was abolished, and relaxation induced by isopropylnorepinephrine was not significantly affected. GTN-, SNP-, and ACh-induced increases in cyclic GMP accumulation were inhibited by 7-ER, as were basal cyclic GMP levels in endothelium-intact, but not endothelium-denuded tissues. 7-ER decreased GTN biotransformation in intact aorta and decreased the regioselective formation of glyceryl-1,2-dinitrate. The activation by GTN and SNP of aortic guanylyl cyclase in broken cell preparations was not affected by 7-ER, indicating that the inhibitory effect of 7-ER is probably not due to a direct interaction with guanylyl cyclase. The inhibitory effect of 7-ER on GTN-induced relaxation was not altered by the addition of superoxide dismutase, suggesting that 7-ER does not act by increasing superoxide anion concentration (which would serve to increase the degradation of nitric oxide (NO) formed during vascular GTN biotransformation). Our data provide further evidence for the role of the cytochrome P-450--cytochrome P-450 reductase system in the biotransformation of GTN to an activator (presumably nitric oxide) of guanylyl cyclase. The data are consistent with a mode of action of 7-ER involving either competitive inhibition of vascular cytochrome P-450 or uncoupling of vascular cytochrome P-450 reductase from cytochrome P-450. The data also suggest that the cytochrome P-450 system facilitates NO release from SNP and that 7-ER has an inhibitory effect on endothelial nitric oxide synthase.  相似文献   

3.
Zhang GG  Shi RZ  Jiang DJ  Chen YR  Jia-Chen  Tang ZY  Bai YP  Xiao HB  Li YJ 《Life sciences》2008,82(13-14):699-707
Previous studies have shown that nitroglycerin (GTN) tolerance is closely related to an oxidative stress-induced decrease in activity of mitochondrial isoforms of aldehyde dehydrogenase (ALDH-2), and prolonged GTN treatment causes endothelial dysfunction. Asymmetric dimethylarginine (ADMA), a major endogenous NO synthase (NOS) inhibitor, could inhibit NO production and induce oxidative stress in endothelial cells. ADMA and its major hydrolase dimethylarginine dimethylaminohydrolase (DDAH) have recently been thought of as a novel regulatory system of endothelium function. The aim of the present study was to determine whether the DDAH/ADMA pathway is involved in the development of GTN tolerance in endothelial cells. Tolerance, reflected by the decrease in cyclic GMP (cGMP) production, was induced by exposure of human umbilical vein endothelial cells (HUVECs) to GTN (10 microM) for 16 h. While the treatment increased reactive oxygen species (ROS) production/malondialdehyde (MDA) concentration and decreased ALDH-2 activity as well as cGMP production, it markedly increased the level of ADMA in culture medium and decreased DDAH activity in endothelial cells. Exogenous ADMA significantly enhanced ROS production/MDA concentration and inhibited ALDH-2 activity, and overexpression of DDAH2 could significantly suppress GTN-induced oxidative stress and inhibition of ALDH-2 activity, which is also attenuated by L-arginine. Therefore, our results suggest for the first time that the endothelial DDAH/ADMA pathway plays an important role in the development/maintenance of GTN tolerance.  相似文献   

4.
Metabolism of nitroglycerin (GTN) to 1,2-glycerol dinitrate (GDN) and nitrite by mitochondrial aldehyde dehydrogenase (ALDH2) is essentially involved in GTN bioactivation resulting in cyclic GMP-mediated vascular relaxation. The link between nitrite formation and activation of soluble guanylate cyclase (sGC) is still unclear. To test the hypothesis that the ALDH2 reaction is sufficient for GTN bioactivation, we measured GTN-induced formation of cGMP by purified sGC in the presence of purified ALDH2 and used a Clark-type electrode to probe for nitric oxide (NO) formation. In addition, we studied whether GTN bioactivation is a specific feature of ALDH2 or is also catalyzed by the cytosolic isoform (ALDH1). Purified ALDH1 and ALDH2 metabolized GTN to 1,2- and 1,3-GDN with predominant formation of the 1,2-isomer that was inhibited by chloral hydrate (ALDH1 and ALDH2) and daidzin (ALDH2). GTN had no effect on sGC activity in the presence of bovine serum albumin but caused pronounced cGMP accumulation in the presence of ALDH1 or ALDH2. The effects of the ALDH isoforms were dependent on the amount of added protein and, like 1,2-GDN formation, were sensitive to ALDH inhibitors. GTN caused biphasic sGC activation with apparent EC(50) values of 42 +/- 2.9 and 3.1 +/- 0.4 microm in the presence of ALDH1 and ALDH2, respectively. Incubation of ALDH1 or ALDH2 with GTN resulted in sustained, chloral hydrate-sensitive formation of NO. These data may explain the coupling of ALDH2-catalyzed GTN metabolism to sGC activation in vascular smooth muscle.  相似文献   

5.
It has been proposed that organic nitrates are prodrugs and biotransformation to a pharmacologically active metabolite (i.e., nitric oxide) must occur before the onset of vasodilation. If this postulated mechanism is correct, tolerance to organic nitrate-induced vasodilation might involve decreased biotransformation of organic nitrates by vascular smooth muscle. In this study, biotransformation of isosorbide dinitrate (ISDN) and glyceryl trinitrate (GTN) was estimated by measuring isosorbide mononitrate (ISMN) and glyceryl dinitrate (GDN), respectively, rather than the nitrate anion, because of a more sensitive method for measurement of ISMN and GDN. To test this hypothesis, isolated rabbit aortic strips (RAS) were made tolerant in vitro by incubation with 500 microM GTN or ISDN for 1 h. After a washout period and submaximal contraction with phenylephrine, the tissues were incubated with either 2.0 microM [14C]ISDN or 0.5 microM [14C]GTN for 2 min. ISDN- or GTN-induced relaxation of RAS was monitored and tissue parent drug and metabolite contents were determined by thin-layer chromatography and liquid scintillation spectrometry. ISDN- and GTN-induced relaxation of RAS and the metabolite concentrations were significantly less for both GTN- and ISDN-tolerant tissue compared with nontolerant tissue. These results are consistent with the hypothesis that organic nitrate biotransformation is required for organic nitrate-induced vasodilation.  相似文献   

6.
Animals treated with nitric oxide synthase (NOS) inhibitors exhibit marked hypersensitivity to the blood pressure lowering effects of exogenous nitric oxide (NO) donors. We used this model as a sensitive index to evaluate the relative importance of reduced biotransformation of glyceryl trinitrate (GTN) to NO in the development of nitrate tolerance. NOS-blockade hypertension using N(G)-nitro-L-arginine methyl ester (L-NAME) caused a marked enhancement of the mean arterial pressure (MAP) decrease mediated by GTN in nontolerant rats. However, even large doses of GTN were unable to change the MAP in GTN-tolerant, NOS-blockade hypertensive animals. In contrast, the MAP responses to the spontaneous NO donor sodium nitroprusside (SNP) were completely unaltered in either tolerant rats or tolerant NOS-blockade hypertensive animals, indicating that NO-dependent vasodilatory mechanisms remain intact despite the development of GTN tolerance. The MAP-lowering effects of GTN in NOS-blockade hypertensive animals were restored 48 h after cessation of chronic GTN exposure. These alterations in the pharmacodynamic response to GTN during tolerance development and reversal were associated with parallel changes in the pattern of GTN metabolite formation, suggesting that the activity of one or more enzymes involved in nitrate metabolism was altered as a consequence of chronic GTN exposure. These findings suggest that the vasodilation resulting from the vascular biotransformation of GTN to NO (or a closely related species) is severely compromised in nitrate-tolerant animals, and that although other mechanisms may contribute to the vascular changes observed following the development of GTN tolerance, decreased GTN bioactivation is likely the most important.  相似文献   

7.
The hemodynamic and anti-ischemic effects of nitroglycerin (GTN) are rapidly blunted as a result of the development of nitrate tolerance. Long-term nitrate treatment also is associated with decreased vascular responsiveness caused by changes in intrinsic mechanisms of the tolerant vasculature itself. According to the oxidative stress concept, increased vascular superoxide and peroxynitrite production as well as an increased sensitivity to vasoconstrictors secondary to activation of protein kinase C as well as vascular NADPH oxidases contribute to the development of tolerance. Recent experimental work has defined new tolerance mechanisms, including inhibition of the enzyme that bioactivates GTN (e.g. mitochondrial aldehyde dehydrogenase [ALDH-2]) and mitochondria as potential sources of reactive oxygen species (ROS). GTN-induced ROS inhibit the bioactivation of GTN by ALDH-2. Both mechanisms impair GTN bioactivation, and now converge at the level of ALDH-2 to support a new theory for GTN tolerance and GTN-induced endothelial dysfunction. The consequences of these processes for GTN downstream targets (e.g. soluble guanylyl cyclase, cyclic guanosine monophosphate-dependent protein kinase) and toxic effects contributing to endothelial dysfunction (e.g. prostacyclin synthase inhibition and NO synthase uncoupling) are discussed. Tolerance and endothelial dysfunction are distinct processes which rely on different sources of ROS and there is good evidence for a crosstalk between these distinct processes. Finally, we will address the question whether ALDH-2 inactivation by nitroglycerin could be a useful marker for clinical nitrate tolerance and discuss the redox-regulation of this enzyme by oxidative stress and dihydrolipoic acid.  相似文献   

8.
The present study compares the tissue distribution of glyceryl trinitrate (GTN) in plasma, heart, brain, aortic tissue, and adipose tissue from GTN tolerant and GTN nontolerant rats at various time points. Furthermore, the cGMP levels in brain, heart, and aortic tissue were studied at various time points as well as the concentration-effect relationship for GTN in aorta isolated at different time points after the last exposure to GTN. Concentrations of GTN were found to be higher in all tissues studied as compared with plasma, and the concentrations of GTN were higher in tissues from tolerant rats as compared with nontolerant rats, except for aortic tissue. Concentration-effect curves obtained in vitro showed that aortic smooth muscle was still tolerant 24 h after the last dose of GTN. The cGMP level in brain was significantly increased by 40% 2 h after a single dose of GTN (50 mg/kg) and in aortic tissue by 50% at 15 min and at 2 h after a single dose of GTN (50 mg/kg). There was no effect on cGMP in brain, while an increase was seen in aortic tissue 15 min after the last dose in tolerant animals. No change in cGMP level was seen in heart neither in nontolerant nor in tolerant animals at 15 min and at 2 h. No effect on cGMP levels in brain, heart, and aortic tissue was seen 8, 16, and 24 h after exposure to GTN in either tolerant or nontolerant rats. In conclusion, GTN does not involve the cGMP system in heart, and tolerance development caused a less pronounced GTN-induced cGMP increase in aortic tissue.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The recent finding that the clinical nitrovasodilator, glyceryl trinitrate (GTN), is mutagenic in Salmonella typhimurium strain TA1535 has been examined in closer detail, with emphasis on its mechanism of action. GTN increased the number of His+ revertants to a maximum of 4 times over background at a GTN dose of 5 μmol/plate. Hamster liver S9 depressed the toxicity of high GTN doses and increased the maximum number of revertants to 5 times over background at 10 μmol/plate. GTN did not cause significant reversion in any of the six other S. typhimurium strains tested (TA1975, TA102, TA1538, TA100, TA100NR, YG1026), although signs of toxicity were observed. Therefore, the mutagenicity of GTN was manifest only in the repair-deficient (uvrB and lacking in pKM101) strain which is responsive to single base changes. Oligonucleotide probe hybridization of TA1535 revertants showed that virtually all of the GTN-induced mutants contained C → T transitions in either the first or second base of the hisG46 (CCC) target codon, with a preference for the latter. A similar mutational spectrum was seen previously with a complex of spermine and nitric oxide (NO) which releases nitric oxide. This suggests that NO, which can be derived from GTN via metabolic reduction, may be responsible for GTN's mutagenic action. The known NO scavenger oxymyoglobin did not substantially alter the dose response of GTN, indicating that extracellular NO was not mediating reversion. The data are consistent with the hypothesis that intracellular nitric oxide is responsible for the observed mutations.  相似文献   

10.
NO-Aspirin (NCX-4016) releases nitric oxide (NO) in biological systems through as yet unidentified mechanisms. In LLC-PK1 kidney epithelial cells, a 5-h pretreatment with glyceryl trinitrate (GTN, 0.1-1 microM) significantly attenuated the cyclic GMP response to a subsequent challenge with both NO-aspirin or GTN. Similarly, NO-aspirin (10-100 microM) was found to induce tolerance to its own cyclic GMP stimulatory action and to that of GTN. In contrast, cyclic GMP stimulation by the spontaneous NO donor SIN-1, which releases NO independently of enzymatic catalysis, remained unimpaired in cells pretreated with GTN or NO-aspirin. The observed cross-tolerance between NO-aspirin and GTN cells indicates that bioactivation pathways of organic nitrates, which have been shown to involve cytochrome P450, may also be responsible for NO release from NO-aspirin. Prolonged treatment with NO-aspirin causes down-regulation of the cellular cyclic GMP response, suggesting that tolerance may occur during therapy with NO-aspirin.  相似文献   

11.
A major limitation of the use of organic nitrates in cardiovascular medicine is the development of tolerance, which has been attributed, in part, to a decrease in their metabolic activation in the vascular smooth muscle cell. Recently, 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1) was shown to potentiate vascular smooth muscle responsiveness to glyceryl trinitrate (GTN), sodium nitroprusside, and the nitric oxide donor NOC 18, in organic nitrate-naive vascular smooth muscle. We used GTN-tolerant rabbit aortic rings (RARs) to test the hypothesis that a non-vasorelaxant concentration of YC-1 enhances the ability of the prototypical organic nitrate GTN to relax vascular smooth muscle and elevate intravascular cGMP under conditions of GTN tolerance. Treatment with YC-1 (3 microM) produced a left shift of the GTN concentration-response curve and decreased the EC50 value for GTN-induced relaxation in both GTN-tolerant and non-tolerant RARs (P < 0.05). Intravascular cGMP elevation induced by GTN was enhanced in the presence of YC-1 in GTN-tolerant and non-tolerant RARs (P < 0.05). These observations indicate that YC-1, or similarly acting drugs, may be useful in overcoming the tolerance that develops during sustained GTN therapy, and that its mechanism may involve enhanced cGMP formation.  相似文献   

12.
INTRODUCTION: Lithium has largely met its initial promise as the first drug to be discovered in the modern era of psychopharmacology. However, the mechanism for its action remains an enigma. The aim of the present study was to verify the effect of acute lithium administration on the nonadrenergic noncholinergic (NANC)-mediated relaxation of rat isolated gastric fundus and to evaluate the role of nitric oxide pathway in this manner. MATERIALS AND METHODS: The isolated rat gastric fundus strips were precontracted with 0.5 microM serotonin and electrical field stimulation (EFS) was applied at 5 Hz frequency to obtain NANC-mediated relaxation in the presence or absence of lithium (0.1, 0.5, 1 and 5 mM). Also, effects of combining lithium (0.1 mM) with the NO synthase (NOS) inhibitor L-NAME (0.03 microM) or the guanylyl cyclase inhibitor ODQ (1 microM) on relaxant responses to EFS was investigated. Moreover, effects of combining lithium (1 mM) with 0.1 mM L-arginine (a precursor of NO) on neurogenic relaxation were assessed. Also, the effect of lithium (1 mM) on relaxation to sodium nitroprusside (SNP; 1 nM-0.1 mM) and glyceryltrinitrate (GTN; 0.1-10 microM) was investigated. RESULTS: The NANC-mediated relaxation was significantly (P<0.001) reduced by lithium in a dose- and time-dependent manner. Combination of lithium (0.1 mM) with L-NAME (0.03 microM), which separately had partial inhibitory effect on relaxations, significantly (P<0.001) reduced the NANC-mediated relaxation of gastric fundus. ODQ (1 microM) significantly inhibited the neurogenic relaxations in the presence or absence of lithium (0.1 and 1 mM). Although L-arginine at 0.1 mM had no effect on relaxation to EFS, it prevented the inhibition by lithium (1 mM) of relaxant responses to EFS. Also, SNP and GTN produced concentration-dependent relaxation in precontracted rat gastric fundus which was not altered by lithium incubation (1 mM). DISCUSSION: Our experiments indicated that lithium likely by interfering with L-arginine/NO pathway in nitrergic nerve can result in impairment of NANC-mediated relaxation of rat gastric fundus.  相似文献   

13.
Mitochondrial aldehyde dehydrogenase (ALDH2) may be involved in the biotransformation of glyceryl trinitrate (GTN), and the inactivation of ALDH2 by GTN may contribute to the phenomenon of nitrate tolerance. We studied the GTN-induced inactivation of ALDH2 by UV/visible absorption spectroscopy. Dehydrogenation of acetaldehyde and hydrolysis of p-nitrophenylacetate (p-NPA) were both inhibited by GTN. The rate of inhibition increased with the GTN concentration and decreased with the substrate concentration, indicative of competition between GTN and the substrates. Inactivation of p-NPA hydrolysis was greatly enhanced in the presence of NAD(+), and, to a lesser extent, in the presence of NADH. In the presence of dithiothreitol (DTT) inactivation of ALDH2 was much slower. Dihydrolipoic acid (LPA-H(2)) was less effective than DTT, whereas glutathione, cysteine, and ascorbate did not protect against inactivation. When DTT was added after complete inactivation, dehydrogenase reactivation was quite modest (< or =16%). The restored dehydrogenase activity correlated inversely with the GTN concentration but was hardly affected by the concentrations of acetaldehyde or DTT. Partial reactivation of dehydrogenation was also accomplished by LPA-H(2) but not by GSH. We conclude that, in addition to the previously documented reversible inhibition by GTN that can be ascribed to the oxidation of the active site thiol, there is an irreversible component to ALDH inactivation. Importantly, ALDH2-catalyzed GTN reduction was partly inactivated by preincubation with GTN, suggesting that the inactivation of GTN reduction is also partly irreversible. These observations are consistent with a significant role for irreversible inactivation of ALDH2 in the development of nitrate tolerance.  相似文献   

14.
The present study was designed in order to clarify the mechanisms of diminished phosphoinositide (PI) hydrolysis by lipopolysaccharide (LPS) in blood vessels. In vitro pretreatment of rat aortic strips with LPS (1 microg/ml) for 10 or 24 hrs inhibited 5-hydroxytryptamine (5-HT, 100 microM)-induced inositol monophosphate accumulation in a time-dependent manner. Coincubation of the aortas with N(G)-monomethyl-L-arginine (LNMMA, 1 mM) completely prevented the early diminution of 5-HT-stimulated PI hydrolysis after 10-hr exposure to LPS but did not affect the delayed diminution after 24-hr exposure. Coincubation with cycloheximide (1 microM) did not prevent the delayed LPS-induced diminution of phosphoinositide hydrolysis. Tetraethylammonium (10 mM) did not restore the diminished phosphoinositide hydrolysis after 24-hr exposure to LPS, suggesting that the diminution is not due to K+ channel activation. Sodium fluoride (10 mM)-induced inositol monophosphate accumulation was also decreased in the aortic strips after LPS incubation for 24 hrs, and this decrease was not prevented by coincubation with LNMMA. LPS incubation time-dependently increased nitric oxide (NO) production in the aortas, which was completely inhibited by LNMMA or cycloheximide. These results suggest that NO is mainly involved in the inhibitory action of LPS on stimulated-PI hydrolysis in the early stage, while in the later stage, a factor(s) besides NO causes attenuation of the stimulated-PI hydrolysis.  相似文献   

15.
The effects of authentic nitric oxide (NO, 10(-6) M) and NO-donors such as sodium nitroprusside (SNP, 10(-5) M) and glyceryl trinitrate (GTN, 10(-4) M) on contractile force and free intracellular calcium level ([Ca2+]i) were studied on precontracted with high potassium chloride (KCl, 70 mM) isolated rings of rat tail artery. The sensitivity of contractile myofilaments to Ca2+ was measured using chemically permeabilized (alpha-toxin, beta-escin, Triton X-100) vascular rings. [Ca2+]i and contractile activity were measured simultaneously. The relationship of [Ca2+]i and tension developed was studied in endothelium-denuded rings and controlled calcium response was evaluated in both endothelium-denuded and permeabilized vascular rings. Both authentic NO and NO-donors decreased [Ca2+]i and high potassium-induced tension with a different time course. Inhibitor of soluble guanylyl cyclase (sGC) LY83583 (10(-5) M) did not affect SNP-induced relaxation whereas the other sGC inhibitor ODQ (10(-6) M) attenuated SNP-induced relaxation. Both inhibitors had no effect on NO- and SNP-induced reduction in [Ca2+]i. On the contrary, GTN induced neither relaxation nor decrease in [Ca2+]i on application of both LY83583 and ODQ. Tail artery rings permeabilized with alpha-toxin, beta-escin, but not with Triton X-100 were relaxed by authentic NO and NO-donors, but to a less extent than non-permeabilized rings. Dithioerythritol (DTE, 5 x 10(-3) M) that maintains sulfhydryl (SH) groups in reduced state preventing their nitrosylation attenuated NO-induced relaxation in both non-permeabilized and permeabilized tail artery rings. The cyclic heptapeptide mycrocystin-LR (MC-LR) (10(-5) M), an inhibitor of type 1 and 2A phosphatases, induced sustained increase in tension of beta-escin permeabilized rings in low Ca2+ (10(-8) M) solution. The tension was not affected by authentic NO and SNP. We conclude that authentic NO and SNP relax rat tail artery smooth muscle (SM) in the presence of inhibitors of sGC via cyclic guanosine monophosphate (cGMP)-independent pathway, whereas relaxation induced by GTN is inhibited. The data demonstrate that cGMP-dependent pathway in vascular smooth muscle is ubiquitous, but not the only way of relaxation induced by NO. NO can modulate vascular tone directly by reducing sensitivity of contractile myofilaments to [Ca2+]i and may involve activation of protein phosphatase(s).  相似文献   

16.
Summary Nitric oxide (NO) is a molecule involved in several signal transduction pathways leading either to proliferation or to cell death. Induction of ornithine decarboxylase (ODC), the key enzyme of polyamine biosynthesis, represents an early event preceding DNA synthesis. In some cell types increased ODC activity seems to be involved in cytotoxic response. We investigated the role of NO and ODC induction on the events linked to cell proliferation or to cell death in cultured chick embryo cardiomyocytes. Exposure of cardiomyocytes to tumor necrosis factor (TNF) and lipopolysaccharide (LPS) caused NO synthase (NOS) and ODC induction as well as increased incorporation of [3H]-thymidine. This last effect was blocked by a NOS inhibitor and was strongly reduced by difluoromethylornithine (DFMO), an irreversible inhibitor of ODC. Sodium nitroprusside (SNP), an exogenous NO donor, inhibited the increases of NOS and ODC activities and abolished the mitogenic effect of TNF and LPS. Moreover, SNP alone caused cell death in a dose dependent manner. The cytotoxicity of SNP was not affected by DFMO while it was prevented by antioxidants. The results suggest that different pathways would mediate the response of cardiomyocytes to NO: they can lead either to ODC induction and DNA synthesis when NO is formed through NOS induction or to growth inhibition and cell death, when NO is supplied as NO donor. Increased polyamine biosynthesis would mediate the proliferative response of NO, while the cytotoxicity of exogenous NO seems to involve some oxidative reactions and to depend on the balance between NO availability and cellular redox mechanisms.  相似文献   

17.
INTRODUCTION: Some studies have reported erectile dysfunction in patients receiving lithium through a mechanism that has not yet been defined. The aim of the present study was to verify the effect of acute lithium administration on the nonadrenergic noncholinergic (NANC)- and endothelium-mediated relaxation of rat isolated corpus cavernosum. MATERIALS AND METHODS: The isolated rat corporeal strips were precontracted with phenylephrine hydrochloride (7.5 microM) and electrical field stimulation (EFS) was applied at different frequencies (2, 5, 10, and 15 Hz) to obtain NANC-mediated relaxation or relaxed by adding cumulative doses of acetylcholine (10nM-1mM) to obtain endothelium-dependent relaxation in the presence or absence of lithium (0.3, 0.5, 1, and 5mM). Also, effects of combining lithium (0.3mM) with 30 nM and 0.1 nM L-NAME (an NO synthase inhibitor) on NANC- and acetylcholine-mediated relaxation was investigated, respectively. Moreover, effects of combining lithium (1mM) with 0.1mM and 10 microM L-arginine (a precursor of NO) on NANC- and endothelium-mediated relaxation was assessed, respectively. Also, the effect of lithium (1mM) on relaxation to sodium nitroprusside (SNP; 1nM-1mM), an NO donor, was investigated. RESULTS: The NANC-mediated relaxation was significantly (P<0.001) reduced by 1 and 5mM, but not by 0.3 and 0.5mM lithium. Lithium significantly (P<0.001) attenuated the maximum response to acetylcholine in a concentration-dependent manner. Combination of lithium (0.3mM) with 30 and 0.1 nM L-NAME, which separately had a minimum effect on NANC- and endothelium-mediated relaxation, significantly (P<0.001) reduced the NANC- and endothelium-mediated relaxation, respectively. Although L-arginine at 10 microM and 0.1mM did not alter the relaxant responses to acetylcholine and EFS, it improved the inhibition by lithium (1mM) of relaxant responses to acetylcholine and EFS, respectively. Also, SNP produced similar concentration-dependent relaxations from both groups. DISCUSSION: Our experiments indicated that lithium likely by interfering with NO pathway in both endothelium and nitrergic nerve can result in impairment of both the endothelium- and NANC-mediated relaxation of rat corpus cavernosum.  相似文献   

18.
Nitric oxide (NO) is synthesized from l-arginine by the Ca(2+)/calmodulin-sensitive endothelial NO synthase (NOS) isoform (eNOS). The present study assesses the role of Ca(2+)/calmodulin-dependent protein kinase II (CaMK II) in endothelium-dependent relaxation and NO synthesis. The effects of three CaMK II inhibitors were investigated in endothelium-intact aortic rings of normotensive rats. NO synthesis was assessed by a NO sensor and chemiluminescence in culture medium of cultured porcine aortic endothelial cells stimulated with the Ca(2+) ionophore A23187 and thapsigargin. Rat aortic endothelial NOS activity was measured by the conversion of l-[(3)H]arginine to l-[(3)H]citrulline. Three CaMK II inhibitors, polypeptide 281-302, KN-93, and lavendustin C, attenuated the endothelium-dependent relaxation of endothelium-intact rat aortic rings in response to acetylcholine, A23187, and thapsigargin. None of the CaMK II inhibitors affected the relaxation induced by NO donors. In a porcine aortic endothelial cell line, KN-93 decreased NO synthesis and caused a rightward shift of the concentration-response curves to A23187 and thapsigargin. In rat aortic endothelial cells, KN-93 significantly decreased bradykinin-induced eNOS activity. These results suggest that CaMK II was involved in NO synthesis as a result of Ca(2+)-dependent activation of eNOS.  相似文献   

19.
Accumulating evidence suggests that hyperbaric oxygen (HBO) stimulates neuronal nitric oxide (NO) synthase (NOS) activity, but the influence on endothelial NOS (eNOS) activity and vascular NO bioavailability remains unclear. We used a bioassay employing rat aortic rings to evaluate vascular NO bioavailability. HBO exposure to 2.8 atm absolute (ATA) in vitro decreased ACh relaxation. This effect remained unchanged, despite treatment with SOD-polyethylene glycol and catalase-polyethylene glycol, suggesting that the reduction in endothelium-derived NO bioavailability was independent of superoxide production. In vitro HBO induced contraction of resting aortic rings with and without endothelium, and these contractions were reduced by the NOS inhibitor N(omega)-nitro-l-arginine. In addition, in vitro HBO attenuated the vascular contraction produced by norepinephrine, and this effect was reversed by N(omega)-nitro-l-arginine, but not by endothelial denudation. These findings indicate stimulation of extraendothelial NO production during HBO exposure. A radiochemical assay was used to assess NOS activity in rat aortic endothelial cells. Catalytic activity of eNOS in cell homogenates was not decreased by HBO, and in vivo HBO exposure to 2.8 ATA was without effect on eNOS activity and/or vascular NO bioavailability in vitro. We conclude that HBO reduces endothelium-derived NO bioavailability independent of superoxide production, and this effect seems to be unrelated to a decrease in eNOS catalytic activity. In addition, HBO increases the resting tone of rat aortic rings and attenuates the contractile response to norepinephrine by endothelium-independent mechanisms that involve extraendothelial NO production.  相似文献   

20.
Acetylcholine-induced, endothelium-dependent relaxation of norepinephrine-precontracted aortic strips, was severely impaired after exposure to a hypoxanthine/xanthine oxidase reaction generating oxygen radicals. This effect was more evident in aortic strips of aging rats (24 months old) in comparison to young rats (3 months old). The addition of authentic ·NO (1 M) completely relaxed aortic strips exposed to oxidative stress both in young and aging rats. In vitro EPR measurements showed that the ·NO signal was reduced by enzymatic O2-generating reaction.The activity of a partial purified preparation of constitutive NO synthase from rat cerebellum was significantly decreased after exposure to exogenous oxygen radicals. Pretreatment of aortic strips with 100 M alpha-tocopherol-phosphate, produced a significant improvement of acetylcholine-dependent relaxation in the aortic strips exposed to oxidative stress, particularly in the aged vessel. The content of malondialdehyde in aortic tissue did not change after oxidative stress or alpha-tocopherol pretreatment. Alpha-tocopherol was unable to recover the NO synthase activity depressed in vitro by hypoxanthine/xanthine oxidase reaction. This study confirms that an oxidative stress impairs the endothelium-mediated vasodilation. Alpha-tocopherol pretreatment protects the vessel against this damage. The mechanism of action of alpha-tocopherol is unknown, but seems unrelated to an antioxidant activity.Abbreviations ACh acethylcholine - EPR electron paramagnetic resonance - ROS reactive oxygen species - MDA malondialdehyde - NE norepinephrine - cNOS constitutive nitric oxide synthase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号