首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Direct microcalorimetric measurements were made of the reaction between acetylcholine chloride and acetylcholinesterase (EC 3.1.1.7) that was extracted from electric eel (Electrophorus electricus) and purified by affinity chromatography. Tris-HCl, sodium phosphate and potassium phosphate were used as buffers and sources of ions for the reaction. At pH 7.2 and in 0.1-0.2 M phosphate buffer, the delta H for acetylcholine hydrolysis was found to be -0.107 kcal/mol (under buffered conditions) and -0.931 kcal/mol under unbuffered conditions (water). At pH 8.0 in 0.1 M Tris-HCl buffer, values greater than -2.5 kcal/mol were obtained, with the highest value of -9.2 kcal/mol being seen with bovine erythrocyte acetylcholinesterase. Tris-HCl buffer at 4 X 10(-2) M enhanced the reaction velocity by 51.2% over that of 4 X 10(-3) M buffer. Enzyme purity, pH and ionic milieu of reaction mixture, and substrate concentration affected the measured delta H value.  相似文献   

2.
Gamma-irradiated E coli ribosomes and tRNA, in aerated solutions, were inactivated with D37 doses of 144 and 77 Gy, respectively. Aminoacyl-tRNA-synthetases were only slightly inactivated under comparable conditions. Effects of additives to ribosome and tRNA solutions suggest that hydroxyl radicals were the major damaging species, that superoxide anions were not damaging and that radiolytically-formed hydrogen peroxide was also unimportant. Part of the damage by hydroxyl radicals is expressed through secondary radicals produced from additives and buffers. Results obtained with three different buffers suggest that (1) acetate ions provide protection by competing for hydroxyl radicals, (2) chloride ions are without effect and (3) inactivation of ribosomes and aminoacyl-tRNA-synthetases in Tris-HCl/MgCl2 and phosphate/MgCl2 buffered solutions was similar but the tRNA inactivation was lower in Tris-HCl/MgCl2 buffer.  相似文献   

3.
The high concentration of gamma-aminobutyric acid (GABA) recently demonstrated in rat ovary prompted us to examine the capacity of ovarian slices to take up [3H]GABA. Active uptake, dependent on temperature and sodium concentration, was observed and a kinetic constant (Km) of 1.0 microM found for the uptake process. Ouabain (100 microM) reduced the rate of accumulation of [3H]GABA. Uptake was inhibited only partially by 100 microM d,l-nipecotic acid, but more strongly by 100 microM beta-alanine. These results suggest that the uptake system in ovary possesses properties similar to those of high-affinity GABA transport systems in the brain.  相似文献   

4.
1. The effect of pH change on the reconstitution of aspartate aminotransferase (EC 2.6.1.1), i.e. the reactivation of the apoenzyme with coenzyme (pyridoxal phosphate and pyridoxamine phosphate), was studied in the pH range 4.2-8.9 by using three buffer systems at concentrations ranging from 0.025 to 0.1m. 2. Although the profile of the reconstitution rate-pH curve in the range pH5.2-6.8 (covered by sodium cacodylate-HCl buffer) reflects the influence of the H(+) concentration on the reconstitution process, the profile of the curve in the pH ranges 4.2-5.6 and 7.2-8.25 (covered respectively by sodium acetate-acetic acid and Tris-HCl buffers) appears to be influenced by the ionic strength of the buffer. 3. The reconstitution is also influenced by univalent inorganic ions such as halide ions and, to a lesser extent, alkali metal ions, which are known to alter the water structure.  相似文献   

5.
The thiol-dependent gelation of conalbumin was highly dependent on both pH and the buffers used. The hardness of the gels was the maximum at pH 8.0 ~8.8. At pH 8.0, it was several time greater in sodium phosphate buffer than in Tris-HCl buffer. Comparison of the effects of inorganic and organic salts revealed that the difference in gel hardness was caused by the difference in anion species. The hardness of the thiol-dependent gel formed under different anion conditions was inversely correlated with the rate of gel formation. Scanning electron microscopic study showed that the gel formed in sodium phosphate appeared as a sponge-like, uniform network structure, while that in Tris-HCl was coarse.  相似文献   

6.
Using homogenates of catfish whole-brain in an isotonic medium, we observed an accumulation of [3H]GABA that was temperature-sensitive and was dependent on the presence of sodium ions, the optimum concentration of which was 75 mM. A kinetic analysis showed that the [3H]GABA uptake mechanism became saturated with increasing GABA concentrations. A high-affinity system, only, was evident whose Km was calculated as 12 microM. Four structural analogues of GABA were found to be competitive inhibitors of uptake, and Ki values were determined. Nipecotic acid (Ki = 1.8 microM) and guvacine (Ki = 3.9 microM) were the most potent compounds, however 2,4-diaminobutyric acid (Ki = 8.9 microM) and beta-alanine (Ki = 55 microM) also had an effect. The characteristics of the uptake mechanism in catfish brain that we have studied are similar to those reported for uptake by mammalian brain except that in the latter, both a high- and a low-affinity transport processes are present. Our data, taken together with what is already known, strongly suggest that the biochemistry of the GABA system in lower vertebrates does not differ significantly from that in mammals.  相似文献   

7.
The solubility of palmitoyl-CoA is strongly affected by Mg2+ concentrations commonly used in acyltransferase reactions. In 0.10 M Tris-HCl buffer at pH 7.4 or 8.5, all of the palmitoyl-CoA in 10 microM solutions and 90% of the palmitoyl-CoA in 100 microM solutions are precipitated by 1 mM Mg2+. In 0.05 M phosphate at pH 7.4, and in 0.10 M Tris-HCl containing 0.4 M KCl, the substrate remains soluble at Mg2+ concentrations below 4-5 mM. Above 5 mM Mg2+, palmitoyl-CoA is insoluble in all of these buffers. Substrate solubility could therefore be a limiting factor when free Mg2+ and fatty acyl-CoAs are present together during acyltransferase assays.  相似文献   

8.
Lead transport at the blood-brain barrier has been studied by short (less than 1.5 min) vascular perfusion of one cerebral hemisphere of the rat with a buffered physiological salt solution at pH 7.4 without calcium, magnesium, or bicarbonate and containing 203 Pb-labelled lead chloride. In the absence of complexing agents, 203Pb uptake was rapid, giving a space of 9.7 ml/100 g of wet frontal cortex at 1 min. Lead-203 influx was linear with lead concentration up to 4 microM. Five percent albumin, 200 microM cysteine, or 1 mM EDTA almost abolished 203Pb uptake. Lead-203 entry into brain was uninfluenced by varying the calcium concentration or by magnesium or the calcium blocker methoxyverapamil. Similarly, 1 mM bicarbonate or 50 microM 4,4'-diisothiocyanostilbene-2,2'-disulphonic acid was without effect. Increasing the potassium concentration reduced 203Pb uptake. Vanadate at 2 mM, 2 microM carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (a metabolic uncoupler), or 2 microM stannic chloride all markedly enhanced lead entry into brain, as did a more alkaline pH (7.80). In conclusion, there is a mechanism allowing rapid passive transport of 203Pb at the brain endothelium, perhaps as PbOH+. Lead uptake into brain via this system is probably made less important by active transport of lead back into the capillary lumen by the calcium-ATP-dependent pump.  相似文献   

9.
Specific binding of [3H]diazepam at a free concentration of 2 nM was found to be maximally potentiated by 117% in Tris-HCl buffer and 160% in Tris-citrate buffer by ethylenediamine (EDA), but only at relatively high concentrations of EDA (ED50 = 5 X 10(-5) M), although this potentiation was susceptible to a low dose (6 microM) of bicuculline. Dose-response curves show that EDA differs from GABA with respect to both potency and efficacy. In additivity experiments no evidence was found that EDA could act as a partial agonist at GABA receptors, and it was concluded that EDA and GABA apparently do not potentiate [3H]diazepam binding by acting on the same receptor. Scatchard analysis lends support to this hypothesis, indicating that the potentiation of [3H]diazepam binding by 3.16 X 10(-3) M EDA is due to an increase in receptor number (from 930 to 1170 fmol/mg protein) and not receptor affinity (remaining constant about 20 nM). Subsequent studies showed the potentiation to be reversible. It is concluded that EDA can act on the GABA-benzodiazepine receptor ionophore complex but that this is probably not a direct action on the GABA receptor. It is suggested that EDA can be used to differentiate GABA receptors linked to benzodiazepine receptors from those not so linked.  相似文献   

10.
Noradrenaline (NA) can be released by both exocytosis and by the membrane transporter responsible for transmitter uptake. Previously, we reported that S-nitrosocysteine (SNC), an S-nitrosothiol, stimulated [3H]NA release from the rat hippocampus. In this study, we investigated the involvement of the NA transport system in SNC-stimulated NA release from rat brain (cerebral cortex and hippocampus) slices. [3H]NA release by SNC in normal Na(+) (148 mM)-containing buffer from both slices was slightly, but significantly, inhibited by 1 microM desipramine, an NA transporter inhibitor. [3H]NA release in low Na(+) (under 14 mM)-containing buffer was inhibited by over 50% by desipramine. [3H]NA release by tyramine from both slices in normal and low Na(+) buffer was almost completely inhibited by desipramine. [3H]NA uptake into cerebral cortical slices was observed in low Na(+) buffer at 20-30% of normal Na(+) buffer levels. [3H]NA uptake in both normal and low Na(+) buffers was inhibited by desipramine and by SNC. Although [3H]NA uptake in normal Na(+) buffer was almost completely inhibited by 500 microM ouabain, the uptake in low Na(+) buffer was resistant to ouabain. These findings suggest the existence of a functional Na(+)-independent NA transport system and that SNC stimulates NA release at least partially via this system in brain slices.  相似文献   

11.
Several buffer compositions with a wide range of pH values have been reported for radiometric assay of tyrosine hydroxylase (TH) in biological samples. Assay sensitivity becomes a prime concern while analyzing TH in minute samples like tissue biopsies or discrete regions of rodent brain wherein lower enzyme levels are anticipated due to smaller sample sizes. It was therefore rationalized to evaluate relative affinities of three commonly used assay buffers (sodium phosphate, sodium acetate, and Tris-acetate) with TH enzyme activity. The impact of buffer pH and cofactor concentration on the sensitivity of TH assay was also investigated. Striata from rats or mice were homogenized, respectively, with 1.0 or 0.5 ml of the assay buffer containing 0.5% Triton X-100. The supernatants (200 microl) were incubated (20 min, 37 degrees C) with 0.8 microCi [3H] L-tyrosine, 1.5 mM DL-6-methyl-5,6,7,8-tetrahydropterine (6-MPH4), 100 U catalase, and 1.0 microM dithiothreitol in a total volume of 300 microl. The reaction was terminated by 1-ml suspension of activated charcoal in 0.1 M HCl. After centrifugation, 200-microl aliquots were mixed with 5 ml of cocktail for quantitation of [3H] H2O in supernatant. The results showed significant impact of pH rather than the buffer composition on the sensitivity of TH assay. An optimal pH range was found to be 5.5-6.0, whereas TH activity was significantly inhibited at pH 5.0 and pH 6.8 (F = 55.09, P = 0.000). A significantly high TH activity was observed with 1.5 mM 6-MPH4, whereas higher concentrations (3.0-4.5 mM) inhibited TH activity (F = 7.47, P = 0.005). Analysis of serially diluted striatal homogenates showed a significant correlation between TH activity and sample amount. The assay reaction was linear for 20- and 30-min incubation for rat and mice striata, respectively.  相似文献   

12.
Incubation of rat brain synaptosomes with xanthine and xanthine oxidase (X/XO) resulted in an inhibition of gamma-aminobutyric acid (GABA) uptake. The inhibitory effects of X/XO were temperature- and time-dependent, and were characterized by an increased Km for GABA and a decreased Vmax. Inhibition of GABA uptake by X/XO was associated with both the formation of malonyldialdehyde (MDA) and conjugated dienes, indicating that lipid peroxidation was involved. Studies with catalase, superoxide dismutase (SOD), mannitol, and chelated iron suggested that hydroxyl radical (OH X) was probably responsible for the initiation of lipid peroxidation. Both the peroxidation of synaptosomal membranes and the inhibition of GABA uptake by X/XO were enhanced by the addition of ADP and FeCl2. The X/XO-induced inhibition of GABA uptake by synaptosomes could be prevented by preincubation of synaptosomes with certain glucocorticoids prior to X/XO exposure. Methylprednisolone sodium succinate (MPSS), dexamethasone sodium phosphate (DMSP), and prednisolone sodium succinate (PSS) all prevented the inhibition of GABA uptake by X/XO. MPSS was most effective at concentrations around 100 microM, DMSP was slightly more potent, and PSS was optimal at around 300 microM. On the other hand, hydrocortisone sodium succinate (HCSS) was ineffective at preventing X/XO-induced inhibition of GABA uptake at concentrations up to 3 mM. The steroids are presumed to work through a mechanism that blocked the formation of lipid peroxides, as MPSS inhibited the formation of conjugated dienes in synaptosomes exposed to X/XO at a concentration that also protected GABA uptake.  相似文献   

13.
The effects of several anaesthetic, convulsant and anticonvulsant drugs were studied upon high affinity [3H]GABA and [3H]diazepam binding to rat brain synaptosomal membranes in chloride-containing incubation buffers at 25 degrees C, conditions under which pentobarbitone extensively enhanced binding of both ligands to GABA-benzodiazepine-receptor-ionophore complexes. Of the compounds studied, only (+)-etomidate enhanced both GABA and diazepam binding; the sedative-hypnotic glutethimide weakly enhanced GABA binding while inhibiting diazepam binding. Several drugs, including beta-butyl-beta-methyl-glutarimide, phenobarbitone, pentylenetetrazole, and ketamine reversed the enhancement of GABA binding by pentobarbitone (500 microM) while not altering basal GABA or diazepam binding. Enhancement of high affinity GABA binding does not appear to be a general property of sedative or anticonvulsant drugs.  相似文献   

14.
Several Good buffers (MOPS, ACES, BES, HEPES, ADA, and PIPES) competitively inhibited both high-affinity and low-affinity [3H]gamma-aminobutyric acid receptor binding to rat brain synaptic membranes. The most potent inhibitor was MOPS, which had Ki values of 180 nM and 79 nM for the high- and low-affinity binding sites, respectively. HEPES had Ki values of 2.25 mM and 115 microM. The buffers had no appreciable effect on sodium-dependent GABA binding or on gamma-aminobutyrate aminotransferase activity. Surprisingly, the buffers were extremely ineffectual as inhibitors of either high- or low-affinity [3H]muscimol binding. Indeed, they were of the order of 10(5) times less effective in this case than against [3H]GABA binding. These results clearly show (a) that the use of such buffers as MOPS or HEPES should be avoided in studying the interaction of GABA with its receptor, and (b) the binding sites of [3H]GABA and [3H]muscimol are not identical.  相似文献   

15.
1-Methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) is known to cause a destruction of the dopaminergic nigrostriatal pathway in certain animal species including mice. MPTP and some structurally related analogs were tested in vitro for their capacity to inhibit the uptake of [3H]3,4-dihydroxyphenylethylamine-([3H]DA), [3H]5-hydroxytryptamine ([3H]5-HT), and [3H]gamma-aminobutyric acid [( 3H]GABA) in mouse neostriatal synaptosomal preparations. MPTP was a very potent inhibitor of [3H]5-HT uptake (IC50 value 0.14 microM), a moderate inhibitor of [3H]DA uptake (IC50 value 2.6 microM), and a very weak inhibitor of [3H]GABA uptake (no significant inhibition observed at 10 microM MPTP). In other experiments, MPTP caused some release of previously accumulated [3H]DA and [3H]5-HT, but in each case MPTP was considerably better as an uptake inhibitor than as a releasing agent. The 4-electron oxidation product of MPTP, i.e., 1-methyl-4-phenyl-pyridinium iodide (MPP+), was a very potent inhibitor of [3H]DA uptake (IC50 value 0.45 microM) and of [3H]5-HT uptake (IC50 value 0.78 microM) but MPP+ was a very weak inhibitor of [3H]GABA uptake. These data may have relevance to the neurotoxic actions of MPTP.  相似文献   

16.
The mechanism of increasing effect of CuCl2 on specific [3H]cimetidine binding was examined in brain membranes of rats. CuCl2-Induced elevation of [3H]cimetidine binding was high in Krebs-Ringer solution (pH 7.4) compared to those in 50 mM Na, K-phosphate buffer (pH 7.4) and in 50 mM Tris-HCl buffer (pH 7.4). CaCl2 (5–50 mM) inhibited effect of CuCl2, but NaCl (25–200 mM), KCl (5–100 mM) or MgCl2 (5–50 mM) did not. CuCl2 (50 μM) elevated 9.3- and 2.5-fold the binding in phosphate- and Tris—HCl buffer, respectively. EDTA-2Na decreased the binding elevated by 50 μM CuCl2 in phosphate buffer to the similar level in Tris-HCl buffer, whereas it did not affect those in Tris-HCl buffer. The absorption spectra of cimetidine and CuCl2 mixture showed a peak at 317 nm in phosphate buffer that was not observed in Tris-HCl buffer. It is suggested that cimetidine-Cu2+ chelate complex could be formed in phosphate buffer, resulting in higher amount of binding in phosphate buffer than in Tris-HCl buffer. PdCl2 also caused a marked elevation in [3H]cimetidine binding, seeming to be due to formation of cimetidine-Pd2+ chelate complex. There were two types of [3H]cimetidine binding in the presence of 20 nM PdCl2: high affinity binding with Kd = 0.7 ± 0.1 nM and low affinity binding with Kd = 44.3 ± 3.0 nM. It is suggested that cimetidine-Cu2+ complex binds to cimetidine binding sites in brain with higher affinity than cimetidine alone.  相似文献   

17.
The ability of gamma-aminobutyric acid (GABA) and glycine (Gly) to modulate each other's release was studied in synaptosomes from rat spinal cord, cerebellum, cerebral cortex, or hippocampus, prelabeled with [3H]GABA or [3H]Gly and exposed in superfusion to Gly or to GABA, respectively. GABA increased the spontaneous outflow of [3H]Gly (EC50, 20.8 microM) from spinal cord synaptosomes. Neither muscimol nor (-)-baclofen, up to 300 microM, mimicked the effect of GABA, which was not antagonized by either bicuculline or picrotoxin. However, the effect of GABA was counteracted by the GABA uptake inhibitors nipecotic acid and N-(4,4-diphenyl-3-butenyl)nipecotic acid. Moreover, the GABA-induced [3H]Gly release was Na+ dependent and disappeared when the medium contained 23 mM Na+. The effect of GABA was Ca2+ independent and tetrodotoxin insensitive. Conversely, Gly enhanced the outflow of [3H]GABA from rat spinal cord synaptosomes (EC50, 100.9 microM). This effect was insensitive to both strychnine and 7-chlorokynurenic acid, antagonists at Gly receptors, but it was strongly Na+ dependent. Also, the Gly-evoked [3H]GABA release was Ca2+ independent and tetrodotoxin insensitive. GABA increased the outflow of [3H]Gly (EC50, 11.1 microM) from cerebellar synaptosomes; the effect was not mimicked by either muscimol or (-)-baclofen nor was it prevented by bicuculline or picrotoxin. The GABA effect was, however, blocked by GABA uptake inhibitors and was Na+ dependent. Gly increased [3H]GABA release from cerebellar synaptosomes (EC50, 110.7 microM) in a strychnine- and 7-chlorokynurenic acid-insensitive manner. This effect was Na+ dependent. The effects of GABA on [3H]Gly release seen in spinal cord and cerebellum could be reproduced also with cerebrocortical synaptosomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
M Ito  S Periyasamy  T H Chiu 《Life sciences》1986,38(12):1089-1096
[3H]L-glutamic acid binding to microfuge tubes and glass was investigated in four buffers. Background binding to these materials was negligible, but was increased by centrifugation or suction in Tris-HCl and Tris-citrate buffer. This binding was much less or eliminated when HEPES-KOH, or Tris-acetate buffer was used instead. [3H]L-glutamate binding to microfuge tubes was inhibited by L- but not D-isomers of glutamate and aspartate. DL-2-amino-7-phosphonoheptanoic acid also did not inhibit the binding. Other compounds which showed low to moderate inhibition were: N-methyl-D-aspartate, quisqualate, L-glutamic acid diethyl ester, N-methyl-L-aspartate, kainate, and 2-amino-4-phosphonobutyrate. Binding was inhibited by denatured rat brain membranes. A protein-dependent [3H]glutamate binding was obtained with a repeatedly frozen-thawed membrane preparation when binding was done in Tris-acetate buffer. It is recommended that Tris-acetate or HEPES-KOH buffer should be used in the glutamate binding assay. If Tris-HCl or Tris-citrate buffer is used, appropriate control experiment should be done to correct for binding to microfuge tubes or glass fiber filters.  相似文献   

19.
1. The extent to which the cytoplasmic membrane of the Gram-positive bacterium Bacillus licheniformis formed inside-out vesicles was studied with the freeze-fracture technique. The membrane orientation appeared to be dependent on the buffer compositon as well as on the lysis procedure used. 2. By manipulating these conditions, membrane preparations were obtained with the percentage of inside-out vesicles varying from 15 to 80%. 3. More vesicles had the opposite orientation when the cells were lysed in potassium phosphate buffer than when they were lysed in sodium phosphate buffer. Tris-HCl buffer favoured the formation of inside-out vesicles more than phosphate buffer. 4. Lysis of protoplasts in hypotonic buffers resulted in more inside-out vesicles than did direct lysis of cells in hypotonic media. 5. In an attempt to explain the observed differences, experiments were performed in which the morphology of thin-sectioned lysing cells in sodium phosphate buffer was compared with that in potassium phosphate buffer. The results from these experiments indicate that the formation of inside-out vesicles is brought about by an effect on the membrane itself rather than on the cell wall, on the cell wall membrane association, or on the cytoplasm.  相似文献   

20.
IONS AND THE TRANSPORT OF GAMMA-AMINOBUTYRIC ACID BY SYNAPTOSOMES   总被引:10,自引:8,他引:2  
Abstract— The initial rate of uptake of [2,3-3H]gamma-aminobutyric acid by rat brain synaptosomes was studied under incubation conditions in which GABA metabolism was minimal. The presence of both sodium and potassium in the incubation medium was essential for sustained uptake. Uptake proceeded for a short period of time in the absence of potassium and then ceased. No uptake was observed when sodium chloride was completely replaced with sucrose or choline chloride. The sodium-dependence curve for GABA uptake was markedly sigmoid. The sigmoid character of the curve was not attributable to a lag phase in uptake at low sodium concentrations. Calcium strongly stimulated the initial rate of uptake at low sodium concentrations but had little effect at sodium concentrations above 100 m m and was not able to support uptake in the absence of sodium. The sigmoid character of thesodium-dependence curve was completely eliminated by 20 m m calcium ion. Magnesium and phosphate had little effect on the initial rate of GABA uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号