首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kaposi’s sarcoma-associated herpesvirus (KSHV) is a recently discovered DNA tumor virus that belongs to the γ-herpesvirus subfamily. Though numerous studies on KSHV and other herpesviruses, in general, have revealed much about their multilayered organization and capsid structure, the herpesvirus capsid assembly and maturation pathway remains poorly understood. Structural variability or irregularity of the capsid internal scaffolding core and the lack of adequate tools to study such structures have presented major hurdles to earlier investigations employing more traditional cryo-electron microscopy (cryoEM) single particle reconstruction. In this study, we used cryo-electron tomography (cryoET) to obtain 3D reconstructions of individual KSHV capsids, allowing direct visualization of the capsid internal structures and systematic comparison of the scaffolding cores for the first time. We show that B-capsids are not a structurally homogenous group; rather, they represent an ensemble of “B-capsid-like” particles whose inner scaffolding is highly variable, possibly representing different intermediates existing during the KSHV capsid assembly and maturation. This information, taken together with previous observations, has allowed us to propose a detailed pathway of herpesvirus capsid assembly and maturation.  相似文献   

2.
Kaposi’s sarcoma-associated herpesvirus (KSHV) is the primary etiological agent of Kaposi’s sarcoma, primary effusion lymphoma and muticentric Castleman’s disease. In common with the other herpesviruses, KSHV exhibits both latent and lytic life cycles, both of which are characterized by distinct gene expression profiles and programs. KSHV encodes proteins which play essential roles in the inhibition of host adaptive and innate immunity, the inhibition of apoptosis, and the regulation of the cell cycle. KSHV also encodes several proteins which have transforming and intrcellular signalling activity. Foundation item: DAAD (Germany Academic Exchange Service) scholar.  相似文献   

3.
4.
Kaposi’s sarcoma (KS) is characterized by highly vascularized spindle-cell tumors induced after infection of endothelial cells by Kaposi’s sarcoma-associated herpesvirus (KSHV). In KS tumors, KSHV expresses only a few latent proteins together with 12 pre-microRNAs. Previous microarray and proteomic studies predicted that multiple splice variants of the tumor suppressor protein tropomyosin 1 (TPM1) were targets of KSHV microRNAs. Here we show that at least two microRNAs of KSHV, miR-K2 and miR-K5, repress protein levels of specific isoforms of TPM1. We identified a functional miR-K5 binding site in the 3’ untranslated region (UTR) of one TPM1 isoform. Furthermore, the inhibition or loss of miR-K2 or miR-K5 restores expression of TPM1 in KSHV-infected cells. TPM1 protein levels were also repressed in KSHV-infected clinical samples compared to uninfected samples. Functionally, miR-K2 increases viability of unanchored human umbilical vein endothelial cells (HUVEC) by inhibiting anoikis (apoptosis after cell detachment), enhances tube formation of HUVECs, and enhances VEGFA expression. Taken together, KSHV miR-K2 and miR-K5 may facilitate KSHV pathogenesis.  相似文献   

5.
Kaposi’s sarcoma-associated herpesvirus (KSHV) is consistently identified in Kaposi’s sarcoma and body cavity-based lymphoma. KSHV encodes a transforming protein called K1 which is structurally similar to lymphocyte receptors. We have found that a highly conserved region of the cytoplasmic domain of K1 resembles the sequence of immunoreceptor tyrosine-based activation motifs (ITAMs). To demonstrate the signal-transducing activity of K1, we constructed a chimeric protein in which the cytoplasmic tail of the human CD8α polypeptide was replaced with that of KSHV K1. Expression of the CD8-K1 chimera in B cells induced cellular tyrosine phosphorylation and intracellular calcium mobilization upon stimulation with an anti-CD8 antibody. Mutational analyses showed that the putative ITAM of K1 was required for its signal-transducing activity. Furthermore, tyrosine residues of the putative ITAM of K1 were phosphorylated upon stimulation, and this allowed subsequent binding of SH2-containing proteins. These results demonstrate that the KSHV transforming protein K1 contains a functional ITAM in its cytoplasmic domain and that it can transduce signals to induce cellular activation.  相似文献   

6.
Many viruses have evolved elegant strategies to co-opt cellular autophagic responses to facilitate viral propagation and evasion of immune surveillance. Kaposi’s sarcoma-associated herpesvirus (KSHV) establishes a life-long persistent infection in its human host, and is etiologically linked to several cancers. KSHV gene products have been shown to modulate autophagy but their contribution to pathogenesis remains unclear. Our recent study demonstrated that KSHV subversion of autophagy promotes bypass of oncogene-induced senescence (OIS), an important host barrier to tumor initiation. These findings suggest that KSHV has evolved to subvert autophagy, at least in part, to establish an optimal niche for infection, concurrently dampening host antiviral defenses and allowing the ongoing proliferation of infected cells.  相似文献   

7.
Kaposi’s sarcoma (KS) is an angioproliferative and invasive tumor caused by Kaposi’s sarcoma-associated herpesvirus (KSHV). The cellular origin of KS tumor cells remains contentious. Recently, evidence has accrued indicating that KS may arise from KSHV-infected mesenchymal stem cells (MSCs) through mesenchymal-to-endothelial transition (MEndT), but the transformation process has been largely unknown. In this study, we investigated the KSHV-mediated MEndT process and found that KSHV infection rendered MSCs incomplete endothelial lineage differentiation and formed hybrid mesenchymal/endothelial (M/E) state cells characterized by simultaneous expression of mesenchymal markers Nestin/PDGFRA/α-SAM and endothelial markers CD31/PDPN/VEGFR2. The hybrid M/E cells have acquired tumorigenic phenotypes in vitro and the potential to form KS-like lesions after being transplanted in mice under renal capsules. These results suggest a homology of KSHV-infected MSCs with Kaposi’s sarcoma where proliferating KS spindle-shaped cells and the cells that line KS-specific aberrant vessels were also found to exhibit the hybrid M/E state. Furthermore, the genetic analysis identified KSHV-encoded FLICE inhibitory protein (vFLIP) as a crucial regulator controlling KSHV-induced MEndT and generating hybrid M/E state cells for tumorigenesis. Overall, KSHV-mediated MEndT that transforms MSCs to tumorigenic hybrid M/E state cells driven by vFLIP is an essential event in Kaposi’s sarcomagenesis.  相似文献   

8.
Kaposi’s sarcoma-associated herpesvirus (KSHV), or human herpesvirus 8, is a newly identified virus with tumorigenic potential. Here, we cloned and expressed the DNA polymerase (Pol-8) of KSHV and its processivity factor (PF-8). Pol-8 bound specifically to PF-8 in vitro. Moreover, the DNA synthesis activity of Pol-8 was shown in vitro to be strongly dependent on PF-8. Addition of PF-8 to Pol-8 allowed efficient synthesis of fully extended DNA products corresponding to the full-length M13 template (7,249 nucleotides), whereas Pol-8 alone could incorporate only several nucleotides. The specificity of PF-8 and Pol-8 for each other was demonstrated by their inability to be functionally replaced by the DNA polymerases and processivity factors of herpes simplex virus 1 and human herpesvirus 6.  相似文献   

9.
Kaposi’s sarcoma-associated herpesvirus (KSHV) has been consistently identified in Kaposi’s sarcomas (KS), body cavity-based lymphomas (BCBL), and some forms of Castleman’s disease. Previous serological tests with KS patient sera have detected lytic-cycle polypeptides from KSHV-infected BCBL cells. We have found that these polypeptides are predominantly encoded by the K8.1 open reading frame, which is present in the same genomic position as virion envelope glycoproteins of other gammaherpesviruses. The cDNA of K8.1 from BCBL-1 cells was found to encode a glycosylated protein with an apparent molecular mass of 37 kDa. K8.1 was found to be expressed during lytic KSHV replication in BCBL-1 cells and was localized on the surface of cells and virions. The results of immunofluorescence and immunoelectron microscopy suggest that KSHV acquires K8.1 protein on its virion surface during the process of budding at the plasma cell membrane. When KSHV K8.1 derived from mammalian cells was used as an antigen in immunoblot tests, antibodies to K8.1 were detected in 18 of 20 KS patients and in 0 of 10 KS-negative control subjects. These results demonstrate that the K8.1 gene encodes a KSHV virion-associated glycoprotein and suggest that antibodies to K8.1 may prove useful as contributory serological markers for infection by KSHV.  相似文献   

10.
The DNA sequence for Kaposi’s sarcoma-associated herpesvirus was originally detected in Kaposi’s sarcoma biopsy specimens. Since its discovery, it has been possible to detect virus in cell lines established from AIDS-associated body cavity-based B-cell lymphoma and to propagate virus from primary Kaposi’s sarcoma lesions in a human renal embryonic cell line, 293. In this study, we analyzed the infectivity of Kaposi’s sarcoma-associated herpesvirus produced from these two sources. Viral isolates from cultured cutaneous primary KS cells was transmitted to an Epstein-Barr virus-negative Burkitt’s B-lymphoma cell line, Louckes, and compared to virus induced from a body cavity-based B-cell lymphoma cell line. While propagation of body cavity-based B-cell lymphoma-derived virus was not observed in 293 cell cultures, infection with viral isolates obtained from primary Kaposi’s sarcoma lesions induced injury in 293 cells typical of herpesvirus infection and was associated with apoptotic cell death. Interestingly, transient overexpression of the Kaposi’s sarcoma-associated herpesvirus v-Bcl-2 homolog delayed the process of apoptosis and prolonged the survival of infected 293 cells. In contrast, the broad-spectrum caspase inhibitors Z-VAD-fmk and Z-DEVD-fmk failed to protect infected cell cultures, suggesting that Kaposi’s sarcoma-associated herpesvirus-induced apoptosis occurs through a Bcl-2-dependent pathway. Kaposi’s sarcoma-associated herpesvirus isolates from primary Kaposi’s sarcoma lesions and body cavity-based lymphomas therefore may differ and are likely to have distinct contributions to the pathophysiology of Kaposi’s sarcoma.  相似文献   

11.
We analyzed the gene expression profiles of lymphocyte-originated tumor cell lines - primary effusion lymphoma (PEL) cell lines, T-cell leukemia (TCL) cell lines, Burkitt lymphoma (BL) cell lines - and two sets of normal peripheral blood mononuclear cells (PBMCs) - in order to determine characteristic gene expression profiles for each of the former three groups. And we found that these cell lines showed respective typical gene expression profiles and classified into clear four groups, PEL, TCL, BL, and normal PBMCs. Two B lymphocyte-originated tumor cell lines, PEL and BL cell lines, clearly exhibited distinct gene expression profiles, respectively. Even though there was only one line that was co-infected with both Kaposi’s sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV), KSHV seemed to govern the gene expression profile of the co-infected line. These data suggested not only that established typical tumor cell lines show a distinct gene expression profile but also that this profile may be governed by certain viruses.  相似文献   

12.
Primary effusion lymphoma (PEL) is a subtype of non-Hodgkin’s B-cell lymphoma and is an aggressive neoplasm caused by Kaposi’s sarcoma-associated herpesvirus (KSHV) in immunosuppressed patients. In general, PEL cells are derived from post-germinal center B-cells and are infected with KSHV. To evaluate potential novel anti-tumor compounds against KSHV-associated PEL, seven water-soluble fullerene derivatives were evaluated as potential drug candidates for the treatment of PEL. Herein, we discovered a pyrrolidinium fullerene derivative, 1,1,1′,1′-tetramethyl [60]fullerenodipyrrolidinium diiodide, which induced apoptosis of PEL cells via a novel mechanism, the caspase-9 activation by suppressing the caspase-9 phosphorylation, causing caspase-9 inactivation. Pyrrolidinium fullerene treatment reduced significantly the viability of PEL cells compared with KSHV-uninfected lymphoma cells, and induced the apoptosis of PEL cells by activating caspase-9 via procaspase-9 cleavage. Pyrrolidinium fullerene additionally reduced the Ser473 phosphorylation of Akt and Ser196 of procaspase-9. Ser473-phosphorylated Akt (i.e., activated Akt) phosphorylates Ser196 in procaspase-9, causing inactivation of procaspase-9. We also demonstrated that Akt inhibitors suppressed the proliferation of PEL cells compared with KSHV-uninfected cells. Our data therefore suggest that Akt activation is essential for cell survival in PEL and a pyrrolidinium fullerene derivative induced apoptosis by activating caspase-9 via suppression of Akt in PEL cells. In addition, we evaluated whether pyrrolidinium fullerene in combination with the HSP90 inhibitor (geldanamycin; GA) or valproate, potentiated the cytotoxic effects on PEL cells. Compared to treatment with pyrrolidinium fullerene alone, the addition of low-concentration GA or valproate enhanced the cytotoxic activity of pyrrolidinium fullerene. These results indicate that pyrrolidinium fullerene could be used as a novel therapy for the treatment of PEL.  相似文献   

13.
Kaposi’s sarcoma associated herpesvirus (KSHV) causes several tumors, including primary effusion lymphoma (PEL) and Kaposi’s sarcoma (KS). Cellular and viral microRNAs (miRNAs) have been shown to play important roles in regulating gene expression. A better knowledge of the miRNA-mediated pathways affected by KSHV infection is therefore important for understanding viral infection and tumor pathogenesis. In this study, we used deep sequencing to analyze miRNA and cellular mRNA expression in a cell line with latent KSHV infection (SLKK) as compared to the uninfected SLK line. This approach revealed 153 differentially expressed human miRNAs, eight of which were independently confirmed by qRT-PCR. KSHV infection led to the dysregulation of ~15% of the human miRNA pool and most of these cellular miRNAs were down-regulated, including nearly all members of the 14q32 miRNA cluster, a genomic locus linked to cancer and that is deleted in a number of PEL cell lines. Furthermore, we identified 48 miRNAs that were associated with a total of 1,117 predicted or experimentally validated target mRNAs; of these mRNAs, a majority (73%) were inversely correlated to expression changes of their respective miRNAs, suggesting miRNA-mediated silencing mechanisms were involved in a number of these alterations. Several dysregulated miRNA-mRNA pairs may facilitate KSHV infection or tumor formation, such as up-regulated miR-708-5p, associated with a decrease in pro-apoptotic caspase-2 and leukemia inhibitory factor LIF, or down-regulated miR-409-5p, associated with an increase in the p53-inhibitor MDM2. Transfection of miRNA mimics provided further evidence that changes in miRNAs are driving some observed mRNA changes. Using filtered datasets, we also identified several canonical pathways that were significantly enriched in differentially expressed miRNA-mRNA pairs, such as the epithelial-to-mesenchymal transition and the interleukin-8 signaling pathways. Overall, our data provide a more detailed understanding of KSHV latency and guide further studies of the biological significance of these changes.  相似文献   

14.
Kaposi’s sarcoma-associated herpesvirus (KSHV) is the etiological agent of multicentric Castleman’s disease, primary effusion lymphoma and Kaposi’s sarcoma. In this study, we show that like the C-type lectin DC-SIGN, the closely related DC-SIGNR can also enhance KSHV infection. Following infection, they are both targeted for down modulation and our data indicate that the KSHV MARCH-family ubiquitin ligase K5 is mediating this regulation and subsequent targeting for degradation of DC-SIGN and DC-SIGNR in the context of the virus. The closely related viral K3 protein, is also able to target these lectins in exogenous expressions studies, but only weakly during viral infection. In addition to requiring a functional RING-CH domain, several protein trafficking motifs in the C-terminal region of both K3 and K5 are important in regulation of DC-SIGN and DC-SIGNR. Further exploration of this modulation revealed that DC-SIGN is endocytosed from the cell surface in THP-1 monocytes, but degraded from an internal location with minimal endocytosis in HEK-293 cells. Pull-down data indicate that both K3 and K5 preferentially associate with immature forms of the lectins, mediating their ubiquitylation and degradation. Together, these data emphasize the molecular complexities of K3 and K5, while expanding the repertoire of targets of these two viral proteins.  相似文献   

15.
Sangivamycin, a structural analog of adenosine and antibiotic exhibiting antitumor and antivirus activities, inhibits protein kinase C and the synthesis of both DNA and RNA. Primary effusion lymphoma (PEL) is an aggressive neoplasm caused by Kaposi’s sarcoma-associated herpesvirus (KSHV) in immunosuppressed patients and HIV-infected homosexual males. PEL cells are derived from post-germinal center B cells, and are infected with KSHV. Herein, we asked if sangivamycin might be useful to treat PEL. We found that sangivamycin killed PEL cells, and we explored the underlying mechanism. Sangivamycin treatment drastically decreased the viability of PEL cell lines compared to KSHV-uninfected B lymphoma cell lines. Sangivamycin induced the apoptosis of PEL cells by activating caspase-7 and -9. Further, sangivamycin suppressed the phosphorylation of Erk1/2 and Akt, thus inhibiting activation of the proteins. Inhibitors of Akt and MEK suppressed the proliferation of PEL cells compared to KSHV-uninfected cells. It is known that activation of Erk and Akt signaling inhibits apoptosis and promotes proliferation in PEL cells. Our data therefore suggest that sangivamycin induces apoptosis by inhibiting Erk and Akt signaling in such cells. We next investigated whether sangivamycin, in combination with an HSP90 inhibitor geldanamycin (GA) or valproate (valproic acid), potentiated the cytotoxic effects of the latter drugs on PEL cells. Compared to treatment with GA or valproate alone, the addition of sangivamycin enhanced cytotoxic activity. Our data thus indicate that sangivamycin may find clinical utility as a novel anti-cancer agent targeting PEL.  相似文献   

16.
17.
Knowledge on the genetics of movement disorders has advanced significantly in recent years. It is now recognized that disorders of the basal ganglia have genetic basis and it is suggested that molecular genetic data will provide clues to the pathophysiology of normal and abnormal motor control. Progress in molecular genetic studies, leading to the detection of genetic mutations and loci, has contributed to the understanding of mechanisms of neurodegeneration and has helped clarify the pathogenesis of some neurodegenerative diseases. Molecular studies have also found application in the diagnosis of neurodegenerative diseases, increasing the range of genetic counseling and enabling a more accurate diagno-sis. It seems that understanding pathogenic processes and the significant role of genetics has led to many experiments that may in the future will result in more effective treatment of such diseases as Parkinson’s or Huntington’s. Currently used molecular diagnostics based on DNA analysis can identify 9 neurodegenerative diseases, including spinal cerebellar ataxia inherited in an autosomal dominant manner, dentate-rubro-pallido-luysian atrophy, Friedreich’s disease, ataxia with ocu-lomotorapraxia, Huntington''s disease, dystonia type 1, Wilson’s disease, and some cases of Parkinson''s disease.  相似文献   

18.
Kaposi’s sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus-8, is the causative agent of three hyperproliferative disorders: Kaposi’s sarcoma, primary effusion lymphoma (PEL) and multicentric Castleman’s disease. During viral latency a small subset of viral genes are produced, including KSHV latency-associated nuclear antigen (LANA), which help the virus thwart cellular defense responses. We found that exposure of KSHV-infected cells to oxidative stress, or other inducers of apoptosis and caspase activation, led to processing of LANA and that this processing could be inhibited with the pan-caspase inhibitor Z-VAD-FMK. Using sequence, peptide, and mutational analysis, two caspase cleavage sites within LANA were identified: a site for caspase-3 type caspases at the N-terminus and a site for caspase-1 and-3 type caspases at the C-terminus. Using LANA expression plasmids, we demonstrated that mutation of these cleavage sites prevents caspase-1 and caspase-3 processing of LANA. This indicates that these are the principal sites that are susceptible to caspase cleavage. Using peptides spanning the identified LANA cleavage sites, we show that caspase activity can be inhibited in vitro and that a cell-permeable peptide spanning the C-terminal cleavage site could inhibit cleavage of poly (ADP-ribose) polymerase and increase viability in cells undergoing etoposide-induced apoptosis. The C-terminal peptide of LANA also inhibited interleukin-1beta (IL-1β) production from lipopolysaccharide-treated THP-1 cells by more than 50%. Furthermore, mutation of the two cleavage sites in LANA led to a significant increase in IL-1β production in transfected THP-1 cells; this provides evidence that these sites function to blunt the inflammasome, which is known to be activated in latently infected PEL cells. These results suggest that specific caspase cleavage sites in KSHV LANA function to blunt apoptosis as well as interfere with the caspase-1-mediated inflammasome, thus thwarting key cellular defense mechanisms.  相似文献   

19.
20.
Pomalidomide (Pom) is an immunomodulatory drug that has efficacy against Kaposi’s sarcoma, a tumor caused by Kaposi’s sarcoma-associated herpesvirus (KSHV). Pom also induces direct cytotoxicity in primary effusion lymphoma (PEL), a B-cell malignancy caused by KSHV, in part through downregulation of IRF4, cMyc, and CK1α as a result of its interaction with cereblon, a cellular E3 ubiquitin ligase. Additionally, Pom can reverse KSHV-induced downregulation of MHCI and co-stimulatory immune surface molecules ICAM-1 and B7-2 on PELs. Here, we show for the first time that Pom-induced increases in ICAM-1 and B7-2 on PEL cells lead to an increase in both T-cell activation and NK-mediated cytotoxicity against PEL. The increase in T-cell activation can be prevented by blocking ICAM-1 and/or B7-2 on the PEL cell surface, suggesting that both ICAM-1 and B7-2 are important for T-cell co-stimulation by PELs. To gain mechanistic insights into Pom’s effects on surface markers, we generated Pom-resistant (PomR) PEL cells, which showed about 90% reduction in cereblon protein level and only minimal changes in IRF4 and cMyc upon Pom treatment. Pom no longer upregulated ICAM-1 and B7-2 on the surface of PomR cells, nor did it increase T-cell and NK-cell activation. Cereblon-knockout cells behaved similarly to the pomR cells upon Pom-treatment, suggesting that Pom’s interaction with cereblon is necessary for these effects. Further mechanistic studies revealed PI3K signaling pathway as being important for Pom-induced increases in these molecules. These observations provide a rationale for the study of Pom as therapy in treating PEL and other KSHV-associated tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号