首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Relatedness increases the likelihood of cooperation within colonies of social insects. Polygyny, the coexistence of numerous reproductive females (queens) in a colony, is common in mature colonies of the termite Macrotermes michaelseni. In this species, polygyny results from pleometrosis and from several female alates that jointly found a new colony. To explain this phenomenon, it was suggested that only related females cooperate and survive during maturation of colonies. Using multilocus fingerprints as well as microsatellites, we showed that nestmate queens in mature colonies are unrelated. Furthermore, we found that all nestmate queens contributed to the production of steriles. Even in mature colonies, several matrilines of steriles coexist within a colony. Although genetic diversity within colonies may increase the likelihood of conflicts, high genetic diversity may be important for foraging, colony growth, and resistance to disease and parasites.  相似文献   

2.
In population genetics studies, detecting and quantifying the distribution of genetic variation can help elucidate ecological and evolutionary processes. In social insects, the distribution of population‐level genetic variability is generally linked to colony‐level genetic structure. It is thus especially crucial to conduct complementary analyses on such organisms to examine how spatial and social constraints interact to shape patterns of intraspecific diversity. In this study, we sequenced the mitochondrial COII gene for 52 colonies of the subterranean termite Reticulitermes grassei (Isoptera: Rhinotermitidae), sampled from a population in southwestern France. Three haplotypes were detected, one of which was found exclusively in the southern part of the study area (near the Pyrenees). After genotyping 6 microsatellite loci for 512 individual termites, we detected a significant degree of isolation by distance among individuals over the entire range; however, the cline of genetic differentiation was not continuous, suggesting the existence of differentiated populations. A spatial principal component analysis based on allele frequency data revealed significant spatial autocorrelation among genotypes: the northern and southern groups were strongly differentiated. This finding was corroborated by clustering analyses; depending on the randomized data set, two or three clusters, exhibiting significant degrees of differentiation, were identified. An examination of colony breeding systems showed that colonies containing related neotenic reproductives were prevalent, suggesting that inbreeding may contribute to the high level of homozygosity observed and thus enhance genetic contrasts among colonies. We discuss the effect of evolutionary and environmental factors as well as reproductive and dispersal modes on population genetic structure.  相似文献   

3.
Within any one habitat, the relative fitness of organisms in a population can vary substantially. Social insects like the common wasp are among the most successful invasive animals, but show enormous variation in nest size and other fitness‐related traits. Some of this variation may be caused by pathogens such as viruses that can have serious consequences in social insects, which range from reduced productivity to colony death. Both individual immune responses and colony‐level traits such as genetic diversity are likely to influence effects of pathogen infections on colony fitness. Here we investigate how infections with Kashmir Bee Virus (KBV), immune response and intracolony genetic diversity (due to queen polyandry) affect nest size in the invasive common wasp Vespula vulgaris. We show that KBV is highly prevalent in wasps and expression of antiviral immune genes is significantly increased with higher viral loads across individuals. Patriline membership within a nest did not influence KBV susceptibility or immune response. A permutational MANCOVA revealed that polyandry, viral load and expression of the immune gene Dicer were significant predictors of variation in nest size. High intracolony genetic diversity due to polyandry has previously been hypothesized to improve colony‐level resistance to parasites and pathogens. Consistent with this hypothesis, we observed genetically diverse colonies to be significantly larger and to produce more queens, although this effect was not driven by the pathogen we investigated. Invasive wasps clearly suffer from pathogens and expend resources, as indicated here by elevated immune gene expression, toward reducing pathogen‐impact on colony fitness.  相似文献   

4.
Termites are a group of eusocial insects. Mate choice is the most important step which affects the subsequent new colony foundation and development in termites. This study investigated the effects of the four factors on mate choice in the subterranean termite Reticulitermes chinensis Snyder, including colony origin, entry time, physical damage of antennae, and fresh body weights of male dealates. The results showed that the pairing number of dealates from the different colonies was significantly higher than that from the same colonies. The male dealates with early entry time achieved a significantly higher pairing number than the male dealates with late entry time. The male dealates with complete antennae achieved a the significantly higher pairing number than the male dealates lacking the six terminal segments of antennae. Moreover, the heavier male dealates achieved a significantly higher pairing number than the lighter male dealates. However, there were no significant differences in the pairing time for all the experimental treatments. These results suggested that the male dealates, which are heterogenous, healthy, heavy, and more familiar with the environment in R. chinensis, have the obvious advantages in the mate choice. This rule of mate choice is helpful for termites to avoid inbreeding and to maintain the genetic diversity of offspring, which is very important for the environmental adaptability and development of termite colonies.  相似文献   

5.
Genetic diversity can benefit social insects by providing variability in immune defences against parasites and pathogens. However, social parasites of ants infest colonies and not individuals, and for them a different relationship between genetic diversity and resistance may exist. Here, we investigate the genetic variation, assessed using up to 12 microsatellite loci, of workers in 91 Formica lemani colonies in relation to their infestation by the specialist social parasite Microdon mutabilis. At the main study site, workers in infested colonies exhibited lower relatedness and higher estimated queen numbers, on average, than uninfested ones. Additionally, estimated queen numbers were negatively correlated with estimated average numbers of mates per queen within infested colonies. At another site, infested colonies also exhibited significantly lower worker relatedness, and estimated queen numbers were comparable in trend. In contrast, in two populations of F. lemani where M. mutabilis was absent, relatedness within colonies was high (40 and 90% with R>0.6). While high genetic variation can benefit social insects by increasing their resistance to pathogens, there may be a cost in the increased likelihood of infiltration by social parasites owing to greater variation in nestmate recognition cues. This study provides the first empirical test of this hypothesis.  相似文献   

6.
Social insect colonies provide ideal conditions for the spread of pathogens. It has been proposed that the extreme polyandry and genetic diversity seen in the colonies of some eusocial insect species is central to a colony’s defence against disease. Indeed, empirically, colonies headed by polyandrous queens have lower incidence of pathogens than genetically uniform monoandrous colonies. The mechanisms of improved resistance in genetically diverse colonies could arise from the genetic diversity among worker genotypes or from increased innate immunity arising from heterozygosity at immune gene loci within individual workers. Here, we investigate the effects of heterozygosity on two components of the honey bee (Apis mellifera) innate immune system: encapsulation and phenoloxidase (PO) activity. No significant effect of heterozygosity on immune system activity was evident for either encapsulation or PO activity. Thus, we conclude that while encapsulation and PO activity are important components of the immune response, it seems that they do not underlie the positive effects of genetic diversity on parasite and pathogen resistance in honey bees.  相似文献   

7.
Social organisms face a high risk of epidemics, and respond to this threat by combining efficient individual and collective defences against pathogens. An intriguing and little studied feature of social animals is that individual pathogen resistance may depend not only on genetic or maternal factors, but also on the social environment during development. Here, we used a cross-fostering experiment to investigate whether the pathogen resistance of individual ant workers was shaped by their own colony of origin or by the colony of origin of their carers. The origin of care-giving workers significantly influenced the ability of newly eclosed cross-fostered Formica selysi workers to resist the fungal entomopathogen Beauveria bassiana. In particular, carers that were more resistant to the fungal entomopathogen reared more resistant workers. This effect occurred in the absence of post-infection social interactions, such as trophallaxis and allogrooming. The colony of origin of eggs significantly influenced the survival of the resulting individuals in both control and pathogen treatments. There was no significant effect of the social organization (i.e. whether colonies contain a single or multiple queens) of the colony of origin of either carers or eggs. Our experiment reveals that social interactions during development play a central role in moulding the resistance of emerging workers.  相似文献   

8.
Polyandry is often difficult to explain because benefits of the behaviour have proved elusive. In social insects, polyandry increases the genetic diversity of workers within a colony and this has been suggested to improve the resistance of the colony to disease. Here we examine the possible impact of host genetic diversity on parasite evolution by carrying out serial passages of a virulent fungal pathogen through leaf-cutting ant workers of known genotypes. Parasite virulence increased over the nine-generation span of the experiment while spore production decreased. The effect of host relatedness upon virulence appeared limited. However, parasites cycled through more genetically diverse hosts were more likely to go extinct during the experiment and parasites cycled through more genetically similar hosts had greater spore production. These results indicate that host genetic diversity may indeed hinder the ability of parasites to adapt while cycling within social insect colonies.  相似文献   

9.
Social insects nesting in soil environments are in constant contact with entomopathogens but have evolved a range of defence mechanisms, resulting in both individual and social immunity that reduce the chance for epizootics in the colony, as in the case of subterranean termites. Coptotermes formosanus uses its faeces as building material for its nest structure that result into a ‘carton material’, and here, we report that the faecal nest supports the growth of Actinobacteria which provide another level of protection to the social group against entomopathogens. A Streptomyces species with in vivo antimicrobial activity against fungal entomopathogens was isolated from the nest material of multiple termite colonies. Termite groups were exposed to Metarhizium anisopliae, a fungal entomopathogen, during their foraging activity and the presence of Streptomyces within the nest structure provided a significant survival benefit to the termites. Therefore, this report describes a non-nutritional exosymbiosis in a termite, in the form of a defensive mutualism which has emerged from the use of faecal material in the nesting structure of Coptotermes. The association with an Actinobacteria community in the termite faecal material provides an extended disease resistance to the termite group as another level of defence, in addition to their individual and social immunity.  相似文献   

10.
Multiple mating by social insect queens increases the genetic diversity among colony members, thereby reducing intracolony relatedness and lowering the potential inclusive fitness gains of altruistic workers. Increased genetic diversity may be adaptive, however, by reducing the prevalence of disease within a nest. Honeybees, whose queens have the highest levels of multiple mating among social insects, were investigated to determine whether genetic variation helps to prevent chronic infections. I instrumentally inseminated honeybee queens with semen that was either genetically similar (from one male) or genetically diverse (from multiple males), and then inoculated their colonies with spores of Ascosphaera apis, a fungal pathogen that kills developing brood. I show that genetically diverse colonies had a lower variance in disease prevalence than genetically similar colonies, which suggests that genetic diversity may benefit colonies by preventing severe infections.  相似文献   

11.
Honeybee colonies offer an excellent environment for microbial pathogen development. The highest virulent, colony killing, bacterial agents are Paenibacillus larvae causing American foulbrood (AFB), and European foulbrood (EFB) associated bacteria. Besides the innate immune defense, honeybees evolved behavioral defenses to combat infections. Foraging of antimicrobial plant compounds plays a key role for this “social immunity” behavior. Secondary plant metabolites in floral nectar are known for their antimicrobial effects. Yet, these compounds are highly plant specific, and the effects on bee health will depend on the floral origin of the honey produced. As worker bees not only feed themselves, but also the larvae and other colony members, honey is a prime candidate acting as self‐medication agent in honeybee colonies to prevent or decrease infections. Here, we test eight AFB and EFB bacterial strains and the growth inhibitory activity of three honey types. Using a high‐throughput cell growth assay, we show that all honeys have high growth inhibitory activity and the two monofloral honeys appeared to be strain specific. The specificity of the monofloral honeys and the strong antimicrobial potential of the polyfloral honey suggest that the diversity of honeys in the honey stores of a colony may be highly adaptive for its “social immunity” against the highly diverse suite of pathogens encountered in nature. This ecological diversity may therefore operate similar to the well‐known effects of host genetic variance in the arms race between host and parasite.  相似文献   

12.
Social organisms are constantly exposed to infectious agents via physical contact with conspecifics. While previous work has shown that disease susceptibility at the individual and group level is influenced by genetic diversity within and between group members, it remains poorly understood how group-level resistance to pathogens relates directly to individual physiology, defence behaviour and social interactions. We investigated the effects of high versus low genetic diversity on both the individual and collective disease defences in the ant Cardiocondyla obscurior. We compared the antiseptic behaviours (grooming and hygienic behaviour) of workers from genetically homogeneous and diverse colonies after exposure of their brood to the entomopathogenic fungus Metarhizium anisopliae. While workers from diverse colonies performed intensive allogrooming and quickly removed larvae covered with live fungal spores from the nest, workers from homogeneous colonies only removed sick larvae late after infection. This difference was not caused by a reduced repertoire of antiseptic behaviours or a generally decreased brood care activity in ants from homogeneous colonies. Our data instead suggest that reduced genetic diversity compromises the ability of Cardiocondyla colonies to quickly detect or react to the presence of pathogenic fungal spores before an infection is established, thereby affecting the dynamics of social immunity in the colony.  相似文献   

13.
Explaining the evolution of sex and recombination is particularly intriguing for some species of eusocial insects because they display exceptionally high mating frequencies and genomic recombination rates. Explanations for both phenomena are based on the notion that both increase colony genetic diversity, with demonstrated benefits for colony disease resistance and division of labor. However, the relative contributions of mating number and recombination rate to colony genetic diversity have never been simultaneously assessed. Our study simulates colonies, assuming different mating numbers, recombination rates, and genetic architectures, to assess their worker genotypic diversity. The number of loci has a strong negative effect on genotypic diversity when the allelic effects are inversely scaled to locus number. In contrast, dominance, epistasis, lethal effects, or limiting the allelic diversity at each locus does not significantly affect the model outcomes. Mating number increases colony genotypic variance and lowers variation among colonies with quickly diminishing returns. Genomic recombination rate does not affect intra- and inter-colonial genotypic variance, regardless of mating frequency and genetic architecture. Recombination slightly increases the genotypic range of colonies and more strongly the number of workers with unique allele combinations across all loci. Overall, our study contradicts the argument that the exceptionally high recombination rates cause a quantitative increase in offspring genotypic diversity across one generation. Alternative explanations for the evolution of high recombination rates in social insects are therefore needed. Short-term benefits are central to most explanations of the evolution of multiple mating and high recombination rates in social insects but our results also apply to other species.  相似文献   

14.
1. Multiple mating by queens has been shown to enhance disease resistance in insect societies, because higher genetic diversity among nestmates improves collective immune defences or offers a certain level of herd immunity. However, it has remained ambiguous whether polygynous societies with large numbers of queens also benefit from increased genetic diversity. 2. We used one of the very few ant species that can be reared across generations, the pharaoh ant, Monomorium pharaonis Linnaeus, to create experimental colonies with two types of enhanced genetic diversity: (i) mixed workers from three divergent inbred lineages representing the ‘polygyny‐equivalent' of multiple mating by queens (i.e. increased between‐worker variation); and (ii) uniform workers whose overall heterozygosity was increased by two subsequent generations of crossing between the same divergent inbred lineages (i.e. increased within‐worker variation). 3. We found significant differences in worker survival among the three inbred lineages, with exposure to conidiospores of the fungal pathogen Beauveria bassiana causing significant mortality to the workers independently of their diversity type. Increased diversity did not improve the resistance to Beauveria. 4. Enhanced heterozygosity colonies had worker survival rates similar to the most resistant inbred lineage, whereas colonies with mixed workers from the three inbred lineages had lower worker and larval survival. Workers did not show any infection‐avoidance behaviour. 5. Average larval survival appeared unaffected by the presence of conidiospores. It benefitted from increased heterozygosity but was reduced in mixed colonies independent of infection. This suggests that negative, but cryptic social interactions in mixed colonies may affect overall survival. 6. The present results do not provide evidence for or against a link between increased genetic variation and increased disease resistance in pharaoh ants, but show that colonies differ considerably in general survival. Thus, increasing the genetic diversity of pharaoh ant colonies may not provide survival advantages in the face of pathogen exposure, and polygyny and polyandry may not be directly comparable mechanisms for creating adaptive resistance towards pathogens.  相似文献   

15.
It has been hypothesized that horizontal gene/chromosome transfer and parasexual recombination following hyphal fusion between different strains may contribute to the emergence of wide genetic variability in plant pathogenic and other fungi. However, the significance of vegetative (heterokaryon) incompatibility responses, which commonly result in cell death, in preventing these processes is not known. In this study, we have assessed this issue following different types of hyphal fusion during colony initiation and in the mature colony. We used vegetatively compatible and incompatible strains of the common bean pathogen Colletotrichum lindemuthianum in which nuclei were labelled with either a green or red fluorescent protein in order to microscopically monitor the fates of nuclei and heterokaryotic cells following hyphal fusion. As opposed to fusion of hyphae in mature colonies that resulted in cell death within 3 h, fusions by conidial anastomosis tubes (CAT) between two incompatible strains during colony initiation did not induce the vegetative incompatibility response. Instead, fused conidia and germlings survived and formed heterokaryotic colonies that in turn produced uninucleate conidia that germinated to form colonies with phenotypic features different to those of either parental strain. Our results demonstrate that the vegetative incompatibility response is suppressed during colony initiation in C. lindemuthianum. Thus, CAT fusion may allow asexual fungi to increase their genetic diversity, and to acquire new pathogenic traits.  相似文献   

16.
Several ant species vary in the number of queens per colony, yet the causes and consequences of this variation remain poorly understood. In previous experiments, we found that Formica selysi workers originating from multiple-queen (=polygyne) colonies had a lower resistance to a fungal pathogen than workers originating from single-queen (=monogyne) colonies. In contrast, group diversity improved disease resistance in experimental colonies. This discrepancy between field and experimental colonies suggested that variation in social structure in the field had antagonistic effects on worker resistance, possibly through a down-regulation of the immune system balancing the positive effect of genetic diversity. Here, we examined if workers originating from field colonies with alternative social structure differed in three major components of their immune system. We found that workers from polygyne colonies had a lower bacterial growth inhibitory activity than workers from monogyne colonies. In contrast, workers from the two types of colonies did not differ significantly in bacterial cell wall lytic activity and prophenoloxidase activity. Overall, the presence of multiple queens in a colony correlated with a slight reduction in one inducible component of the immune system of individual workers. This reduced level of immune defence might explain the lower resistance of workers originating from polygyne colonies despite the positive effect of genetic diversity. More generally, these results indicate that social changes at the group level can modulate individual immune defences.  相似文献   

17.
The Formosan subterranean termite, Coptotermes formosanus Shiraki, is an invasive species in many parts of the world, including the U.S. mainland. The reasons for its invasive success may have to do with the flexible social and spatial organization of colonies. We investigated the population and breeding structure of 14 C. formosanus colonies in Louis Armstrong Park, New Orleans, LA. This population has been the focus of extensive study for many years, providing the opportunity to relate aspects of colony breeding structure to previous findings on colony characteristics such as body weight and number of workers, wood consumption, and intercolony aggression. Eight colonies were headed by a single pair of outbred reproductives (simple families), whereas six colonies were headed by low numbers of multiple kings and/or queens that were likely the neotenic descendants of the original colony (extended families). Within the foraging area of one large extended family colony, we found genetic differentiation among different collection sites, suggesting the presence of separate reproductive centers. No significant difference between simple family colonies and extended family colonies was found in worker body weight, soldier body weight, foraging area, population size, or wood consumption. However, level of inbreeding within colonies was negatively correlated with worker body weight and positively correlated with wood consumption. Also, genetic distance between colonies was positively correlated with aggression levels, suggesting a genetic basis to nestmate discrimination cues in this termite population. No obvious trait associated with colony reproductive structure was found that could account for the invasion success of this species.  相似文献   

18.
Recent research has shown that low genetic variation in individuals can increase susceptibility to infection and group living may exacerbate pathogen transmission. In the eusocial diploid termites, cycles of outbreeding and inbreeding characterizing basal species can reduce genetic variation within nestmates during the life of a colony, but the relationship of genetic heterogeneity to disease resistance is poorly understood. Here we show that, one generation of inbreeding differentially affects the survivorship of isolated and grouped termites (Zootermopsis angusticollis) depending on the nature of immune challenge and treatment. Inbred and outbred isolated and grouped termites inoculated with a bacterial pathogen, exposed to a low dose of fungal pathogen or challenged with an implanted nylon monofilament had similar levels of immune defence. However, inbred grouped termites exposed to a relatively high concentration of fungal conidia had significantly greater mortality than outbred grouped termites. Inbred termites also had significantly higher cuticular microbial loads, presumably due to less effective grooming by nestmates. Genetic analyses showed that inbreeding significantly reduced heterozygosity and allelic diversity. Decreased heterozygosity thus appeared to increase disease susceptibility by affecting social behaviour or some other group-level process influencing infection control rather than affecting individual immune physiology.  相似文献   

19.
The cellular arm of the insect immune response is mediated by the activity of hemocytes. While hemocytes have been well-characterized morphologically and functionally in model insects, few studies have characterized the hemocytes of non-model insects. Further, the role of ontogeny in mediating immune response is not well understood in non-model invertebrate systems. The goals of the current study were to (1) determine the effects of caterpillar size (and age) on hemocyte density in naïve caterpillars and caterpillars challenged with non-pathogenic bacteria, and (2) characterize the hemocyte activity and diversity of cell types present in two forest caterpillars: Euclea delphinii and Lithacodes fasciola (Limacodidae). We found that although early and late instar (small and large size, respectively) naïve caterpillars had similar constitutive hemocyte densities in both species, late instar Lithacodes caterpillars injected with non-pathogenic E. coli produced more than a twofold greater density of hemocytes than those in early instars. We also found that both caterpillar species contained plasmatocytes, granulocytes and oenocytoids, all of which are found in other lepidopteran species, but lacked spherulocytes. Granulocytes and plasmatocytes were found to be strongly phagocytic in both species, but granulocytes exhibited a higher phagocytic activity than plasmatocytes. Our results strongly suggest that for at least one measure of immunological response, the production of hemocytes in response to infection, response magnitudes can increase over ontogeny. While the underlying raison d’ être for this improvement remains unclear, these findings may be useful in explaining natural patterns of stage-dependent parasitism and pathogen infection.  相似文献   

20.
The Formosan subterranean termite, Coptotermes formosanus Shiraki, is an invasive species that originated in China and has been introduced to Hawaii and the U.S. mainland. Colonies are headed either by a pair of reproductives (simple families) or by varying numbers of inbreeding reproductives (extended families), and therefore have variable degrees of inbreeding. Worker size also varies among colonies of Formosan termites. We tested whether variation in worker size can be explained by the breeding system. Workers were collected from colonies from three geographically separated populations (China, Hawaii, and Louisiana), and body weight and head size were measured. Microsatellite genotyping was used to establish whether colonies were simple or extended families and to determine the heterozygosity of workers and their degree of inbreeding relative to their colony (F (IC), sensitive to the number of reproductives). All Chinese colonies contained multiple inbreeding neotenics. In Hawaii, 37% of the colonies were simple families and 63% were extended families, both having considerable degrees of inbreeding. In Louisiana, 57% of the colonies were simple families, which were mostly headed by unrelated pairs, and 43% were extended families. In simple families, size and body weight of workers were not associated with F (IC) or heterozygosity. In extended families of two populations, both size parameters were negatively correlated with F (IC); however, heterozygosity was not associated with worker size in any of the populations. This suggests that the number of reproductives within colonies has a stronger influence on worker size than the individuals' genetic diversity in Formosan subterranean termite colonies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号