首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Anthropogenic impact represents a major pressure on ecosystems, yet little is known about how it affects symbiotic relationships, such as mycorrhizal symbiosis, which plays a crucial role in ecosystem functioning. We analyzed the effects of three human impact types – increasing urbanity, introduction of alien plant species (alienness) and modifications in plant species distribution ranges (as a proxy for naturalness) – on plant community overall mycorrhization (including arbuscular, ecto‐, ericoid and orchid mycorrhizal plants) and arbuscular mycorrhization (indicating the degree of forming mycorrhizal symbiosis at plant community level using the relative abundance of mycorrhizal and arbuscular mycorrhizal plants, respectively). The study was carried out in three habitat types, each dominated by a distinct mycorrhizal type – ectomycorrhizal woodlands, ericoid mycorrhizal heathlands and arbuscular mycorrhizal grasslands – at the regional scale in the Netherlands. The response of community mycorrhization and arbuscular mycorrhization to anthropogenic influence showed contrasting patterns, depending on the specific aspect of human impact. Community mycorrhization responded negatively to urbanity and positively to increasing alienness, while arbuscular mycorrhization showed the reverse trend. More natural heathlands were found to be more mycorrhizal and less arbuscular mycorrhizal. The strongest responses were detected in woodlands and heathlands, while mycorrhization in grasslands was relatively insensitive to human impact. Our study highlights the importance of considering mycorrhizal symbiosis in understanding and quantifying the effects of anthropogenic influence on plant communities, especially in woodlands and heathlands.  相似文献   

3.
Long‐term biodiversity experiments have shown increasing strengths of biodiversity effects on plant productivity over time. However, little is known about rapid evolutionary processes in response to plant community diversity, which could contribute to explaining the strengthening positive relationship. To address this issue, we performed a transplant experiment with offspring of seeds collected from four grass species in a 14‐year‐old biodiversity experiment (Jena Experiment). We used two‐ and six‐species communities and removed the vegetation of the study plots to exclude plant–plant interactions. In a reciprocal design, we transplanted five “home” phytometers (same origin and actual environment), five “away‐same” phytometers (same species richness of origin and actual environment, but different plant composition), and five “away‐different” phytometers (different species richness of origin and actual environment) of the same species in the study plots. In the establishment year, plants transplanted in home soil produced more shoots than plants in away soil indicating that plant populations at low and high diversity developed differently over time depending on their associated soil community and/or conditions. In the second year, offspring of individuals selected at high diversity generally had a higher performance (biomass production and fitness) than offspring of individuals selected at low diversity, regardless of the transplant environment. This suggests that plants at low and high diversity showed rapid evolutionary responses measurable in their phenotype. Our findings provide first empirical evidence that loss of productivity at low diversity is not only caused by changes in abiotic and biotic conditions but also that plants respond to this by a change in their micro‐evolution. Thus, we conclude that eco‐evolutionary feedbacks of plants at low and high diversity are critical to fully understand why the positive influence of diversity on plant productivity is strengthening through time.  相似文献   

4.
Understanding the coevolution of hosts and parasites is a long‐standing goal of evolutionary biology. There is a well‐developed theoretical framework to describe the evolution of host–parasite interactions under the assumption of direct, two‐species interactions, which can result in arms race dynamics or sustained genotype fluctuations driven by negative frequency dependence (Red Queen dynamics). However, many hosts rely on symbionts for defence against parasites. Whilst the ubiquity of defensive symbionts and their potential importance for disease control are increasingly recognized, there is still a gap in our understanding of how symbionts mediate or possibly take part in host–parasite coevolution. Herein we address this question by synthesizing information already available from theoretical and empirical studies. First, we briefly introduce current hypotheses on how defensive mutualisms evolved from more parasitic relationships and highlight exciting new experimental evidence showing that this can occur very rapidly. We go on to show that defensive symbionts influence virtually all important determinants of coevolutionary dynamics, namely the variation in host resistance available to selection by parasites, the specificity of host resistance, and the trade‐off structure between host resistance and other components of fitness. In light of these findings, we turn to the limited theory and experiments available for such three‐species interactions to assess the role of defensive symbionts in host–parasite coevolution. Specifically, we discuss under which conditions the defensive symbiont may take over from the host the reciprocal adaptation with parasites and undergo its own selection dynamics, thereby altering or relaxing selection on the hosts' own immune defences. Finally, we address potential effects of defensive symbionts on the evolution of parasite virulence. This is an important problem for which there is no single, clear‐cut prediction. The selection on parasite virulence resulting from the presence of defensive symbionts in their hosts will depend on the underlying mechanism of defence. We identify the evolutionary predictions for different functional categories of symbiont‐conferred resistance and we evaluate the empirical literature for supporting evidence. We end this review with outstanding questions and promising avenues for future research to improve our understanding of symbiont‐mediated coevolution between hosts and parasites.  相似文献   

5.
Plant‐soil feedbacks (PSFs) have been shown to strongly affect plant performance under controlled conditions, and PSFs are thought to have far reaching consequences for plant population dynamics and the structuring of plant communities. However, thus far the relationship between PSF and plant species abundance in the field is not consistent. Here, we synthesize PSF experiments from tropical forests to semiarid grasslands, and test for a positive relationship between plant abundance in the field and PSFs estimated from controlled bioassays. We meta‐analyzed results from 22 PSF experiments and found an overall positive correlation (0.12 ≤ r¯ ≤ 0.32) between plant abundance in the field and PSFs across plant functional types (herbaceous and woody plants) but also variation by plant functional type. Thus, our analysis provides quantitative support that plant abundance has a general albeit weak positive relationship with PSFs across ecosystems. Overall, our results suggest that harmful soil biota tend to accumulate around and disproportionately impact species that are rare. However, data for the herbaceous species, which are most common in the literature, had no significant abundance‐PSFs relationship. Therefore, we conclude that further work is needed within and across biomes, succession stages and plant types, both under controlled and field conditions, while separating PSF effects from other drivers (e.g., herbivory, competition, disturbance) of plant abundance to tease apart the role of soil biota in causing patterns of plant rarity versus commonness.  相似文献   

6.
Transmission electron microscopy has historically been indispensable for virology research, as it offers unique insight into virus function. In the past decade, as cryo‐electron microscopy (cryo‐EM) has matured and become more accessible, we have been able to peer into the structure of viruses at the atomic level and understand how they interact with the host cell, with drugs or with antibodies. Perhaps, there was no time in recent history where cryo‐EM was more needed, as SARS‐CoV‐2 has spread around the globe, causing millions of deaths and almost unquantifiable economic devastation. In this concise review, we aim to mark the most important contributions of cryo‐EM to understanding the structure and function of SARS‐CoV‐2 proteins, from surface spikes to the virus core and from virus‐receptor interactions to antibody binding.  相似文献   

7.
While past work has often examined the effects of transmission mode on virulence evolution in parasites, few studies have explored the impact of horizontal transmission on the evolution of benefits conferred by a symbiont to its host. Here, we identify three mechanisms that create a positive covariance between horizontal transmission and symbiont‐provided benefits: pleiotropy within the symbiont genome, partner choice by the host, and consumption of host waste by‐products by symbionts. We modify a susceptible‐infected model to incorporate the details of each mechanism and examine the evolution of symbiont benefits given variation in either the immigration rate of susceptible hosts or the rate of successful vertical transmission. We find conditions for each case under which greater opportunity for horizontal transmission (higher migration rate) favors the evolution of mutualism. Further, we find the surprising result that vertical transmission can inhibit the evolution of benefits provided by symbionts to hosts when horizontal transmission and symbiont‐provided benefits are positively correlated. These predictions may apply to a number of natural systems, and the results may explain why many mutualisms that rely on partner choice often lack a mechanism for vertical transmission.  相似文献   

8.
Nematodes play vital roles in soil ecosystems. To understand how their communities and coexistence patterns change along the elevation as well as to determine the best explanatory factors underlying these changes, we investigated free‐living soil nematodes on Mt. Halla, South Korea, using an amplicon sequencing approach targeting the 18S rRNA gene. Our results showed that there was significant variation in the community diversity and composition of soil nematodes in relation to elevation. The network interactions between soil nematodes were more intensive at the lower elevations. Climatic variables were responsible explaining the elevational variation in community composition and co‐occurrence pattern of the nematode community. Our study indicated that climatic factors served as the critical environmental filter that influenced not only the community structure but also the potential associations of soil nematodes in the mountain ecosystem of Mt. Halla. These findings enhance the understanding of the community structure and co‐occurrence network patterns and mechanisms of soil nematode along elevation, and the response of soil nematodes to climate change on the vertical scale of mountain ecosystems.  相似文献   

9.
The majority of terrestrial plants form mutualistic associations with arbuscular mycorrhizal fungi (AMF) and rhizobia (i.e., nitrogen‐fixing bacteria). Understanding these associations has important implications for ecological theory and for restoration practice. Here, we tested whether the presence of AMF and rhizobia influences the performance of native woody plants invaded by a non‐native grass in experimental microcosms. We planted eight plant species (i.e., Acacia acuminata, A. microbotrya, Eucalyptus loxophleba subsp. loxophleba, E. astringens, Calothamnus quadrifidus, Callistemon phoeniceus, Hakea lissocarpha and H. prostrata) in microcosms of field‐conditioned soil with and without addition of AMF and rhizobia in a fully factorial experimental design. After seedling establishment, we seeded half the microcosms with an invasive grass Bromus diandrus. We measured shoot and root biomass of native plants and Bromus, and on roots, the percentage colonization by AMF, number of rhizobia‐forming nodules and number of proteaceous root clusters. We found no effect of plant root symbionts or Bromus addition on performance of myrtaceous, and as predicted, proteaceous species as they rely little or not at all on AMF and rhizobia. Soil treatments with AMF and rhizobia had a strong positive effect (i.e., larger biomass) on native legumes (Amicrobotrya and A. acuminata). However, the beneficial effect of root symbionts on legumes became negative (i.e., lower biomass and less nodules) if Bromus was present, especially for one legume, i.e., A. acuminata, suggesting a disruptive effect of the invader on the mutualism. We also found a stimulating effect of Bromus on root nodule production in Amicrobotrya and AMF colonization in A. acuminata which could be indicative of legumes’ increased resource acquisition requirement, i.e., for nitrogen and phosphorus, respectively, in response to the Bromus addition. We have demonstrated the importance of measuring belowground effects because the aboveground effects gave limited indication of the effects occurring belowground.  相似文献   

10.
Mutualisms are ubiquitous in nature, provide important ecosystem services, and involve many species of interest for conservation. Theoretical progress on the population dynamics of mutualistic interactions, however, comparatively lagged behind that of trophic and competitive interactions, leading to the impression that ecologists still lack a generalized framework to investigate the population dynamics of mutualisms. Yet, over the last 90 years, abundant theoretical work has accumulated, ranging from abstract to detailed. Here, we review and synthesize historical models of two‐species mutualisms. We find that population dynamics of mutualisms are qualitatively robust across derivations, including levels of detail, types of benefit, and inspiring systems. Specifically, mutualisms tend to exhibit stable coexistence at high density and destabilizing thresholds at low density. These dynamics emerge when benefits of mutualism saturate, whether due to intrinsic or extrinsic density dependence in intraspecific processes, interspecific processes, or both. We distinguish between thresholds resulting from Allee effects, low partner density, and high partner density, and their mathematical and conceptual causes. Our synthesis suggests that there exists a robust population dynamic theory of mutualism that can make general predictions.  相似文献   

11.
  1. Aphids are abundant in natural and managed vegetation, supporting a diverse community of organisms and causing damage to agricultural crops. Due to a changing climate, periods of drought are anticipated to increase, and the potential consequences of this for aphid–plant interactions are unclear.
  2. Using a meta‐analysis and synthesis approach, we aimed to advance understanding of how increased drought incidence will affect this ecologically and economically important insect group and to characterize any potential underlying mechanisms. We used qualitative and quantitative synthesis techniques to determine whether drought stress has a negative, positive, or null effect on aphid fitness and examined these effects in relation to (a) aphid biology, (b) geographical region, and (c) host plant biology.
  3. Across all studies, aphid fitness is typically reduced under drought. Subgroup analysis detected no difference in relation to aphid biology, geographical region, or the aphid–plant combination, indicating the negative effect of drought on aphids is potentially universal. Furthermore, drought stress had a negative impact on plant vigor and increased plant concentrations of defensive chemicals, suggesting the observed response of aphids is associated with reduced plant vigor and increased chemical defense in drought‐stressed plants.
  4. We propose a conceptual model to predict drought effects on aphid fitness in relation to plant vigor and defense to stimulate further research.
  相似文献   

12.
Interspecific interactions between plants influence plant phenotype, distribution, abundance, and community structure. Each of these can, in turn, impact sediment biogeochemistry. Although the population and community level impacts of these interactions have been extensively studied, less is known about their effect on sediment biogeochemistry. This is surprising given that many plants are categorized as foundation species that exert strong control on community structure. In southern California salt marshes, we used clipping experiments to manipulate aboveground neighbor presence to study interactions between two dominant plants, Pacific cordgrass (Spartina foliosa) and perennial pickleweed (Sarcocornia pacifica). We also measured how changes in cordgrass stem density influenced sediment biogeochemistry. Pickleweed suppressed cordgrass stem density but had no effect on aboveground biomass. For every cordgrass stem lost per square meter, porewater ammonium increased 0.3–1.0 µM. Thus, aboveground competition with pickleweed weakened the effects of cordgrass on sediment biogeochemistry. Predictions about plant–soil feedbacks, especially under future climate scenarios, will be improved when plant–plant interactions are considered, particularly those containing dominant and foundation species.  相似文献   

13.
Experiments investigating plant-herbivore interactions have primarily focused on above-ground herbivory, with occasional studies evaluating the effect of below-ground herbivores on plant performance. This study investigated the growth of the wetland perennial Lythrum salicaria (purple loosestrife) under three levels of root herbivory by the weevil Hylobiustransversovittatus and three levels of plant competition by the grass Phleumpratense in a common garden. Plant growth, flowering phenology, and biomass allocation patterns of purple loosestrife were recorded for two growing seasons. During the first year, root herbivory reduced plant height; plant competition delayed flowering; and the interaction of root herbivory and plant competition resulted in reductions in plant height, shoot weight and total dry biomass. Plant competition or larval feeding did not affect the biomass allocation pattern in the first year. These results indicate the importance of interactions of plant competition and herbivory in reducing plant performance – at least during the establishment period of purple loosestrife. In the second growing season, root herbivory reduced plant height, biomass of all plant parts, delayed and shortened the flowering period, and changed the biomass allocation patterns. Plant competition delayed flowering and reduced the dry weight of fine roots. The interaction of root herbivory and plant competition delayed flowering. Root herbivory was more important than plant competition in reducing the performance of established purple loosestrife plants. This was due, in part, to intense intraspecific competition among the grass individuals effectively preventing shoot elongation of P. pratense and resulting in a carpet like growth. Received: 3 April 1997 / Accepted: 27 July 1997  相似文献   

14.
Chronic inflammation is associated with the occurrence of several diseases. However, the side effects of anti‐inflammatory drugs prompt the identification of new therapeutic strategies. Plant‐derived extracellular vesicles (PDEVs) are gaining increasing interest in the scientific community for their biological properties. We isolated PDEVs from the juice of Citrus limon L. (LEVs) and characterized their flavonoid, limonoid and lipid contents through reversed‐phase high‐performance liquid chromatography coupled to electrospray ionization quadrupole time‐of‐flight mass spectrometry (RP‐HPLC–ESI‐Q‐TOF‐MS). To investigate whether LEVs have a protective role on the inflammatory process, murine and primary human macrophages were pre‐treated with LEVs for 24 h and then were stimulated with lipopolysaccharide (LPS). We found that pre‐treatment with LEVs decreased gene and protein expression of pro‐inflammatory cytokines, such as IL‐6, IL1‐β and TNF‐α, and reduced the nuclear translocation and phosphorylation of NF‐κB in LPS‐stimulated murine macrophages. The inhibition of NF‐κB activation was associated with the reduction in ERK1‐2 phosphorylation. Furthermore, the ability of LEVs to decrease pro‐inflammatory cytokines and increase anti‐inflammatory molecules was confirmed ex vivo in human primary T lymphocytes. In conclusion, we demonstrated that LEVs exert anti‐inflammatory effects both in vitro and ex vivo by inhibiting the ERK1‐2/NF‐κB signalling pathway.  相似文献   

15.
Plant pathogens compromise crop yields. Plants have evolved robust innate immunity that depends in part on intracellular Nucleotide‐binding, Leucine rich‐Repeat (NLR) immune receptors that activate defense responses upon detection of pathogen‐derived effectors. Most “sensor” NLRs that detect effectors require the activity of “helper” NLRs, but how helper NLRs support sensor NLR function is poorly understood. Many Solanaceae NLRs require NRC (NLR‐Required for Cell death) class of helper NLRs. We show here that Rpi‐amr3, a sensor NLR from Solanum americanum, detects AVRamr3 from the potato late blight pathogen, Phytophthora infestans, and activates oligomerization of helper NLRs NRC2 and NRC4 into high‐molecular‐weight resistosomes. In contrast, recognition of P. infestans effector AVRamr1 by another sensor NLR Rpi‐amr1 induces formation of only the NRC2 resistosome. The activated NRC2 oligomer becomes enriched in membrane fractions. ATP‐binding motifs of both Rpi‐amr3 and NRC2 are required for NRC2 resistosome formation, but not for the interaction of Rpi‐amr3 with its cognate effector. NRC2 resistosome can be activated by Rpi‐amr3 upon detection of AVRamr3 homologs from other Phytophthora species. Mechanistic understanding of NRC resistosome formation will underpin engineering crops with durable disease resistance.  相似文献   

16.
17.
Mild uncoupling of oxidative phosphorylation is an intrinsic property of all mitochondria and may have evolved to protect cells against the production of damaging reactive oxygen species. Therefore, compounds that enhance mitochondrial uncoupling are potentially attractive anti‐aging therapies; however, chronic ingestion is associated with a number of unwanted side effects. We have previously developed a controlled‐release mitochondrial protonophore (CRMP) that is functionally liver‐directed and promotes oxidation of hepatic triglycerides by causing a subtle sustained increase in hepatic mitochondrial inefficiency. Here, we sought to leverage the higher therapeutic index of CRMP to test whether mild mitochondrial uncoupling in a liver‐directed fashion could reduce oxidative damage and improve age‐related metabolic disease and lifespan in diet‐induced obese mice. Oral administration of CRMP (20 mg/[kg‐day] × 4 weeks) reduced hepatic lipid content, protein kinase C epsilon activation, and hepatic insulin resistance in aged (74‐week‐old) high‐fat diet (HFD)‐fed C57BL/6J male mice, independently of changes in body weight, whole‐body energy expenditure, food intake, or markers of hepatic mitochondrial biogenesis. CRMP treatment was also associated with a significant reduction in hepatic lipid peroxidation, protein carbonylation, and inflammation. Importantly, long‐term (49 weeks) hepatic mitochondrial uncoupling initiated late in life (94–104 weeks), in conjugation with HFD feeding, protected mice against neoplastic disorders, including hepatocellular carcinoma (HCC), in a strain and sex‐specific manner. Taken together, these studies illustrate the complex variation of aging and provide important proof‐of‐concept data to support further studies investigating the use of liver‐directed mitochondrial uncouplers to promote healthy aging in humans.  相似文献   

18.
Perforin‐2 (PFN2, MPEG1) is a key pore‐forming protein in mammalian innate immunity restricting intracellular bacteria proliferation. It forms a membrane‐bound pre‐pore complex that converts to a pore‐forming structure upon acidification; but its mechanism of conformational transition has been debated. Here we used cryo‐electron microscopy, tomography and subtomogram averaging to determine structures of PFN2 in pre‐pore and pore conformations in isolation and bound to liposomes. In isolation and upon acidification, the pre‐assembled complete pre‐pore rings convert to pores in both flat ring and twisted conformations. On membranes, in situ assembled PFN2 pre‐pores display various degrees of completeness; whereas PFN2 pores are mainly incomplete arc structures that follow the same subunit packing arrangements as found in isolation. Both assemblies on membranes use their P2 β‐hairpin for binding to the lipid membrane surface. Overall, these structural snapshots suggest a molecular mechanism for PFN2 pre‐pore to pore transition on a targeted membrane, potentially using the twisted pore as an intermediate or alternative state to the flat conformation, with the capacity to cause bilayer distortion during membrane insertion.  相似文献   

19.
20.
Host nutrient supply can mediate host–pathogen and pathogen–pathogen interactions. In terrestrial systems, plant nutrient supply is mediated by soil microbes, suggesting a potential role of soil microbes in plant diseases beyond soil‐borne pathogens and induced plant defenses. Long‐term nitrogen (N) enrichment can shift pathogenic and nonpathogenic soil microbial community composition and function, but it is unclear if these shifts affect plant–pathogen and pathogen–pathogen interactions. In a growth chamber experiment, we tested the effect of long‐term N enrichment on infection by Barley Yellow Dwarf Virus (BYDV‐PAV) and Cereal Yellow Dwarf Virus (CYDV‐RPV), aphid‐vectored RNA viruses, in a grass host. We inoculated sterilized growing medium with soil collected from a long‐term N enrichment experiment (ambient, low, and high N soil treatments) to isolate effects mediated by the soil microbial community. We crossed soil treatments with a N supply treatment (low, high) and virus inoculation treatment (mock‐, singly‐, and co‐inoculated) to evaluate the effects of long‐term N enrichment on plant–pathogen and pathogen–pathogen interactions, as mediated by N availability. We measured the proportion of plants infected (i.e., incidence), plant biomass, and leaf chlorophyll content. BYDV‐PAV incidence (0.96) declined with low N soil (to 0.46), high N supply (to 0.61), and co‐inoculation (to 0.32). Low N soil mediated the effect of N supply on BYDV‐PAV: instead of N supply reducing BYDV‐PAV incidence, the incidence increased. Additionally, ambient and low N soil ameliorated the negative effect of co‐inoculation on BYDV‐PAV incidence. BYDV‐PAV infection only reduced chlorophyll when plants were grown with low N supply and ambient N soil. There were no significant effects of long‐term N soil on CYDV‐RPV incidence. Soil inoculant with different levels of long‐term N enrichment had different effects on host–pathogen and pathogen–pathogen interactions, suggesting that shifts in soil microbial communities with long‐term N enrichment may mediate disease dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号