首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Stem cells reside in specialized niches in vivo. Specific factors, including the extracellular matrix (ECM), in these niches are directly responsible for maintaining the stem cell population. During development, components of the stem cell microenvironment also control differentiation with precise spatial and temporal organization. The stem cell microenvironment is dynamically regulated by the cellular component, including stem cells themselves. Thus, a mechanism exists whereby stem cells modify the ECM, which in turn affects the fate of the stem cell. In this study, we investigated whether the type of ECM initially adsorbed to the culture substrate can influence the composition of the ECM deposited by human embryonic stem cells (hESCs) differentiating in embryoid bodies, and whether different ECM composition and deposition profiles elicit distinct differentiation fates. We have shown that the initial ECM environment hESCs are exposed to affects the fate decisions of those cells and that this initial ECM environment is constantly modified during the differentiation process. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:212–219, 2015  相似文献   

2.
To improve the recapitulative quality of human pluripotent stem cell (hPSC) differentiation, we removed exogenous haematopoietic cytokines from the defined differentiation system. Here, we show that endogenous stimuli and VEGF are sufficient to induce robust hPSC-derived haematopoiesis, intensive generation of haematopoietic progenitors, maturation of blood cells and the emergence of definitive precursor cells including those that phenotypically identical to early human embryonic haematopoietic stem cells (HSCs). Moreover, the cytokine-free system produces significantly higher numbers of haematopoietic progenitors compared to the published protocols. The removal of cytokines revealed a broad developmental potential of the early blood cells, stabilized the hPSC-derived definitive precursors and led to spontaneous activation of inflammatory signalling. Our cytokine-free protocol is simple, efficient, reproducible and applicable for embryonic stem cells (ESCs) and induced PSCs. The spectrum of recapitulative features of the novel protocol makes the cytokine-free differentiation a preferred model for studying the early human haematopoietic development.  相似文献   

3.
Fibronectin matrix assembly is a multistep, integrin-dependent process. To investigate the role of integrin dynamics in fibronectin fibrillogenesis, we developed an antibody-chasing technique for simultaneous tracking of two integrin populations by different antibodies. We established that whereas the vitronectin receptor alpha(v)beta(3) remains within focal contacts, the fibronectin receptor alpha(5)beta(1) translocates from focal contacts into and along extracellular matrix (ECM) contacts. This escalator-like translocation occurs relative to the focal contacts at 6.5 +/- 0.7 microm/h and is independent of cell migration. It is induced by ligation of alpha(5)beta(1) integrins and depends on interactions with a functional actin cytoskeleton and vitronectin receptor ligation. During cell spreading, translocation of ligand-occupied alpha(5)beta(1) integrins away from focal contacts and along bundles of actin filaments generates ECM contacts. Tensin is a primary cytoskeletal component of these ECM contacts, and a novel dominant-negative inhibitor of tensin blocked ECM contact formation, integrin translocation, and fibronectin fibrillogenesis without affecting focal contacts. We propose that translocating alpha(5)beta(1) integrins induce initial fibronectin fibrillogenesis by transmitting cytoskeleton-generated tension to extracellular fibronectin molecules. Blocking this integrin translocation by a variety of treatments prevents the formation of ECM contacts and fibronectin fibrillogenesis. These studies identify a localized, directional, integrin translocation mechanism for matrix assembly.  相似文献   

4.
The use of adult mesenchymal stem cells (MSC) in cartilage tissue engineering has been implemented in the field of regenerative medicine and offers new perspectives in the generation of transplants for reconstructive surgery. The extracellular matrix (ECM) plays a key role in modulating function and phenotype of the embedded cells and contains the integrins as adhesion receptors mediating cell-cell and cell-matrix interactions. In our study, characteristic changes in integrin expression during the course of chondrogenic differentiation of MSC from bone marrow and foetal cord blood were compared. MSC were isolated from bone marrow biopsies and cord blood. During cell culture, chondrogenic differentiation was performed. The expression of integrins and their signalling components were analysed with microarray and immunohistochemistry in freshly isolated MSC and after chondrogenic differentiation. The fibronectin-receptor (integrin a5b1) was expressed by undifferentiated MSC, expression rose during chondrogenic differentiation in both types of MSC. The components of the vitronectin/osteopontin-receptors (avb5) were not expressed by freshly isolated MSC, expression rose with ongoing differentiation. Receptors for collagens (a1b1, a2b1, a3b1) were weakly expressed by undifferentiated MSC and were activated during differentiation. As intracellular signalling components integrin linked kinase (ILK) and CD47 showed increasing expression with ongoing differentiation. For all integrins, no significant differences could be found in the two types of MSC. Integrin-mediated signalling seems to play an important role in the generation and maintenance of the chondrocytic phenotype during chondrogenic differentiation. Especially the receptors for fibronectin, vitronectin, osteopontin and collagens might be involved in the generation of the ECM. Intracellularly, their signals might be transduced by ILK and CD47. To fully harness the potential of these cells, future studies should be directed to ascertain their cellular and molecular characteristics for optimal identification, isolation and expansion.  相似文献   

5.
Adult human bone marrow stromal cells (BMSCs) containing or consisting of mesenchymal stem cells (MSCs) are an important source in tissue homeostasis and repair. Although many processes involved in their differentiation into diverse lineages have been deciphered, substantial inroads remain to be gained to synthesize a complete regulatory picture. The present study suggests that structural conformation of extracellular collagen I, the major organic matrix component in musculoskeletal tissues, plays, along with differentiation stimuli, a decisive role in the selection of differentiation lineage. It introduces a novel concept which proposes that structural transition of collagen I matrix regulates cell differentiation through distinct signaling pathways specific for the structural state of the matrix. Thus, on native collagen I matrix inefficient adipogenesis is p38-independent, whereas on its denatured counterpart, an efficient adipogenesis is primarily regulated by p38 kinase. Inversely, osteogenic differentiation occurs efficiently on native, but not on denatured collagen I matrix, with a low commencement threshold on the former and a substantially higher one on the latter. Osteogenesis on collagen I matrices in both structural conformations is fully dependent on ERK. However, whereas on native collagen I matrix osteogenic differentiation is Hsp90-dependent, on denatured collagen I matrix it is Hsp90-independent. The matrix conformation-mediated regulation appears to be one of the mechanisms determining differentiation lineage of BMSCs. It allows a novel interpretation of the bone remodeling cycle, explains the marked physiological aging-related adipogenic shift in musculoskeletal tissues, and can be a principal contributor to adipogenic shift seen in a number of clinical disorders.  相似文献   

6.
Human pluripotent stem cell-derived endothelial cells (hPSC-ECs) present an attractive alternative to primary EC sources for vascular grafting. However, there is a need to mature them towards either an arterial or venous subtype. A vital environmental factor involved in the arteriovenous specification of ECs during early embryonic development is fluid shear stress; therefore, there have been attempts to employ adult arterial shear stress conditions to mature hPSC-ECs. However, hPSC-ECs are naïve to fluid shear stress, and their shear responses are still not well understood. Here, we used a multiplex microfluidic platform to systematically investigate the dose-time shear responses on hPSC-EC morphology and arterial-venous phenotypes over a range of magnitudes coincidental with physiological levels of embryonic and adult vasculatures. The device comprised of six parallel cell culture chambers that were individually linked to flow-setting resistance channels, allowing us to simultaneously apply shear stress ranging from 0.4 to 15 dyne/cm 2. We found that hPSC-ECs required up to 40 hr of shear exposure to elicit a stable phenotypic change. Cell alignment was visible at shear stress <1 dyne/cm 2, which was independent of shear stress magnitude and duration of exposure. We discovered that the arterial markers NOTCH1 and EphrinB2 exhibited a dose-dependent increase in a similar manner beyond a threshold level of 3.8 dyne/cm 2, whereas the venous markers COUP-TFII and EphB4 expression remained relatively constant across different magnitudes. These findings indicated that hPSC-ECs were sensitive to relatively low magnitudes of shear stress, and a critical level of ~4 dyne/cm 2 was sufficient to preferentially enhance their maturation into an arterial phenotype for future vascular tissue engineering applications.  相似文献   

7.
8.
人胚胎干细胞建系的研究现状与存在的问题   总被引:2,自引:0,他引:2  
人胚胎干细胞系的建立,对人类胚胎发生和人类发育生物学研究、人类新基因的发现和功能研究以及基因治疗、细胞和组织的移植治疗等领域的突破性进展具有重大意义;回顾了人胚胎干细胞建系研究的历程,就建系的几种方案、路线、意义和可行性进行了探讨;详细系统地说明了迄今为止建立人胚胎干细胞系所需要的饲养层类型、培养基组成、添加细胞因子种类及其作用;分析了建立和维持人胚胎干细胞系所需消化酶的种类及其作用以及目前常用的几种传代方法;从若干方面总结了人胚胎干细胞系的鉴定方法,并对建立和维持人胚胎干细胞系中存在的若干问题进行了剖析,提出了目前急待解决的问题。  相似文献   

9.
10.
11.
Myocardial ischaemia (MI) results in extensive cardiomyocyte death and reactive oxygen species (ROS)‐induced damage in an organ with little or no regenerative capacity. Although the use of adult bone marrow mesenchymal stem cells (BMMSCs) has been proposed as a treatment option, the high cell numbers required for clinical use are difficult to achieve with this source of MSCs, and animal studies have produced inconsistent data. We recently demonstrated in small and large animal models of acute MI that the application of human term placenta‐derived multipotent cells (PDMCs), a foetal‐stage MSC, resulted in reversal of cardiac injury with therapeutic efficacy. However, the mechanisms involved are unclear, making it difficult to strategize for therapeutic improvements. We found that PDMCs significantly reduced cardiomyocyte apoptosis and ROS production through the paracrine factors GRO‐α, HGF and IL‐8. Moreover, culturing PDMCs on plates coated with laminin, an extracellular matrix (ECM) protein, resulted in significantly enhanced secretion of all three paracrine factors, which further reduced cardiomyocyte apoptosis. The enhancement of PDMC paracrine function by laminin was mediated through αvβ3 integrin, with involvement of the signalling pathways of JNK, for GRO‐α and IL‐8 secretion, and PI3K/AKT, for HGF secretion. Our results demonstrated the utility of PDMC therapy to reduce cardiomyocyte apoptosis through modulation of ECM proteins in in vitro culture systems as a strategy to enhance the therapeutic functions of stem cells.  相似文献   

12.
《Organogenesis》2013,9(2):196-207
The shortage of donor lungs for transplantation causes a significant number of patient deaths. The availability of laboratory engineered, functional organs would be a major advance in meeting the demand for organs for transplantation. The accumulation of information on biological scaffolds and an increased understanding of stem/progenitor cell behavior has led to the idea of generating transplantable organs by decellularizing an organ and recellularizing using appropriate cells. Recellularized solid organs can perform organ-specific functions for short periods of time, which indicates the potential for the clinical use of engineered solid organs in the future.

The present review provides an overview of progress and recent knowledge about decellularization and recellularization-based approaches for generating tissue engineered lungs. Methods to improve decellularization, maturation of recellularized lung, candidate species for transplantation and future prospects of lung bioengineering are also discussed.  相似文献   

13.
The shortage of donor lungs for transplantation causes a significant number of patient deaths. The availability of laboratory engineered, functional organs would be a major advance in meeting the demand for organs for transplantation. The accumulation of information on biological scaffolds and an increased understanding of stem/progenitor cell behavior has led to the idea of generating transplantable organs by decellularizing an organ and recellularizing using appropriate cells. Recellularized solid organs can perform organ-specific functions for short periods of time, which indicates the potential for the clinical use of engineered solid organs in the future. The present review provides an overview of progress and recent knowledge about decellularization and recellularization-based approaches for generating tissue engineered lungs. Methods to improve decellularization, maturation of recellularized lung, candidate species for transplantation and future prospects of lung bioengineering are also discussed.  相似文献   

14.
Ovarian carcinomas, the most fatal gynaecological malignancies, are associated with poor prognosis predominantly because of a high recurrence rate. Ovarian cancer cells spread widely throughout the abdominal cavity leading to peritoneal metastasis. The influence of the mesothelial microenvironment on the biological mechanisms leading to cancer cell colonization of the mesothelium is poorly understood. This study aims to investigate whether mesothelial secretions affect the migration of ovarian cancer cells and focuses on the role of the adhesive molecule Vn (vitronectin) and its integrin receptors. An in vitro co‐culture model indicated that clusters of IGROV1 and SKOV3 cells adhere to MeT‐5A mesothelial cells preferentially at intercellular sites, invade the mesothelial monolayer and alter the integrity of the mesothelium. In addition, mesothelial CM (cell‐conditioned medium) induces migration of IGROV1 and SKOV3 cells in Boyden chambers and wound healing assays. Furthermore, blocking molecules directed against vitronectin or its αv integrin receptor decrease mesothelial‐CM‐induced migration by approximately 40% and 60–70% for IGROV1 and SKOV3 ovarian cancer cells, respectively, in Boyden chamber assays. Wound healing assays that allow cell migration to be measured over 24 h periods demonstrated that blocking molecules prevent the migration of IGROV1 and SKOV3 cells. Vitronectin is present in CM MeT‐5A (mesothelial conditioned medium) and in metastatic peritoneal tissue sections. The expression of vitronectin at the periphery of mesothelial cells and within ovarian cancer cell clusters suggests a potential role for this molecule during intraperitoneal implantation of ovarian cancer cells. Vitronectin could represent a target for the development of anti‐adhesive strategies to impede ovarian cancer dissemination.  相似文献   

15.
16.
《Cell Stem Cell》2022,29(5):744-759.e6
  1. Download : Download high-res image (134KB)
  2. Download : Download full-size image
  相似文献   

17.
18.
19.
During adipogenic differentiation human mesenchymal stem cells (hMSC) produce collagen type IV. In immunofluorescence staining differentiating hMSCs started to express collagen type IV when Oil Red O-positive fat droplets appeared intracellularly. Quantitative real time-polymerase chain reaction confirmed progressive increase of collagen type IV α1 and α2 mRNA levels over time, 18.6- and 12.2-fold by day 28, respectively, whereas the copy numbers of α3-α6 mRNAs remained rather stable and low. Type IV collagen was in confocal laser scanning microscopy seen around adipocytes, where also laminins and nidogen were found, suggesting pericellular deposition of all key components of the fully developed basement membrane. Immunofluorescence staining of matrix metalloproteinase-2 (MMP-2, 72 kD type IV collagenase, gelatinase A) and MMP-9 (92 kD type IV collagenase, gelatinase B) disclosed only faint staining of MSCs, but MMP-9 was strongly induced during adipogenesis, whereas MSC supernatants disclosed in zymography pro-MMP-2 and faint pro-MMP-9 bands, which increased over time, with partial conversion of pro-MMP-2 to its active 62 kD form. Differentiation was associated with increasing membrane type 1-MMP/MMP-14 and tissue inhibitor of metalloproteinase-2 (TIMP-2) staining, which may enable participation of type IV collagenases in basement membrane remodelling via ternary MT1-MMP/TIMP-2/MMP-2 or -9 complexes, focalizing the fully active enzyme to the cell surface. MMP-9, which increased more in immunofluorescence staining, was perhaps preferentially bound to cell surface and/or remodelling adipocyte basement membrane. These results suggest that upon MSC-adipocyte differentiation collagen type IV synthesis and remodelling become necessary when intracellular accumulation of fat necessitates a dynamically supporting and instructive, partly denatured adipogenic pericellular type IV collagen scaffold.  相似文献   

20.
Microcarriers have been widely used for various biotechnology applications because of their high scale‐up potential, high reproducibility in regulating cellular behavior, and well‐documented compliance with current Good Manufacturing Practices (cGMP). Recently, microcarriers have been emerging as a novel approach for stem cell expansion and differentiation, enabling potential scale‐up of stem cell‐derived products in large bioreactors. This review summarizes recent advances of using microcarriers in mesenchymal stem cell (MSC) and pluripotent stem cell (PSC) cultures. From the reported data, efficient expansion and differentiation of stem cells on microcarriers rely on their ability to modulate cell shape (i.e. round or spreading) and cell organization (i.e. aggregate size). Nonetheless, current screening of microcarriers remains empirical, and accurate understanding of how stem cells interact with microcarriers still remains unknown. This review suggests that accurate characterization of biochemical and biomechanical properties of microcarriers is required to fully exploit their potential in regulating stem cell fate decision. Due to the variety of microcarriers, such detailed analyses should lead to the rational design of application‐specific microcarriers, enabling the exploitation of reproducible effects for large scale biomedical applications. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1354–1366, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号