首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
N6A methylation is the most abundant RNA modification occurring within messenger RNA. Impairment of methylase or demethylase functions are associated with severe phenotypes and diseases in several organisms. Beside writer and eraser enzymes of this dynamic RNA epigenetic modification, reader proteins that recognize this modification are involved in numerous cellular processes. Although the precise characterization of these reader proteins remains unknown, preliminary data showed that most potential reader proteins contained a conserved YT521-B homology (YTH) domain. Here we define the YTH domain of rat YT521-B as a N6-methylated adenosine reader domain and report its solution structure in complex with a N6-methylated RNA. The structure reveals a binding preference for NGANNN RNA hexamer and a deep hydrophobic cleft for m6A recognition. These findings establish a molecular function for YTH domains as m6A reader domains and should guide further studies into the biological functions of YTH-containing proteins in m6A recognition.  相似文献   

3.
Like protein and DNA, different types of RNA molecules undergo various modifications. Accumulating evidence suggests that these RNA modifications serve as sophisticated codes to mediate RNA behaviors and many important biological functions. N6-methyladenosine (m6A) is the most abundant internal RNA modification found in a variety of eukaryotic RNAs, including but not limited to mRNAs, tRNAs, rRNAs, and long non-coding RNAs (lncRNAs). In mammalian cells, m6A can be incorporated by a methyltransferase complex and removed by demethylases, which ensures that the m6A modification is reversible and dynamic. Moreover, m6A is recognized by the YT521-B homology (YTH) domain-containing proteins, which subsequently direct different complexes to regulate RNA signaling pathways, such as RNA metabolism, RNA splicing, RNA folding, and protein translation. Herein, we summarize the recent progresses made in understanding the molecular mechanisms underlying the m6A recognition by YTH domain-containing proteins, which would shed new light on m6A-specific recognition and provide clues to the future identification of reader proteins of many other RNA modifications.  相似文献   

4.
N6-Methyladenosine (m6A) is the most abundant internal modification in RNA and is specifically recognized by YT521-B homology (YTH) domain-containing proteins. Recently we reported that YTHDC1 prefers guanosine and disfavors adenosine at the position preceding the m6A nucleotide in RNA and preferentially binds to the GG(m6A)C sequence. Now we systematically characterized the binding affinities of the YTH domains of three other human proteins and yeast YTH domain protein Pho92 and determined the crystal structures of the YTH domains of human YTHDF1 and yeast Pho92 in complex with a 5-mer m6A RNA, respectively. Our binding and structural data revealed that the YTH domain used a conserved aromatic cage to recognize m6A. Nevertheless, none of these YTH domains, except YTHDC1, display sequence selectivity at the position preceding the m6A modification. Structural comparison of these different YTH domains revealed that among those, only YTHDC1 harbors a distinctly selective binding pocket for the nucleotide preceding the m6A nucleotide.  相似文献   

5.
6.
YTH domain containing 2 (YTHDC2) is the largest N6-Methyladenosine (m6A) binding protein of the YTH protein family and the only member containing ATP-dependent RNA helicase activity. For further analysing its biological role in epigenetic modification, we comprehensively explored YTHDC2 from gene expression, genetic alteration, protein-protein interaction (PPI) network, immune infiltration, diagnostic value and prognostic value in pan-cancer, using a series of databases and bioinformatic tools. We found that YTHDC2 with Missense mutation could cause a different prognosis in uterine corpus endometrial carcinoma (UCEC), and its different methylation level could lead to a totally various prognosis in adrenocortical carcinoma (ACC), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), lung squamous cell carcinoma (LUSC) and UCEC. The main molecular mechanisms of YTHDC2 focused on catalytic activity, helicase activity, snRNA binding, spliceosome and mRNA surveillance. Additionally, YTHDC2 was notably correlated with tumour immune infiltration. Moreover, YTHDC2 had a high diagnostic value for seven cancer types and a prognostic value for brain lower grade glioma (LGG), rectum adenocarcinoma (READ) and skin cutaneous melanoma (SKCM). Collectively, YTHDC2 plays a significant role in epigenetic modification and immune infiltration and maybe a potential biomarker for diagnosis and prognosis in certain cancers.  相似文献   

7.
We report a new mechanism of androgen receptor (AR) mRNA regulation and cytoprotection in response to AR pathway inhibition (ARPI) stress in prostate cancer (PCA). AR mRNA translation is coordinately regulated by RNA binding proteins, YTHDF3 and G3BP1. Under ambient conditions m6A-modified AR mRNA is bound by YTHDF3 and translationally stimulated, while m6A-unmodified AR mRNA is bound by G3BP1 and translationally repressed. When AR-regulated PCA cell lines are subjected to ARPI stress, m6A-modified AR mRNA is recruited from actively translating polysomes (PSs) to RNA-protein stress granules (SGs), leading to reduced AR mRNA translation. After ARPI stress, m6A-modified AR mRNA liquid–liquid phase separated with YTHDF3, while m6A-unmodified AR mRNA phase separated with G3BP1. Accordingly, these AR mRNA messages form two distinct YTHDF3-enriched or G3BP1-enriched clusters in SGs. ARPI-induced SG formation is cell-protective, which when blocked by YTHDF3 or G3BP1 silencing increases PCA cell death in response to ARPI stress. Interestingly, AR mRNA silencing also delays ARPI stress-induced SG formation, highlighting its supportive role in triggering this stress response. Our results define a new mechanism for stress adaptive cell survival after ARPI stress involving SG-regulated translation of AR mRNA, mediated by m6A RNA modification and their respective regulatory proteins.  相似文献   

8.
The YTH domain-containing protein Mmi1, together with other factors, constitutes the machinery used to selectively remove meiosis-specific mRNA during the vegetative growth of fission yeast. Mmi1 directs meiotic mRNAs to the nuclear exosome for degradation by recognizing their DSR (determinant of selective removal) motif. Here, we present the crystal structure of the Mmi1 YTH domain in the apo state and in complex with a DSR motif, demonstrating that the Mmi1 YTH domain selectively recognizes the DSR motif. Intriguingly, Mmi1 also contains a potential m6A (N6-methyladenine)-binding pocket, but its binding of the DSR motif is dependent on a long groove opposite the m6A pocket. The DSR-binding mode is distinct from the m6A RNA-binding mode utilized by other YTH domains. Furthermore, the m6A pocket cannot bind m6A RNA. Our structural and biochemical experiments uncover the mechanism of the YTH domain in binding the DSR motif and help to elucidate the function of Mmi1.  相似文献   

9.
YTH: a new domain in nuclear proteins   总被引:4,自引:0,他引:4  
A novel 100-150-residue domain has been identified in the human splicing factor YT521-B and its Drosophila and yeast homologues. Homology searches show that the domain is typical for the eukaryotes and is particularly abundant in plants. It is predicted to adopt a mixed alpha-helix-beta-sheet fold and to bind to RNA. We propose the name YTH (for YT521-B homology) for the domain.  相似文献   

10.
RNA-binding proteins are critical to RNA metabolism in cells and, thus, play important roles in diverse biological processes. In the present study, we identified the YTH domain-containing RNA-binding protein (RBP) family in Arabidopsis thaliana and rice at the molecular and biochemical levels. A total of 13 and 12 genes were found to encode YTH domain-containing RBPs in Arabidopsis and rice and named as AtYTH01–13 and OsYTH01–12, respectively. The phylogeny, chromosomal location, and structures of genes and proteins were analyzed. Electrophoretic mobility shift assays demonstrated that recombinant AtYTH05 protein could bind to single-stranded RNA in vitro, demonstrating that the YTH proteins have RNA-binding activity. Analyses of publicly available microarray data, gene expression by qRT-PCR, and AtYTH05 promoter activity indicate that the Arabidopsis AtYTHs and rice OsYTHs genes have distinct and diverse expression patterns in different tissues and developmental stages, showing tissue- and developmental-specific expression patterns. Furthermore, analyses of publicly available microarray data also indicate that many of the Arabidopsis AtYTHs and rice OsYTHs genes might be involved in responses to various abiotic and biotic stresses as well as in response to hormones. Our data demonstrate that the YTH family proteins are a novel group of RBPs and provide useful clues to define their biological functions of this RBP family in plants.  相似文献   

11.
12.
13.
环状RNA(circular RNA,circRNA)是一种具有新型环状结构的RNA分子,广泛存在于多种生物体中,具有结构稳定、进化保守、高度丰富和组织特异性等特征。同时,它可通过充当微小RNA(microRNA,miRNA)分子海绵、调控基因转录、结合蛋白质和参与蛋白质翻译等方式发挥生物学功能。且随着高通量测序技术和生物信息学的迅速发展,越来越多的circRNA被发现与肿瘤的发生有关。N6-甲基腺嘌呤(N6-methyladenosine,m6A)修饰是真核生物最常见的一种RNA修饰,它是由m6A甲基转移酶、去甲基化酶和m6A识别蛋白质共同参与的动态可逆的调节过程,广泛参与RNA的核输出、剪接、稳定性、翻译和降解等过程的调控。m6A修饰在多种人类疾病中发挥关键作用,例如癌症和心血管疾病等。近年来,在一些circRNA中也发现了m6A修饰,并报道了其在宫颈癌、结直肠癌、肝细胞癌、非小细胞肺癌和胃低分化腺癌等多种恶性肿瘤发生发展中的作用。本文总结了RNA m6A修饰机制、m6A修饰对circRNA的调控作用,以及circRNA的m6A修饰在肿瘤中的作用,也讨论了m6A修饰的circRNA的潜在临床应用价值,以期为肿瘤的早期诊断、临床治疗和预后判断提供新的思路与途径。  相似文献   

14.
15.
16.
17.
18.
19.
RNAi has existed at least since the divergence of prokaryotes and eukaryotes. This collection of pathways responds to a diversity of “abberant” RNAs and generally silences or eliminates genes sharing sequence content with the silencing trigger. In the canonical pathway, double-stranded RNAs are processed into small RNAs, which guide effector complexes to their targets by complementary base pairing. Many alternative routes from silencing trigger to small RNA are continuously being uncovered. Though the triggers of the pathway and the mechanisms of small RNA production are many, all RNAi-related mechanisms share Argonaute proteins as the heart of their effector complexes. These can act as self-contained silencing machines, binding directly to small RNAs, carrying out homology-based target recognition, and in some cases cleaving targets using an endogenous nuclease domain. Here, we discuss the diversity of Argonaute proteins from a structural and functional perspective.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号