首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Altitudinal changes in the diversity of plants and animals have been well documented; however, soil animals received little attention in this context and it is unclear whether their diversity follows general altitudinal distribution patterns. Changbai Mountain is one of few well‐conserved mountain regions comprising natural ecosystems on the Eurasian continent. Here, we present a comprehensive analysis of the diversity and community composition of Collembola along ten altitudinal sites representing five vegetation types from forest to alpine tundra. Among 7834 Collembola individuals, 84 morphospecies were identified. Species richness varied marginally significant with altitude and generally followed a unimodal relationship with altitude. By contrast, the density of Collembola did not change in a consistent way with altitude. Collembola communities changed gradually with altitude, with local habitat‐related factors (soil and litter carbon‐to‐nitrogen ratio, litter carbon content, and soil pH) and climatic variables (precipitation seasonality) identified as major drivers of changes in Collembola community composition. Notably, local habitat‐related factors explained more variation in Collembola assemblages than climatic variables. The results suggest that local habitat‐related factors including precipitation and temperature are the main drivers of changes in Collembola communities with altitude. Specifically, soil and litter carbon‐to‐nitrogen ratio correlated positively with Collembola communities at high altitudes, whereas soil pH correlated positively at low altitudes. This documents that altitudinal gradients provide unique opportunities for identifying factors driving the community composition of not only above‐ but also belowground invertebrates.  相似文献   

2.
Analyses of spontaneous mutation have shown that total genome‐wide mutation rates are quantitatively similar for most prokaryotic organisms. However, this view is mainly based on organisms that grow best around neutral pH values (6.0–8.0). In particular, the whole‐genome mutation rate has not been determined for an acidophilic organism. Here, we have determined the genome‐wide rate of spontaneous mutation in the acidophilic Acidobacterium capsulatum using a direct and unbiased method: a mutation‐accumulation experiment followed by whole‐genome sequencing. Evaluation of 69 mutation accumulation lines of Acapsulatum after an average of ~2900 cell divisions yielded a base‐substitution mutation rate of 1.22 × 10−10 per site per generation or 4 × 10−4 per genome per generation, which is significantly lower than the consensus value (2.5−4.6 × 10−3) of mesothermophilic (~15–40°C) and neutrophilic (pH 6–8) prokaryotic organisms. However, the insertion‐deletion rate (0.43 × 10−10 per site per generation) is high relative to the base‐substitution mutation rate. Organisms with a similar effective population size and a similar expected effect of genetic drift should have similar mutation rates. Because selection operates on the total mutation rate, it is suggested that the relatively high insertion‐deletion rate may be balanced by a low base‐substitution rate in Acapsulatum, with selection operating on the total mutation rate.  相似文献   

3.
Variation in both inter‐ and intraspecific traits affects community dynamics, yet we know little regarding the relative importance of external environmental filters versus internal biotic interactions that shape the functional space of communities along broad‐scale environmental gradients, such as latitude, elevation, or depth. We examined changes in several key aspects of functional alpha diversity for marine fishes along depth and latitude gradients by quantifying intra‐ and interspecific richness, dispersion, and regularity in functional trait space. We derived eight functional traits related to food acquisition and locomotion and calculated seven complementary indices of functional diversity for 144 species of marine ray‐finned fishes along large‐scale depth (50–1200 m) and latitudinal gradients (29°–51° S) in New Zealand waters. Traits were derived from morphological measurements taken directly from footage obtained using Baited Remote Underwater Stereo‐Video systems and museum specimens. We partitioned functional variation into intra‐ and interspecific components for the first time using a PERMANOVA approach. We also implemented two tree‐based diversity metrics in a functional distance‐based context for the first time: namely, the variance in pairwise functional distance and the variance in nearest neighbor distance. Functional alpha diversity increased with increasing depth and decreased with increasing latitude. More specifically, the dispersion and mean nearest neighbor distances among species in trait space and intraspecific trait variability all increased with depth, whereas functional hypervolume (richness) was stable across depth. In contrast, functional hypervolume, dispersion, and regularity indices all decreased with increasing latitude; however, intraspecific trait variation increased with latitude, suggesting that intraspecific trait variability becomes increasingly important at higher latitudes. These results suggest that competition within and among species are key processes shaping functional multidimensional space for fishes in the deep sea. Increasing morphological dissimilarity with increasing depth may facilitate niche partitioning to promote coexistence, whereas abiotic filtering may be the dominant process structuring communities with increasing latitude.  相似文献   

4.
Despite enormous diversity, abundance, and role in ecosystem processes, little is known about how butterflies differ across altitudinal gradients. For this, butterfly communities were investigated along an altitudinal gradient of 2700–3200 m a.s.l, along the Gulmarg region of Jammu & Kashmir, India. We aimed to determine how the altitudinal gradient and environmental factors affect the butterfly diversity and abundance. Our findings indicate that species richness and diversity are mainly affected by the synergism between climate and vegetation. Alpha diversity indices showed that butterfly communities were more diverse at lower elevations and declined significantly with increase in elevation. Overall, butterfly abundance and diversity is stronger at lower elevations and gradually keep dropping towards higher elevations because floristic diversity decreased on which butterflies rely for survival and propagation. A total of 2023 individuals of butterflies were recorded belonging to 40 species, represented by 27 genera and 05 families. Six survey sites (S I- S VI) were assessed for butterfly diversity from 2018 to 2020 in the Gulmarg region of Jammu & Kashmir. Across the survey, Nymphalidae was the most dominant family represented by 16 genera and 23 species, while Papilionidae and Hesperiidae were least dominant represented by 01 genera and 01 species each. Among the six collection sites selected, Site I was most dominant, represented by 16 genera and 21 species, while Site VI was least dominant, represented by 04 genera and 04 species.  相似文献   

5.
6.
Extensively managed and flower‐rich mountain hay meadows, hotspots of Europe''s biodiversity, are subject to environmental and climatic gradients linked to altitude. While the shift of pollinators from bee‐ to fly‐dominated communities with increasing elevation across vegetation zones is well established, the effect of highland altitudinal gradients on the community structure of pollinators within a specific habitat is poorly understood. We assessed wild bee and hoverfly communities, and their pollination service to three plant species common in mountain hay meadows, in eighteen extensively managed yellow oat grasslands (Trisetum flavescens) with an altitudinal gradient spanning approx. 300 m. Species richness and abundance of pollinators increased with elevation, but no shift between hoverflies and wild bees (mainly bumblebees) occurred. Seedset of the woodland cranesbill (Geranium sylvaticum) increased with hoverfly abundance, and seedset of the marsh thistle (Cirsium palustre) increased with wild bee abundance. Black rampion (Phyteuma nigrum) showed no significant response. The assignment of specific pollinator communities, and their response to altitude in highlands, to different plant species underlines the importance of wild bees and hoverflies as pollinators in extensive grassland systems.  相似文献   

7.
Edge disturbance can drive liana community changes and alter liana‐tree interaction networks, with ramifications for forest functioning. Understanding edge effects on liana community structure and liana‐tree interactions is therefore essential for forest management and conservation. We evaluated the response patterns of liana community structure and liana‐tree interaction structure to forest edge in two moist semi‐deciduous forests in Ghana (Asenanyo and Suhuma Forest Reserves: AFR and SFR, respectively). Liana community structure and liana‐tree interactions were assessed in 24 50 × 50 m randomly located plots in three forest sites (edge, interior and deep‐interior) established at 0–50 m, 200 m and 400 m from edge. Edge effects positively and negatively influenced liana diversity in forest edges of AFR and SFR, respectively. There was a positive influence of edge disturbance on liana abundance in both forests. We observed anti‐nested structure in all the liana‐tree networks in AFR, while no nestedness was observed in the networks in SFR. The networks in both forests were less connected, and thus more modular and specialised than their null models. Many liana and tree species were specialised, with specialisation tending to be symmetrical. The plant species played different roles in relation to modularity. Most of the species acted as peripherals (specialists), with only a few species having structural importance to the networks. The latter species group consisted of connectors (generalists) and hubs (highly connected generalists). Some of the species showed consistency in their roles across the sites, while the roles of other species changed. Generally, liana species co‐occurred randomly on tree species in all the forest sites, except edge site in AFR where lianas showed positive co‐occurrence. Our findings deepen our understanding of the response of liana communities and liana‐tree interactions to forest edge disturbance, which are useful for managing forest edge.  相似文献   

8.
This study explored the relative roles of climate and phylogenetic background in driving morphometric trait variation in 10 spruce taxa in China. The study further addressed the hypothesis that these variations are consistent with species turnover on climatic gradients. Nine morphometric traits of leaves, seed cones, and seeds for the 10 studied spruce taxa were measured at 504 sites. These data were analyzed in combination with species DNA sequences from NCBI GenBank. We detected the effects of phylogeny and climate through trait‐variation‐based K statistics and phylogenetic eigenvector regression (PVR) analyses. Multivariate analyses were performed to detect trait variation along climatic gradients with species replacement. The estimated K‐values for the nine studied morphometric traits ranged from 0.19 to 0.68, and the studied environmental variables explained 39–83% of the total trait variation. Trait variation tended to be determined largely by a temperature gradient varying from wet‐cool climates to dry‐warm summers and, additionally, by a moisture gradient. As the climate became wetter and cooler, spruce species tended to be replaced by other spruces with smaller needle leaves and seeds but larger cones and seed scales. A regression analysis showed that spruce species tended to be successively replaced by other species, along the gradient, although the trends observed within species were not necessarily consistent with the overall trend. The climatically driven replacement of the spruces in question could be well indicated by the between‐species variation in morphometric traits that carry lower phylogenetic signal. Between‐species variation in these traits is driven primarily by climatic factors. These species demonstrate a narrower ecological amplitude in temperature but wider ranges on the moisture gradient.  相似文献   

9.
Population translocations occur for a variety of reasons, from displacement due to climate change to human‐induced transfers. Such actions have adverse effects on genetic variation and understanding their microevolutionary consequences requires monitoring. Here, we return to an experimental release of brown trout (Salmo trutta) in order to monitor the genomic effects of population translocations. In 1979, fish from each of two genetically (F ST = 0.16) and ecologically separate populations were simultaneously released, at one point in time, to a lake system previously void of brown trout. Here, whole‐genome sequencing of pooled DNA (Pool‐seq) is used to characterize diversity within and divergence between the introduced populations and fish inhabiting two lakes downstream of the release sites, sampled 30 years later (c. 5 generations). Present results suggest that while extensive hybridization has occurred, the two introduced populations are unequally represented in the lakes downstream of the release sites. One population, which is ecologically resident in its original habitat, mainly contributes to the lake closest to the release site. The other population, migratory in its natal habitat, is genetically more represented in the lake further downstream. Genomic regions putatively under directional selection in the new habitat are identified, where allele frequencies in both established populations are more similar to the introduced population stemming from a resident population than the migratory one. Results suggest that the microevolutionary consequences of population translocations, for example, hybridization and adaptation, can be rapid and that Pool‐seq can be used as an initial tool to monitor genome‐wide effects.  相似文献   

10.
Giant clams (Tridacninae) are important members of Indo‐Pacific coral reefs and among the few bivalve groups that live in symbiosis with unicellular algae (Symbiodiniaceae). Despite the importance of these endosymbiotic dinoflagellates for clam ecology, the diversity and specificity of these associations remain relatively poorly studied, especially in the Red Sea. Here, we used the internal transcribed spacer 2 (ITS2) rDNA gene region to investigate Symbiodiniaceae communities associated with Red Sea Tridacna maxima clams. We sampled five sites spanning 1,300 km (10° of latitude, from the Gulf of Aqaba, 29°N, to the Farasan Banks, 18°N) along the Red Sea''s North‐South environmental gradient. We detected a diverse and structured assembly of host‐associated algae with communities demonstrating region and site‐specificity. Specimens from the Gulf of Aqaba harbored three genera of Symbiodiniaceae, Cladocopium, Durusdinium, and Symbiodinium, while at all other sites clams associated exclusively with algae from the Symbiodinium genus. Of these exclusively Symbiodinium‐associating sites, the more northern (27° and 22°) and more southern sites (20° and 18°) formed two separate groupings despite site‐specific algal genotypes being resolved at each site. These groupings were congruent with the genetic break seen across multiple marine taxa in the Red Sea at approximately 19°, and along with our documented site‐specificity of algal communities, contrasted the panmictic distribution of the T. maxima host. As such, our findings indicate flexibility in T. maxima‐Symbiodiniaceae associations that may explain its relatively high environmental plasticity and offers a mechanism for environmental niche adaptation.  相似文献   

11.
Global warming affects plant fitness through changes in functional traits and thereby ecosystem function. Wetlands are declining worldwide, and hence, ecosystem functions linked to wetlands are threatened. We use Caltha palustris “a common wetland plant” to study whether warming affects growth and reproduction differently depending on origin of source population, potentially affecting phenotypic response to local climate. We conducted a 2‐year in situ temperature manipulation experiment using clone pairs of C. palustris in four regions, along a 1300‐km latitudinal gradient of Sweden. Open‐top chambers were used to passively increase temperature, paired with controls. Growth and reproductive traits were measured from 320 plants (four regions × five sites × two treatments × eight plants) over two consecutive seasons to assess the effect of warming over time. We found that warming increased plant height, leaf area, number of leaves, and roots. High‐latitude populations responded more strongly to warming than low‐latitude populations, especially by increasing leaf area. Warming increased number of flowers in general, but only in the second year, while number of fruits increased in low‐latitude populations the first year. Prolonged warming leads to an increase in both number of leaves and flowers over time. While reproduction shows varying and regional responses to warming, impacts on plant growth, especially in high‐latitude populations, have more profound effects. Such effects could lead to changes in plant community composition with increased abundance of fast‐growing plants with larger leaves and more clones, affecting plant competition and ecological functions such as decomposition and nutrient retention. Effects of warming were highly context dependent; thus, we encourage further use of warming experiments to predict changes in growth, reproduction, and community composition across wetland types and climate gradients targeting different plant forms.  相似文献   

12.
Systemic deletion of senescent cells leads to robust improvements in cognitive, cardiovascular, and whole‐body metabolism, but their role in tissue reparative processes is incompletely understood. We hypothesized that senolytic drugs would enhance regeneration in aged skeletal muscle. Young (3 months) and old (20 months) male C57Bl/6J mice were administered the senolytics dasatinib (5 mg/kg) and quercetin (50 mg/kg) or vehicle bi‐weekly for 4 months. Tibialis anterior (TA) was then injected with 1.2% BaCl2 or PBS 7‐ or 28 days prior to euthanization. Senescence‐associated β‐Galactosidase positive (SA β‐Gal+) cell abundance was low in muscle from both young and old mice and increased similarly 7 days following injury in both age groups, with no effect of D+Q. Most SA β‐Gal+ cells were also CD11b+ in young and old mice 7‐ and 14 days following injury, suggesting they are infiltrating immune cells. By 14 days, SA β‐Gal+/CD11b+ cells from old mice expressed senescence genes, whereas those from young mice expressed higher levels of genes characteristic of anti‐inflammatory macrophages. SA β‐Gal+ cells remained elevated in old compared to young mice 28 days following injury, which were reduced by D+Q only in the old mice. In D+Q‐treated old mice, muscle regenerated following injury to a greater extent compared to vehicle‐treated old mice, having larger fiber cross‐sectional area after 28 days. Conversely, D+Q blunted regeneration in young mice. In vitro experiments suggested D+Q directly improve myogenic progenitor cell proliferation. Enhanced physical function and improved muscle regeneration demonstrate that senolytics have beneficial effects only in old mice.  相似文献   

13.
14.
BackgroundGaining extrapair copulations (EPCs) is a complicated behavior process. The interaction between males and females to procure EPCs may be involved in brain function evolution and lead to a larger brain. Thus, we hypothesized that extrapair paternity (EPP) rate can be predicted by relative brain size in birds. Past work has implied that the EPP rate is associated with brain size, but empirical evidence is rare.MethodsWe collated data from published references on EPP levels and brain size of 215 bird species to examine whether the evolution of EPP rate can be predicted by brain size using phylogenetically generalized least square (PGLS) models and phylogenetic path analyses.ResultsWe found that EPP rates (both the percentage EP offspring and percentage of broods with EP offspring) are negatively associated with relative brain size. We applied phylogenetic path analysis to test the causal relationship between relative brain size and EPP rate. Best‐supported models (ΔCICc < 2) suggested that large brain lead to reduced EPP rate, which failed to support the hypothesis that high rates of EPP cause the evolution of larger brains.ConclusionThis study indicates that pursuing EPCs may be a natural instinct in birds and the interaction between males and females for EPCs may lead to large brains, which in turn may restrict their EPC level for both sexes across bird species.  相似文献   

15.
A fundamental yet controversial topic in biogeography is how and why species range sizes vary along spatial gradients. To advance our understanding of these questions and to provide insights into biological conservation, we assessed elevational variations in the range sizes of vascular plants with different life forms and biogeographical affinities and explored the main drivers underlying these variations in the longest valley in China''s Himalayas, the Gyirong Valley. Elevational range sizes of vascular plants were documented in 96 sampling plots along an elevational gradient ranging from 1,800 to 5,400 m above sea level. We assessed the elevational variations in range size by averaging the range sizes of all recorded species within each sampling plot. We then related the range size to climate, disturbance, and the mid‐domain effect and explored the relative importance of these factors in explaining the range size variations using the Random Forest model. A total of 545 vascular plants were recorded in the sampling plots along the elevational gradient. Of these, 158, 387, 337, and 112 were woody, herbaceous, temperate, and tropical species, respectively. The range size of each group of vascular plants exhibited uniform increasing trends along the elevational gradient, which was consistent with the prediction of Rapoport''s rule. Climate was the main driver of the increasing trends of vascular plant range sizes in the Gyirong Valley. The climate variability hypothesis and mean climate condition hypothesis could both explain the elevation–range size relationships. Our results reinforce the previous notion that Rapoport''s rule applies to regions where the influence of climate is the most pronounced, and call for close attention to the impact of climate change to prevent species range contraction and even extinction due to global warming.  相似文献   

16.
Mild uncoupling of oxidative phosphorylation is an intrinsic property of all mitochondria and may have evolved to protect cells against the production of damaging reactive oxygen species. Therefore, compounds that enhance mitochondrial uncoupling are potentially attractive anti‐aging therapies; however, chronic ingestion is associated with a number of unwanted side effects. We have previously developed a controlled‐release mitochondrial protonophore (CRMP) that is functionally liver‐directed and promotes oxidation of hepatic triglycerides by causing a subtle sustained increase in hepatic mitochondrial inefficiency. Here, we sought to leverage the higher therapeutic index of CRMP to test whether mild mitochondrial uncoupling in a liver‐directed fashion could reduce oxidative damage and improve age‐related metabolic disease and lifespan in diet‐induced obese mice. Oral administration of CRMP (20 mg/[kg‐day] × 4 weeks) reduced hepatic lipid content, protein kinase C epsilon activation, and hepatic insulin resistance in aged (74‐week‐old) high‐fat diet (HFD)‐fed C57BL/6J male mice, independently of changes in body weight, whole‐body energy expenditure, food intake, or markers of hepatic mitochondrial biogenesis. CRMP treatment was also associated with a significant reduction in hepatic lipid peroxidation, protein carbonylation, and inflammation. Importantly, long‐term (49 weeks) hepatic mitochondrial uncoupling initiated late in life (94–104 weeks), in conjugation with HFD feeding, protected mice against neoplastic disorders, including hepatocellular carcinoma (HCC), in a strain and sex‐specific manner. Taken together, these studies illustrate the complex variation of aging and provide important proof‐of‐concept data to support further studies investigating the use of liver‐directed mitochondrial uncouplers to promote healthy aging in humans.  相似文献   

17.
Harvesting of orchids for medicine and salep production is a traditional practice, and increasing market demand is spurring illegal harvest. Ethno‐ecological studies in combination with the effect of anthropogenic disturbance are lacking for orchids. We compared population density and structure, and tuber biomass of Dactylorhiza hatagirea (D. Don) Soó for three years in two sites: Manang, where harvesting of medicinal plants was locally regulated (protected), and Darchula, where harvesting was locally unregulated (unprotected). Six populations were studied along an elevation gradient by establishing 144 temporary plots (3 × 3 m2) from 3,400 to 4,600 m elevations. Mean density of D. hatagirea was significantly higher in the locally protected (1.31 ± 0.17 plants/m2) than in the unprotected (0.72 ± 0.06 plants/m2) site. The protected site showed stable population density with high reproductive fitness and tuber biomass over the three‐year period. A significant negative effect (p < .1) of relative radiation index (RRI) on the density of the adult vegetative stage and a positive effect of herb cover on juvenile and adult vegetative stages were found using mixed zero‐inflated Poisson (mixed ZIP) models. The densities of different life stages were highly sensitive to harvesting and livestock grazing. Significant interactions between site and harvesting and grazing indicated particularly strong negative effects of these disturbances on densities of juvenile and adult reproductive stages in the unprotected site. Semi‐structured interviews were conducted with informants (n = 186) in the villages and at the ecological survey sites. Our interview results showed that at the protected site people are aware of the conservation status and maintain sustainable populations, whereas the opposite was the case at the unprotected site where the populations are threatened. Sustainability of D. hatagirea populations, therefore, largely depends on controlling illegal and premature harvesting and unregulated livestock grazing, thus indicating the need for permanent monitoring of the species.  相似文献   

18.
Climate change and other global change drivers threaten plant diversity in mountains worldwide. A widely documented response to such environmental modifications is for plant species to change their elevational ranges. Range shifts are often idiosyncratic and difficult to generalize, partly due to variation in sampling methods. There is thus a need for a standardized monitoring strategy that can be applied across mountain regions to assess distribution changes and community turnover of native and non‐native plant species over space and time. Here, we present a conceptually intuitive and standardized protocol developed by the Mountain Invasion Research Network (MIREN) to systematically quantify global patterns of native and non‐native species distributions along elevation gradients and shifts arising from interactive effects of climate change and human disturbance. Usually repeated every five years, surveys consist of 20 sample sites located at equal elevation increments along three replicate roads per sampling region. At each site, three plots extend from the side of a mountain road into surrounding natural vegetation. The protocol has been successfully used in 18 regions worldwide from 2007 to present. Analyses of one point in time already generated some salient results, and revealed region‐specific elevational patterns of native plant species richness, but a globally consistent elevational decline in non‐native species richness. Non‐native plants were also more abundant directly adjacent to road edges, suggesting that disturbed roadsides serve as a vector for invasions into mountains. From the upcoming analyses of time series, even more exciting results can be expected, especially about range shifts. Implementing the protocol in more mountain regions globally would help to generate a more complete picture of how global change alters species distributions. This would inform conservation policy in mountain ecosystems, where some conservation policies remain poorly implemented.  相似文献   

19.
Site fidelity refers to the restriction of dispersal distance of an animal and its tendency to return to a stationary site. To our knowledge, the homing ability of freshwater turtles and their fidelity is reportedly very low in Asia. We examined mark–recapture data spanning a 4‐year period in Diaoluoshan National Nature Reserve, Hainan Province, China, to investigate the site fidelity and homing behavior of big‐headed turtles Platysternon megacephalum. A total of 11 big‐headed turtles were captured, and all individuals were used in this mark–recapture study. The site fidelity results showed that the adult big‐headed turtles (n = 4) had a 71.43% recapture rate in the original site after their release at the same site, whereas the juveniles (n = 1) showed lower recapture rates (0%). Moreover, the homing behavior results showed that the adults (n = 5) had an 83.33% homing rate after displacement. Adult big‐headed turtles were able to return to their initial capture sites (home) from 150 to 2,400 m away and precisely to their home sites from either upstream or downstream of their capture sites or even from other streams. However, none of the juveniles (n = 4) returned home, despite only being displaced 25–150 m away. These results indicated that the adult big‐headed turtles showed high fidelity to their home site and strong homing ability. In contrast, the juvenile turtles may show an opposite trend but further research is needed.  相似文献   

20.
Dispersal and colonization are among the most important ecological processes for species persistence as they allow species to track changing environmental conditions. During the last glacial maximum (LGM), many cold‐intolerant Northern Hemisphere plants retreated to southern glacial refugia. During subsequent warming periods, these species expanded their ranges northward. Interestingly, some tree species with limited seed dispersal migrated considerable distances after the LGM ~19,000 years before present (YBP). It has been hypothesized that indigenous peoples may have dispersed valued species, in some cases beyond the southern limits of the Laurentide Ice Sheet. To investigate this question, we employed a molecular genetics approach on a widespread North American understory tree species whose fruit was valued by indigenous peoples. Twenty putative anthropogenic (near pre‐Columbian habitations) and 62 wild populations of Asimina triloba (pawpaw), which produces the largest edible fruit of any North American tree, were genetically assayed with nine microsatellite loci. Putative anthropogenic populations were characterized by reduced genetic diversity and greater excess heterozygosity relative to wild populations. Anthropogenic populations in regions that were glaciated during the LGM had profiles consistent with founder effects and reduced gene flow, and shared rare alleles with wild populations hundreds of kilometers away (mean = 723 km). Some of the most compelling evidence for human‐mediated dispersal is that putative anthropogenic and wild populations sharing rare alleles were separated by significantly greater distances (mean = 695 km) than wild populations sharing rare alleles (mean = 607 km; p = .014). Collectively, the genetic data suggest that long‐distance dispersal played an important role in the distribution of pawpaw and is consistent with the hypothesized role of indigenous peoples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号