首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pandemic influenza virus (2009 H1N1) was recently introduced into the human population. The hemagglutinin (HA) gene of 2009 H1N1 is derived from “classical swine H1N1” virus, which likely shares a common ancestor with the human H1N1 virus that caused the pandemic in 1918, whose descendant viruses are still circulating in the human population with highly altered antigenicity of HA. However, information on the structural basis to compare the HA antigenicity among 2009 H1N1, the 1918 pandemic, and seasonal human H1N1 viruses has been lacking. By homology modeling of the HA structure, here we show that HAs of 2009 H1N1 and the 1918 pandemic virus share a significant number of amino acid residues in known antigenic sites, suggesting the existence of common epitopes for neutralizing antibodies cross-reactive to both HAs. It was noted that the early human H1N1 viruses isolated in the 1930s–1940s still harbored some of the original epitopes that are also found in 2009 H1N1. Interestingly, while 2009 H1N1 HA lacks the multiple N-glycosylations that have been found to be associated with an antigenic change of the human H1N1 virus during the early epidemic of this virus, 2009 H1N1 HA still retains unique three-codon motifs, some of which became N-glycosylation sites via a single nucleotide mutation in the human H1N1 virus. We thus hypothesize that the 2009 H1N1 HA antigenic sites involving the conserved amino acids will soon be targeted by antibody-mediated selection pressure in humans. Indeed, amino acid substitutions predicted here are occurring in the recent 2009 H1N1 variants. The present study suggests that antibodies elicited by natural infection with the 1918 pandemic or its early descendant viruses play a role in specific immunity against 2009 H1N1, and provides an insight into future likely antigenic changes in the evolutionary process of 2009 H1N1 in the human population.  相似文献   

2.
Influenza A viruses are single-stranded RNA viruses capable of evolving rapidly to adapt to environmental conditions. Examples include the establishment of a virus in a novel host or an adaptation to increasing immunity within the host population due to prior infection or vaccination against a circulating strain. Knowledge of the viral protein regions under positive selection is therefore crucial for surveillance. We have developed a method for detecting positively selected patches of sites on the surface of viral proteins, which we assume to be relevant for adaptive evolution. We measure positive selection based on dN/dS ratios of genetic changes inferred by considering the phylogenetic structure of the data and suggest a graph-cut algorithm to identify such regions. Our algorithm searches for dense and spatially distinct clusters of sites under positive selection on the protein surface. For the hemagglutinin protein of human influenza A viruses of the subtypes H3N2 and H1N1, our predicted sites significantly overlap with known antigenic and receptor-binding sites. From the structure and sequence data of the 2009 swine-origin influenza A/H1N1 hemagglutinin and PB2 protein, we identified regions that provide evidence of evolution under positive selection since introduction of the virus into the human population. The changes in PB2 overlap with sites reported to be associated with mammalian adaptation of the influenza A virus. Application of our technique to the protein structures of viruses of yet unknown adaptive behavior could identify further candidate regions that are important for host-virus interaction.  相似文献   

3.
The hemagglutinin (HA) protein is a major virulence determinant for the 1918 pandemic influenza virus; however, it encodes no known virulence-associated determinants. In comparison to seasonal influenza viruses of lesser virulence, the 1918 H1N1 virus has fewer glycosylation sequons on the HA globular head region. Using site-directed mutagenesis, we found that a 1918 HA recombinant virus, of high virulence, could be significantly attenuated in mice by adding two additional glycosylation sites (asparagine [Asn] 71 and Asn 286) on the side of the HA head. The 1918 HA recombinant virus was further attenuated by introducing two additional glycosylation sites on the top of the HA head at Asn 142 and Asn 172. In a reciprocal experimental approach, deletion of HA glycosylation sites (Asn 142 and Asn 177, but not Asn 71 and Asn 104) from a seasonal influenza H1N1 virus, A/Solomon Islands/2006 (SI/06), led to increased virulence in mice. The addition of glycosylation sites to 1918 HA and removal of glycosylation sites from SI/06 HA imposed constraints on the theoretical structure surrounding the glycan receptor binding sites, which in turn led to distinct glycan receptor binding properties. The modification of glycosylation sites for the 1918 and SI/06 viruses also caused changes in viral antigenicity based on cross-reactive hemagglutinin inhibition antibody titers with antisera from mice infected with wild-type or glycan mutant viruses. These results demonstrate that glycosylation patterns of the 1918 and seasonal H1N1 viruses directly contribute to differences in virulence and are partially responsible for their distinct antigenicity.  相似文献   

4.
Influenza viruses of the H2N2 subtype have not circulated among humans in over 40 years. The occasional isolation of avian H2 strains from swine and avian species coupled with waning population immunity to H2 hemagglutinin (HA) warrants investigation of this subtype due to its pandemic potential. In this study we examined the transmissibility of representative human H2N2 viruses, A/Albany/6/58 (Alb/58) and A/El Salvador/2/57 (ElSalv/57), isolated during the 1957/58 pandemic, in the ferret model. The receptor binding properties of these H2N2 viruses was analyzed using dose-dependent direct glycan array-binding assays. Alb/58 virus, which contains the 226L/228S amino acid combination in the HA and displayed dual binding to both alpha 2,6 and alpha 2,3 glycan receptors, transmitted efficiently to naïve ferrets by respiratory droplets. Inefficient transmission was observed with ElSalv/57 virus, which contains the 226Q/228G amino acid combination and preferentially binds alpha 2,3 over alpha 2,6 glycan receptors. However, a unique transmission event with the ElSalv/57 virus occurred which produced a 226L/228G H2N2 natural variant virus that displayed an increase in binding specificity to alpha 2,6 glycan receptors and enhanced respiratory droplet transmissibility. Our studies provide a correlation between binding affinity to glycan receptors with terminal alpha 2,6-linked sialic acid and the efficiency of respiratory droplet transmission for pandemic H2N2 influenza viruses.  相似文献   

5.
The 2009 H1N1 influenza A virus continues to circulate among the human population as the predominant H1N1 subtype. Epidemiological studies and airborne transmission studies using the ferret model have shown that the transmission efficiency of 2009 H1N1 viruses is lower than that of previous seasonal strains and the 1918 pandemic H1N1 strain. We recently correlated this reduced transmission efficiency to the lower binding affinity of the 2009 H1N1 hemagglutinin (HA) to α2→6 sialylated glycan receptors (human receptors). Here we report that a single point mutation (Ile219→Lys; a base pair change) in the glycan receptor-binding site (RBS) of a representative 2009 H1N1 influenza A virus, A/California/04/09 or CA04/09, quantitatively increases its human receptor-binding affinity. The increased human receptor-affinity is in the same range as that of the HA from highly transmissible seasonal and 1918 pandemic H1N1 viruses. Moreover, a 2009 H1N1 virus carrying this mutation in the RBS (generated using reverse genetics) transmits efficiently in ferrets by respiratory droplets thereby reestablishing our previously observed correlation between human receptor-binding affinity and transmission efficiency. These findings are significant in the context of monitoring the evolution of the currently circulating 2009 H1N1 viruses.  相似文献   

6.
Investigation of the human antibody response to the 1957 pandemic H2N2 influenza A virus has been largely limited to serologic studies. We generated five influenza virus hemagglutinin (HA)-reactive human monoclonal antibodies (MAbs) by hybridoma technology from the peripheral blood of healthy donors who were born between 1950 and 1968. Two MAbs reacted with the pandemic H2N2 virus, two recognized the pandemic H3N2 virus, and remarkably, one reacted with both the pandemic H2N2 and H3N2 viruses. Each of these five naturally occurring MAbs displayed hemagglutination inhibition activity, suggesting specificity for the globular head domain of influenza virus HA. When incubated with virus, MAbs 8F8, 8M2, and 2G1 each elicited H2N2 escape mutations immediately adjacent to the receptor-binding domain on the HA globular head in embryonated chicken eggs. All H2N2-specific MAbs were able to inhibit a 2006 swine H2N3 influenza virus. MAbs 8M2 and 2G1 shared the V(H)1-69 germ line gene, but these antibodies were otherwise not genetically related. Each antibody was able to protect mice in a lethal H2N2 virus challenge. Thus, even 43 years after circulation of H2N2 viruses, these subjects possessed peripheral blood B cells encoding potent inhibiting antibodies specific for a conserved region on the globular head of the pandemic H2 HA.  相似文献   

7.
【背景】自2014年以来,H5N6禽流感病毒在我国家禽和活禽市场持续进化,成为人类和动物健康的重大威胁。【目的】对2017-2019年中国南方地区93株高致病性H5N6禽流感病毒的HA基因进行分子进化分析。【方法】接种9-11日龄鸡胚分离核酸检测阳性的H5N6标本,运用下一代测序平台对病毒分离物进行全基因组测序,从NCBI和GISAID数据库下载参考序列,利用BLAST、MEGA6.1及Clustal X等软件进行序列分析。【结果】2017-2019年,从189份江苏省H5亚型禽类/环境标本和1名H5N6患者咽拭子标本中共分离到43株病毒,完成了33株H5N6病毒的全基因组测序。下载网上同时期中国其他地区流行的H5N6毒株序列,对总计93株H5N6病毒的HA基因进行分子进化分析。93株H5N6病毒中有78株属于Clade 2.3.4.4h,9株病毒属于Clade 2.3.4.4e,4株H5N6病毒属于Clade 2.3.4.4b,1株属于Clade 2.3.4.4f,1株属于Clade 2.3.4.4g。所有93株病毒HA蛋白的裂解位点含有多个碱性氨基酸,表明它们都属于高致病性禽流感病毒。所有93株病毒HA蛋白的Q222和G224位氨基酸没有发生突变,保留了禽类受体α2-3半乳糖苷唾液酸(SAα2-3Gal)结合特性;158位点丧失糖基化,同时124位出现一个新的潜在糖基化位点。【结论】2017-2019年间中国南方地区H5N6病毒进化活跃,具有明显的基因多样性,需要加强对病毒分子进化的监测。  相似文献   

8.
Severe human disease caused by the emerging H7N9 influenza virus in China warrants a rapid response. Here, we present a recombinant Newcastle disease virus expressing a North American lineage H7 influenza virus hemagglutinin. Sera from immunized mice were cross-reactive to a broad range of H7 subtype viruses and inhibited hemagglutination by the novel H7 hemagglutinin. Immunized mice were protected against a heterologous H7 subtype challenge, and genetic analysis suggested that cross-protective antibodies recognize conserved antigenic sites.  相似文献   

9.
Influenza A virus has evolved and thrived in human populations. Since the 1918 influenza A pandemic, human H1N1 viruses had acquired additional N-linked glycosylation (NLG) sites within the globular head region of hemagglutinin (HA) until the NLG-free HA head pattern of the 1918 H1N1 virus was renewed with the swine-derived 2009 pandemic H1N1 virus. Moreover, the HA of the 2009 H1N1 virus appeared to be antigenically related to that of the 1918 H1N1 virus. Hence, it is possible that descendants of the 2009 H1N1 virus might recapitulate the acquisition of HA head glycosylation sites through their evolutionary drift as a means to evade preexisting immunity. We evaluate here the evolution signature of glycosylations found in the globular head region of H1 HA in order to determine their impact in the virulence and transmission of H1N1 viruses. We identified a polymorphism at HA residue 147 associated with the acquisition of glycosylation at residues 144 and 172. By in vitro and in vivo analyses using mutant viruses, we also found that the polymorphism at HA residue 147 compensated for the loss of replication, virulence, and transmissibility associated with the presence of the N-linked glycans. Our findings suggest that the polymorphism in H1 HA at position 147 modulates viral fitness by buffering the constraints caused by N-linked glycans and provide insights into the evolution dynamics of influenza viruses with implications in vaccine immunogenicity.  相似文献   

10.
Influenza viruses isolated during the 2009 H1N1 pandemic generally lack known molecular determinants of virulence associated with previous pandemic and highly pathogenic avian influenza viruses. The frequency of the amino acid substitution D222G in the hemagglutinin (HA) of 2009 H1N1 viruses isolated from severe but not mild human cases represents the first molecular marker associated with enhanced disease. To assess the relative contribution of this substitution in virus pathogenesis, transmission, and tropism, we introduced D222G by reverse genetics in the wild-type HA of the 2009 H1N1 virus, A/California/04/09 (CA/04). A dose-dependent glycan array analysis with the D222G virus showed a modest reduction in the binding avidity to human-like (α2-6 sialylated glycan) receptors and an increase in the binding to avian-like (α2-3 sialylated glycan) receptors in comparison with wild-type virus. In the ferret pathogenesis model, the D222G mutant virus was found to be similar to wild-type CA/04 virus with respect to lethargy, weight loss and replication efficiency in the upper and lower respiratory tract. Moreover, based on viral detection, the respiratory droplet transmission properties of these two viruses were found to be similar. The D222G virus failed to productively infect mice inoculated by the ocular route, but exhibited greater viral replication and weight loss than wild-type CA/04 virus in mice inoculated by the intranasal route. In a more relevant human cell model, D222G virus replicated with delayed kinetics compared with wild-type virus but to higher titer in human bronchial epithelial cells. These findings suggest that although the D222G mutation does not influence virus transmission, it may be considered a molecular marker for enhanced replication in certain cell types.  相似文献   

11.
The 2009 H1N1 influenza pandemic is the first human pandemic in decades and was of swine origin. Although swine are believed to be an intermediate host in the emergence of new human influenza viruses, there is still little known about the host barriers that keep swine influenza viruses from entering the human population. We surveyed swine progenitors and human viruses from the 2009 pandemic and measured the activities of the hemagglutinin (HA) and neuraminidase (NA), which are the two viral surface proteins that interact with host glycan receptors. A functional balance of these two activities (HA binding and NA cleavage) is found in human viruses but not in the swine progenitors. The human 2009 H1N1 pandemic virus exhibited both low HA avidity for glycan receptors as a result of mutations near the receptor binding site and weak NA enzymatic activity. Thus, a functional match between the hemagglutinin and neuraminidase appears to be necessary for efficient transmission between humans and may be an indicator of the pandemic potential of zoonotic viruses.  相似文献   

12.
Current influenza virus vaccines contain H1N1 (phylogenetic group 1 hemagglutinin), H3N2 (phylogenetic group 2 hemagglutinin), and influenza B virus components. These vaccines induce good protection against closely matched strains by predominantly eliciting antibodies against the membrane distal globular head domain of their respective viral hemagglutinins. This domain, however, undergoes rapid antigenic drift, allowing the virus to escape neutralizing antibody responses. The membrane proximal stalk domain of the hemagglutinin is much more conserved compared to the head domain. In recent years, a growing collection of antibodies that neutralize a broad range of influenza virus strains and subtypes by binding to this domain has been isolated. Here, we demonstrate that a vaccination strategy based on the stalk domain of the H3 hemagglutinin (group 2) induces in mice broadly neutralizing anti-stalk antibodies that are highly cross-reactive to heterologous H3, H10, H14, H15, and H7 (derived from the novel Chinese H7N9 virus) hemagglutinins. Furthermore, we demonstrate that these antibodies confer broad protection against influenza viruses expressing various group 2 hemagglutinins, including an H7 subtype. Through passive transfer experiments, we show that the protection is mediated mainly by neutralizing antibodies against the stalk domain. Our data suggest that, in mice, a vaccine strategy based on the hemagglutinin stalk domain can protect against viruses expressing divergent group 2 hemagglutinins.  相似文献   

13.
In the early 1970s, a human influenza A/Port Chalmers/1/73 (H3N2)-like virus colonized the European swine population. Analyses of swine influenza A (H3N2) viruses isolated in The Netherlands and Belgium revealed that in the early 1990s, antigenic drift had occurred, away from A/Port Chalmers/1/73, the strain commonly used in influenza vaccines for pigs. Here we show that Italian swine influenza A (H3N2) viruses displayed antigenic and genetic changes similar to those observed in Northern European viruses in the same period. We used antigenic cartography methods for quantitative analyses of the antigenic evolution of European swine H3N2 viruses and observed a clustered virus evolution as seen for human viruses. Although the antigenic drift of swine and human H3N2 viruses has followed distinct evolutionary paths, potential cluster-differentiating amino acid substitutions in the influenza virus surface protein hemagglutinin (HA) were in part the same. The antigenic evolution of swine viruses occurred at a rate approximately six times slower than the rate in human viruses, even though the rates of genetic evolution of the HA at the nucleotide and amino acid level were similar for human and swine H3N2 viruses. Continuous monitoring of antigenic changes is recommended to give a first indication as to whether vaccine strains may need updating. Our data suggest that humoral immunity in the population plays a smaller role in the evolutionary selection processes of swine H3N2 viruses than in human H3N2 viruses.  相似文献   

14.
The initial step essential in influenza virus infection is specific binding of viral hemagglutinin to host cell-surface glycan receptors. Influenza A virus specificity for the host is mediated by viral envelope hemagglutinin, that binds to receptors containing glycans with terminal sialic acids. Human viruses preferentially bind to α2→6 linked sialic acids on receptors of host cells, whereas avian viruses are specific for the α2→3 linkage on the target cells. Human influenza virus isolates more efficiently infect amniotic membrane (AM) cells than chorioallantoic membrane (CAM) cells. N-glycans were isolated from AM and CAM cells of 10-day-old chicken embryonated eggs and their structures were analyzed by multi-dimensional HPLC mapping and MALDI-TOF-MS techniques. Terminal N-acetylneuraminic acid contents in the two cell types were similar. However, molar percents of α2→3 linkage preferentially bound by avian influenza virus were 27.2 in CAM cells and 15.4 in AM cells, whereas those of α2→6 linkage favored by human influenza virus were 8.3 (CAM) and 14.2 (AM). Molar percents of sulfated glycans, recognized by human influenza virus, in CAM and AM cells were 3.8 and 12.7, respectively. These results have revealed structures and molar percents of N-glycans in CAM and AM cells important in determining human and avian influenza virus infection and viral adaptation.  相似文献   

15.
2009年6月12日,江苏确诊首例甲型H1N1(2009)病例。通过细胞和鸡胚分离系统,我们分离到一株具有较高血凝活性的病毒,命名为A/Jiangsu/1/2009。为了跟踪病毒的变异情况,我们开展了病毒的全基因组测序工作,在此基础上对其血凝素基因(Haemagglutinin,HA)的遗传特性进行了详细研究。分离株HA蛋白不具有多碱基HA裂解位点,具有低致病性流感病毒特点。与参考株A/California/04/2009相比,分离株A/Jiangsu/1/2009HA蛋白的有4个氨基酸发生了突变,但都不在已知的抗原位点上。分离株有5个潜在糖基化位点,这与近年来古典猪H1N1和北美三源重配猪H1病毒完全一致,保留了古典猪H1的特点。与禽流感H1病毒相比,分离株HA蛋白受体结合位点上的E190D和G225D发生突变,这可能成为新甲型H1N1(2009)在人际间传播的一个重要分子基础。此外,其它受体结合位点上相关氨基酸同时具有人和猪流感病毒的特点。本研究首次对早期流行的甲型H1N1(2009)流感病毒的HA蛋白的分子遗传特征进行了详细研究,对进一步监测病原变异具有重要指导意义。  相似文献   

16.
Highly pathogenic avian influenza H5N1 viruses have devastated the poultry industry in many countries of the eastern hemisphere. Occasionally H5N1 viruses cross the species barrier and infect humans, sometimes with a severe clinical outcome. When this happens, there is a chance of reassortment between H5N1 and human influenza viruses. To assess the potential of H5N1 viruses to reassort with contemporary human influenza viruses (H1N1, H3N2 and pandemic H1N1), we used an in vitro selection method to generate reassortant viruses, that contained the H5 hemagglutinin gene, and that have a replication advantage in vitro. We found that the neuraminidase and matrix gene segments of human influenza viruses were preferentially selected by H5 viruses. However, these H5 reassortant viruses did not show a marked increase in replication in MDCK cells and human bronchial epithelial cells. In ferrets, inoculation with a mixture of H5N1-pandemic H1N1 reassortant viruses resulted in outgrowth of reassortant H5 viruses that had incorporated the neuraminidase and matrix gene segment of pandemic 2009 H1N1. This virus was not transmitted via aerosols or respiratory droplets to naïve recipient ferrets. Altogether, these data emphasize the potential of avian H5N1 viruses to reassort with contemporary human influenza viruses. The neuraminidase and matrix gene segments of human influenza viruses showed the highest genetic compatibility with HPAI H5N1 virus.  相似文献   

17.
The conserved influenza virus hemagglutinin (HA) stem domain elicits cross-reactive antibodies, but epitopes in the globular head typically elicit strain-specific responses because of the hypervariability of this region. We isolated human monoclonal antibody 5J8, which neutralized a broad spectrum of 20th century H1N1 viruses and the 2009 pandemic H1N1 virus. Fine mapping of the interaction unexpectedly revealed a novel epitope between the receptor-binding pocket and the Ca2 antigenic site on HA. This antibody exposes a new mechanism underlying broad immunity against H1N1 influenza viruses and identifies a conserved epitope that might be incorporated into engineered H1 virus vaccines.  相似文献   

18.
Most neutralizing antibodies elicited during influenza virus infection or by vaccination have a narrow spectrum because they usually target variable epitopes in the globular head region of hemagglutinin (HA). In this study, we describe a human monoclonal antibody (HuMAb), 5D7, that was prepared from the peripheral blood lymphocytes of a vaccinated volunteer using the fusion method. The HuMAb heterosubtypically neutralizes group 1 influenza A viruses, including seasonal H1N1, 2009 pandemic H1N1 (H1N1pdm) and avian H9N2, with a strong hemagglutinin inhibition activity. Selection of an escape mutant showed that the HuMAb targets a novel conformational epitope that is located in the HA head region but is distinct from the receptor binding site. Furthermore, Phe114Ile substitution in the epitope made the HA unrecognizable by the HuMAb. Amino acid residues in the predicted epitope region are also highly conserved in the HAs of H1N1 and H9N2. The HuMAb reported here may be a potential candidate for the development of therapeutic/prophylactic antibodies against H1 and H9 influenza viruses.  相似文献   

19.
The first influenza pandemic of the 21st century was caused by novel H1N1 viruses that emerged in early 2009. An Asp-to-Gly change at position 222 of the receptor-binding protein hemagglutinin (HA) correlates with more-severe infections in humans. The amino acid at position 222 of HA contributes to receptor-binding specificity with Asp (typically found in human influenza viruses) and Gly (typically found in avian and classic H1N1 swine influenza viruses), conferring binding to human- and avian-type receptors, respectively. Here, we asked whether binding to avian-type receptors enhances influenza virus pathogenicity. We tested two 2009 pandemic H1N1 viruses possessing HA-222G (isolated from severe cases) and two viruses that possessed HA-222D. In glycan arrays, viruses possessing HA-222D preferentially bound to human-type receptors, while those encoding HA-222G bound to both avian- and human-type receptors. This difference in receptor binding correlated with efficient infection of viruses possessing HA-222G, compared to those possessing HA-222D, in human lung tissue, including alveolar type II pneumocytes, which express avian-type receptors. In a nonhuman primate model, infection with one of the viruses possessing HA-222G caused lung damage more severe than did infection with a virus encoding HA-222D, although these pathological differences were not observed for the other virus pair with either HA-222G or HA-222D. These data demonstrate that the acquisition of avian-type receptor-binding specificity may result in more-efficient infection of human alveolar type II pneumocytes and thus more-severe lung damage. Collectively, these findings suggest a new mechanism by which influenza viruses may become more pathogenic in mammals, including humans.  相似文献   

20.
The recent emergence of a novel avian A/H7N9 influenza virus in poultry and humans in China, as well as laboratory studies on adaptation and transmission of avian A/H5N1 influenza viruses, has shed new light on influenza virus adaptation to mammals. One of the biological traits required for animal influenza viruses to cross the species barrier that received considerable attention in animal model studies, in vitro assays, and structural analyses is receptor binding specificity. Sialylated glycans present on the apical surface of host cells can function as receptors for the influenza virus hemagglutinin (HA) protein. Avian and human influenza viruses typically have a different sialic acid (SA)‐binding preference and only few amino acid changes in the HA protein can cause a switch from avian to human receptor specificity. Recent experiments using glycan arrays, virus histochemistry, animal models, and structural analyses of HA have added a wealth of knowledge on receptor binding specificity. Here, we review recent data on the interaction between influenza virus HA and SA receptors of the host, and the impact on virus host range, pathogenesis, and transmission. Remaining challenges and future research priorities are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号