首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recent cross-sectional analyses of HIV-1+ plasmas have indicated that broadly cross-reactive neutralizing antibody responses are developed by 10%-30% of HIV-1+ subjects. The timing of the initial development of such anti-viral responses is unknown. It is also unknown whether the emergence of these responses coincides with the appearance of antibody specificities to a single or multiple regions of the viral envelope glycoprotein (Env). Here we analyzed the cross-neutralizing antibody responses in longitudinal plasmas collected soon after and up to seven years after HIV-1 infection. We find that anti-HIV-1 cross-neutralizing antibody responses first become evident on average at 2.5 years and, in rare cases, as early as 1 year following infection. If cross-neutralizing antibody responses do not develop during the first 2-3 years of infection, they most likely will not do so subsequently. Our results indicate a potential link between the development of cross-neutralizing antibody responses and specific activation markers on T cells, and with plasma viremia levels. The earliest cross-neutralizing antibody response targets a limited number of Env regions, primarily the CD4-binding site and epitopes that are not present on monomeric Env, but on the virion-associated trimeric Env form. In contrast, the neutralizing activities of plasmas from subjects that did not develop cross-neutralizing antibody responses target epitopes on monomeric gp120 other than the CD4-BS. Our study provides information that is not only relevant to better understanding the interaction of the human immune system with HIV but may guide the development of effective immunization protocols. Since antibodies to complex epitopes that are present on the virion-associated envelope spike appear to be key components of earliest cross-neutralizing activities of HIV-1+ plasmas, then emphasis should be made to elicit similar antibodies by vaccination.  相似文献   

2.
By virtue of their multiple interactions with partner proteins and due to their strong propensity to multimerize, tetraspanins create scaffolds in membranes, recruiting or excluding specific proteins needed for particular cellular processes. We and others have shown that (i) HIV-1 assembles at, and buds through, membrane areas that are enriched in tetraspanins CD9, CD63, CD81 and CD82, and (ii) the presence of these proteins at exit sites and in viral particles inhibits virus-induced membrane fusion. In the present paper, I review these findings and briefly discuss the results of our ongoing investigations that are aimed at elucidating when and how tetraspanins regulate this fusion process and how such control affects virus spreading. Finally, I give a preview of studies that we have initiated more recently and which aim to delineate exactly when CD81 functions during the replication of another enveloped RNA virus: influenza virus.  相似文献   

3.
Several recent studies have identified HIV-infected patients able to produce a broad neutralizing response, and the detailed analyses of their sera have provided valuable information to improve future vaccine design. All these studies have excluded patients on antiretroviral treatment and with undetectable viral loads, who have an improved B cell profile compared to untreated patients. To better understand the induction of neutralizing antibodies in patients on antiretroviral treatment with undetectable viremia, we have screened 508 serum samples from 364 patients (173 treated and 191 untreated) for a broadly neutralizing antibody (bNAb) response using a new strategy based on the use of recombinant viruses. Sera able to neutralize a minipanel of 6 recombinant viruses, including envelopes from 5 different subtypes, were found in both groups. After IgG purification, we were able to confirm the presence of IgG-associated broadly neutralizing activity in 3.7% (7 of 191) of untreated patients with detectable viremia and 1.7% (3 of 174) of aviremic patients receiving antiretroviral treatment. We thus confirm the possibility of induction of a broad IgG-associated neutralizing response in patients on antiretroviral treatment, despite having undetectable viremia. This observation is in stark contrast to the data obtained from long-term nonprogressors, whose little neutralizing activity has been attributed to the low levels of viral replication.  相似文献   

4.
The monoclonal antibody designated C179 was found to neutralize all of the H1 and H2 strains of influenza A virus studied (Y. Okuno, Y. Isegawa, F. Sasao, and S. Ueda, J. Virol. 67:2552-2558, 1993). In the present study, the ability of C179 to protect mice from the lethal effect of the A/FM/1/47 (H1N1) strain was examined. When the mice were injected intraperitoneally with 100 micrograms of C179 per mouse a day before the virus challenge (2.0 x 10(3) focus-forming units per mouse), all of the mice survived. Moreover, significantly higher survival rates were observed in mice receiving 1,000 micrograms of C179 per mouse 2 days after the virus challenge than in those receiving phosphate-buffered saline alone. These results indicate that C179 is effective not only for prevention but also for treatment of mice infected with H1 and H2 strains. The possibility that C179 can be used for passive immunization in humans is discussed.  相似文献   

5.
Influenza A (H1N1) virus is a severe threat worldwide. It is important to gain a better understanding of the mechanism of the infection. In the paper, we established a computational framework to investigate the crosstalk between the virus and the host, by finding out the proteins that the virus is attacking. The targeted proteins were predicted by taking human proteins laid on the same GO functions or processes as the virus proteins. One hundred and one core proteins were identified. The results provide some knowledge of the possible biological processes and molecular interactions caused by the viral infection, including the host responses.  相似文献   

6.
The ability to elicit broadly neutralizing antibody responses against HIV-1 is a crucial goal for a prophylactic HIV-1 vaccine. Here, we discuss the difficulties of achieving broad HIV-1 neutralization in the context of both the effective annual human influenza virus vaccine and the need to develop a pandemic influenza vaccine. Immunogen-design strategies are underway to target functionally conserved regions of the HIV-1 envelope glycoproteins, and similar strategies might be applicable to pandemic influenza virus vaccine development. Efforts to develop broadly neutralizing vaccines against either HIV-1 or influenza virus might establish a paradigm for future vaccines against highly variable pathogens.  相似文献   

7.
目的 A型流感病毒NS1蛋白是一种多功能的致病因子,能够与被感染细胞中的多种蛋白相互结合,影响并干扰宿主细胞内的信号转导、蛋白质合成及抗病毒反应。突触后密度蛋白(Postsynaptic density protein95,PSD-95)主要存在于神经元及SH-SY-5Y等神经来源的细胞株中。假设NS1能够与PSD-95结合,则更有利于了解A型流感病毒对神经元及相关细胞的作用机制。方法通过酵母双杂交,GST-pull down及免疫荧光技术分别从体外和体内两方面检测NS1与PSD-95的相互作用。结果酵母双杂交表明,仅转染PGAD-NS51/PGBK-PSD-95的QDO有菌落生长,且α-半乳糖苷酶活性显著高于阳性对照;而转染PGAD-NS32/PGBK-PSD-95的QDO无菌落生长;GST-pull down表明仅NS51与PSD-95孵育后,能够被Western-blot检测到;免疫荧光表明NS51与PSD-95可能存在共定位,而NS32与PSD-95则不存在共定位。结论 H5N1(A/chicken/Guangdong/1/2005)的NS1能够与PSD-95结合;反之,H3N2(A/Shantou/602/06)的NS1则不能。  相似文献   

8.
Vaccines provide the most cost effective defense against pathogens. Although vaccines have been designed for a number of viral diseases, a vaccine against HIV-1 still remains elusive. In contrast, while there are excellent influenza vaccines, these need to be changed every few years because of antigenic drift and shift. The recent discovery of a large number of broadly neutralizing antibodies (bNAbs) and structural characterization of the conserved epitopes targeted by them presents an opportunity for structure based HIV-1 and influenza A vaccine design. We discuss strategies to design immunogens either targeting a particular antigenic region or focusing on native structure stabilization. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.  相似文献   

9.
10.
Innate immune response is important for viral clearance during influenza virus infection. Galectin-1, which belongs to S-type lectins, contains a conserved carbohydrate recognition domain that recognizes galactose-containing oligosaccharides. Since the envelope proteins of influenza virus are highly glycosylated, we studied the role of galectin-1 in influenza virus infection in vitro and in mice. We found that galectin-1 was upregulated in the lungs of mice during influenza virus infection. There was a positive correlation between galectin-1 levels and viral loads during the acute phase of viral infection. Cells treated with recombinant human galectin-1 generated lower viral yields after influenza virus infection. Galectin-1 could directly bind to the envelope glycoproteins of influenza A/WSN/33 virus and inhibit its hemagglutination activity and infectivity. It also bound to different subtypes of influenza A virus with micromolar dissociation constant (K(d)) values and protected cells against influenza virus-induced cell death. We used nanoparticle, surface plasmon resonance analysis and transmission electron microscopy to further demonstrate the direct binding of galectin-1 to influenza virus. More importantly, we show for the first time that intranasal treatment of galectin-1 could enhance survival of mice against lethal challenge with influenza virus by reducing viral load, inflammation, and apoptosis in the lung. Furthermore, galectin-1 knockout mice were more susceptible to influenza virus infection than wild-type mice. Collectively, our results indicate that galectin-1 has anti-influenza virus activity by binding to viral surface and inhibiting its infectivity. Thus, galectin-1 may be further explored as a novel therapeutic agent for influenza.  相似文献   

11.
12.
Influenza A virus nonstructural protein 1 (NS1A protein) is a virulence factor which is targeted into the nucleus. It is a multifunctional protein that inhibits host cell pre-mRNA processing and counteracts host cell antiviral responses. We show that the NS1A protein can interact with all six human importin alpha isoforms, indicating that the nuclear translocation of NS1A protein is mediated by the classical importin alpha/beta pathway. The NS1A protein of the H1N1 (WSN/33) virus has only one N-terminal arginine- or lysine-rich nuclear localization signal (NLS1), whereas the NS1A protein of the H3N2 subtype (Udorn/72) virus also has a second C-terminal NLS (NLS2). NLS1 is mapped to residues 35 to 41, which also function in the double-stranded RNA-binding activity of the NS1A protein. NLS2 was created by a 7-amino-acid C-terminal extension (residues 231 to 237) that became prevalent among human influenza A virus types isolated between the years 1950 to 1987. NLS2 includes basic amino acids at positions 219, 220, 224, 229, 231, and 232. Surprisingly, NLS2 also forms a functional nucleolar localization signal NoLS, a function that was retained in H3N2 type virus NS1A proteins even without the C-terminal extension. It is likely that the evolutionarily well-conserved nucleolar targeting function of NS1A protein plays a role in the pathogenesis of influenza A virus.  相似文献   

13.
14.
We analyzed neutralization sensitivity and genetic variation of transmitted subtype B human immunodeficiency virus type 1 (HIV-1) in eight recently infected men who have sex with men and the virus from the six subjects who infected them. In contrast to reports of heterosexual transmission of subtype C HIV-1, in which the transmitted virus appears to be more neutralization sensitive, we demonstrate that in our study population, relatively few phenotypic changes in neutralization sensitivity or genotypic changes in envelope occurred during transmission of subtype B HIV-1. We suggest that limited genetic variation within the infecting host reduces the likelihood of selective transmission of neutralization-sensitive HIV.  相似文献   

15.
Members of the Camelidae family produce immunoglobulins devoid of light chains. We have characterized variable domains of these heavy chain antibodies, the VHH, from llamas immunized with human immunodeficiency virus type 1 (HIV-1) envelope protein gp120 in order to identify VHH that can inhibit HIV-1 infection. To increase the chances of isolating neutralizing VHH, we employed a functional selection approach, involving panning of phage libraries expressing the VHH repertoire on recombinant gp120, followed by a competitive elution with soluble CD4. By immunizing with gp120 derived from an HIV-1 subtype B′/C primary isolate, followed by panning on gp120 from HIV-1 isolates of subtypes A, B, and C, we could select for VHH with cross-subtype neutralizing activity. Three VHH able to neutralize HIV-1 primary isolates of subtypes B and C were characterized. These bound to recombinant gp120 with affinities close to the suggested affinity ceiling for in vivo-maturated antibodies and competed with soluble CD4 for this binding, indicating that their mechanism of neutralization involves interacting with the functional envelope spike prior to binding to CD4. The most potent VHH in terms of low 50% inhibitory concentration (IC50) and IC90 values and cross-subtype reactivity was A12. These results indicate that camelid VHH can be potent HIV-1 entry inhibitors. Since VHH are stable and can be produced at a relatively low cost, they may be considered for applications such as HIV-1 microbicide development. Antienvelope VHH might also prove useful in defining neutralizing and nonneutralizing epitopes on HIV-1 envelope proteins, with implications for HIV-1 vaccine design.  相似文献   

16.
Pathogens such as influenza A viruses (IAV) have to overcome a number of barriers defined and maintained by the host, to successfully establish an infection. One of the initial barriers is collectively characterized as the innate immune system. This is a broad anti-pathogen defense program that ranges from the action of natural killer cells to the induction of an antiviral cytokine response. In this article we will focus on new developments and discoveries concerning the interaction of IAV with the cellular innate immune signaling. We discuss new mechanisms of interference of IAV with the pathogen recognition receptor RIG-I and the type I IFN antagonist NS1 in the background of already known and established concepts. Further we summarize progress related to recently identified IFN induced proteins and the role of RNA interference in the context of IAV infection.  相似文献   

17.
18.
Non-structural protein 1 (NS1) of the influenza virus plays a crucial role in modulating the host immune response and facilitating virus replication. The formation of a homodimer or an oligomer is necessary for NS1 to exert its function efficiently. In the present study, the NS1 protein from the A/Shantou/602/06(H3N2) virus (herein abbreviated as NS32) was found to interact with NS1 from A/Shantou/169/06(H1N1), A/Chicken/Guangdong/1/05(H5N1) and A/Quail/Hong Kong/G1/97(H9N2) (abbreviated as NS11, NS51 and NS92, respectively) viruses, although NS32 shares 17.4%?C20.9% sequence diversity with NS11, NS51 and NS92. This indicates that the heterologous interactions between NS1 proteins from different influenza A virus subtypes/ strains may be a common event during co-infection.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号