首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclic AMP (cAMP)-dependent processes are pivotal during the early stages of adipocyte differentiation. We show that exchange protein directly activated by cAMP (Epac), which functions as a guanine nucleotide exchange factor for the Ras-like GTPases Rap1 and Rap2, was required for cAMP-dependent stimulation of adipocyte differentiation. Epac, working via Rap, acted synergistically with cAMP-dependent protein kinase (protein kinase A [PKA]) to promote adipogenesis. The major role of PKA was to down-regulate Rho and Rho-kinase activity, rather than to enhance CREB phosphorylation. Suppression of Rho-kinase impaired proadipogenic insulin/insulin-like growth factor 1 signaling, which was restored by activation of Epac. This interplay between PKA and Epac-mediated processes not only provides novel insight into the initiation and tuning of adipocyte differentiation, but also demonstrates a new mechanism of cAMP signaling whereby cAMP uses both PKA and Epac to achieve an appropriate cellular response.  相似文献   

2.
Epac and PKA: a tale of two intracellular cAMP receptors   总被引:1,自引:0,他引:1  
cAMP-mediated signaling pathways regulate a multitude of important biological processes under both physiological and pathological conditions, including diabetes, heart failure and cancer. In eukaryotic cells, the effects of cAMP are mediated by two ubiquitously expressed intracellular cAMP receptors, the classic protein kinase A (PKA)/cAMP-dependent protein kinase and the recently discovered exchange protein directly activated by cAMP (Epac)/cAMP-regulated guanine nucleotide exchange factors. Like PKA, Epac contains an evolutionally conserved cAMP binding domain that acts as a molecular switch for sensing intracellular second messenger cAMP levels to control diverse biological functions. The existence of two families of cAMP effectors provides a mechanism for a more precise and integrated control of the cAMP signaling pathways in a spatial and temporal manner. Depending upon the specific cellular environments as well as their relative abundance, distribution and localization, Epac and PKA may act independently, converge synergistically or oppose each other in regulating a specific cellular function.  相似文献   

3.
4.
Following its production by adenylyl cyclases, the second messenger cAMP is in involved in pleiotrophic signal transduction. The effectors of cAMP include the cAMP-dependent protein kinase (PKA), the guanine nucleotide exchange factor Epac (exchange protein activated by cAMP), and cAMP-dependent ion channels. In turn, cAMP signaling is attenuated by phosphodiesterase-catalyzed degradation. The association of cAMP effectors and the enzymes that regulate cAMP concentration into signaling complexes helps to explain the differential signaling initiated by members of the G(s)-protein coupled receptor family. The signal transduction complex formed by the scaffold protein mAKAP (muscle A kinase-anchoring protein) at the nuclear envelope of both striated myocytes and neurons contains three cAMP-binding proteins, PKA, Epac1, and the phosphodiesterase PDE4D3. In addition, the mAKAP complex also contains components of the ERK5 MAP kinase signaling pathway, the calcium release channel ryanodine receptor and the phosphatases PP2A as well as calcineurin. Analysis of the mAKAP complex illustrates how a macromolecular complex can serve as a node in the intracellular signaling network of cardiac myocytes to integrate multiple cAMP signals with those of calcium and MAP kinases to regulate the hypertrophic actions of several hormones.  相似文献   

5.
6.
Exchange proteins activated by cAMP (cyclic AMP) 2 (Epac2) is a guanine nucleotide exchange factor for Rap1, a small G protein involved in many cellular functions, including cell adhesion, differentiation, and exocytosis. Epac2 interacts with Ras-GTP via a Ras association (RA) domain. Previous studies have suggested that the RA domain was dispensable for Epac2 function. Here we show for the first time that Ras and cAMP regulate Epac2 function in a parallel fashion and the Ras-Epac2 interaction is required for the cAMP-dependent activation of endogenous Rap1 by Epac2. The mechanism for this requirement is not allosteric activation of Epac2 by Ras but the compartmentalization of Epac2 on the Ras-containing membranes. A computational modeling is consistent with this compartmentalization being a function of both the level of Ras activation and the affinity between Ras and Epac2. In PC12 cells, a well-established model for sympathetic neurons, the Epac2 signaling is coupled to activation of mitogen-activated protein kinases and contributes to neurite outgrowth. Taken together, the evidence shows that Epac2 is not only a cAMP sensor but also a bona fide Ras effector. Coincident detection of both cAMP and Ras signals is essential for Epac2 to activate Rap1 in a temporally and spatially controlled manner.  相似文献   

7.
Epac proteins respond to the second messenger cyclic AMP (cAMP) and are activated by Gs coupled receptors. They act as specific guanine nucleotide exchange factors (GEFs) for the small G proteins, Rap1 and Rap2 of the Ras family. A plethora of studies using 8-pCPT-2′-O-Me-cAMP, an Epac agonist, has revealed the importance of these multi-domain proteins in the control of key cellular functions such as cell division, migration, growth and secretion. Epac and protein kinase A (PKA) may act independently but are often associated with the same biological process, in which they fulfill either synergistic or opposite effects. In addition, compelling evidence is now accumulating about the formation of molecular complexes in distinct cellular compartments that influence Epac signaling and cellular function. Epac is spatially and temporally regulated by scaffold protein and its effectors are interconnected with other signaling pathways. Pathophysiological changes in Epac signaling may underlie certain diseases.  相似文献   

8.
9.
The recent discovery of Epac, a novel cAMP receptor protein, opens up a new dimension in studying cAMP-mediated cell signaling. It is conceivable that many of the cAMP functions previously attributed to cAMP-dependent protein kinase (PKA) are in fact also Epac-dependent. The finding of an additional intracellular cAMP receptor provides an opportunity to further dissect the divergent roles that cAMP exerts in different cell types. In this study, we probed cross-talk between cAMP signaling and the phosphatidylinositol 3-kinase/PKB pathways. Specifically, we examined the modulatory effects of cAMP on PKB activity by monitoring the specific roles that Epac and PKA play individually in regulating PKB activity. Our study suggests a complex regulatory scheme in which Epac and PKA mediate the opposing effects of cAMP on PKB regulation. Activation of Epac leads to a phosphatidylinositol 3-kinase-dependent PKB activation, while stimulation of PKA inhibits PKB activity. Furthermore, activation of PKB by Epac requires the proper subcellular targeting of Epac. The opposing effects of Epac and PKA on PKB activation provide a potential mechanism for the cell type-specific differential effects of cAMP. It is proposed that the net outcome of cAMP signaling is dependent upon the dynamic abundance and distribution of intracellular Epac and PKA.  相似文献   

10.
cAMP regulates a wide range of processes through its downstream effectors including PKA, and the family of guanine nucleotide exchange factors. Depending on the cell type, cAMP inhibits or stimulates growth and proliferation in a PKA-dependent or independent manner. PKA-independent effects are mediated by PI 3-kinases-Akt signaling and EPAC1 (exchange protein directly activated by cAMP) activation. Recently, we reported PKA-independent activation of the protein kinase Akt as well co-immunoprecipitation of Epac1 with Rap1, p-Akt(Thr-308), and p-Akt(Ser-473) in forskolin-stimulated macrophages. To further probe the role of Epac1 in Akt protein kinase activation and cellular proliferation, we employed the cAMP analog 8-CPT-2-O-Me-cAMP, which selectively binds to Epac1 and triggers Epac1 signaling. We show the association of Epac1 with activated Akt kinases by co-immunoprecipitation and GST-pulldown assays. Silencing Epac1 gene expression by RNA interference significantly reduced levels of Epac1 mRNA, Epac protein, Rap1 GTP, p-ERK1/2, p-B-Raf, p110alpha catalytic subunit of PI 3-kinase, p-PDK, and p-p(70s6k). Silencing Epac1 gene expression by RNA interference also suppressed 8-CPT-2-O-Me-cAMP-upregulated protein and DNA synthesis. Concomitantly, 8-CPT-2-O-Me-cAMP-mediated upregulation of Akt(Thr-308) protein kinase activity and p-Akt(Thr-308) levels was prevented in plasma membranes and nuclei of the cells. In contrast, silencing Epac1 gene expression reduced Akt(Ser-473) kinase activity and p-Akt(Ser-473) levels in plasma membranes, but showed negligible effects on nuclear activity. In conclusion, we show that cAMP-induced Akt kinase activation and cellular proliferation is mediated by Epac1 which appears to function as an accessory protein for Akt activation.  相似文献   

11.
cAMP controls many cellular processes mainly through the activation of protein kinase A (PKA). However, more recently PKA-independent pathways have been established through the exchange protein directly activated by cAMP (Epac), a guanine nucleotide exchange factor for the small GTPases Rap1 and Rap2. In this report, we show that cAMP can induce integrin-mediated cell adhesion through Epac and Rap1. Indeed, when Ovcar3 cells were treated with cAMP, cells adhered more rapidly to fibronectin. This cAMP effect was insensitive to the PKA inhibitor H-89. A similar increase was observed when the cells were transfected with Epac. Both the cAMP effect and the Epac effect on cell adhesion were abolished by the expression of Rap1-GTPase-activating protein, indicating the involvement of Rap1 in the signaling pathway. Importantly, a recently characterized cAMP analogue, 8-(4-chloro-phenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate, which specifically activates Epac but not PKA, induced Rap-dependent cell adhesion. Finally, we demonstrate that external stimuli of cAMP signaling, i.e., isoproterenol, which activates the G alpha s-coupled beta 2-adrenergic receptor can induce integrin-mediated cell adhesion through the Epac-Rap1 pathway. From these results we conclude that cAMP mediates receptor-induced integrin-mediated cell adhesion to fibronectin through the Epac-Rap1 signaling pathway.  相似文献   

12.
Isoform 1 and isoform 2 of exchange protein directly activated by cAMP (Epac1 and Epac2) contribute to cAMP signaling in numerous cellular processes. Their guanine-nucleotide exchange factor (GEF) activity toward the small GTP-binding protein Rap1 is stimulated by the agonist cAMP. CE3F4, a tetrahydroquinoline analog, prevents Epac1 activation in vitro and in living cultured cells by inhibiting the GEF activity of Epac1. However, the activity of the (R)- and (S)-enantiomers of CE3F4, as well as the ability of CE3F4 and its analogs to inhibit Epac2 GEF activity, have not yet been investigated. In this study, we report that (R)-CE3F4 is a more potent cAMP antagonist than racemic CE3F4 and (S)-CE3F4, inhibiting the GEF activity of Epac1 with 10-times more efficiency than (S)-CE3F4. Epac2, in contrast to Epac1, is activated more efficiently by cAMP than by 8-(4-chlorophenylthio)-2′-O-methyladenosine-3′,5′-cyclic monophosphate (007), an Epac-selective cAMP analog. (R)-CE3F4 displays Epac isoform preference, with 10-fold selectivity for Epac1 over Epac2. Deletion of the N-terminal cyclic nucleotide-binding domain of Epac2 does not affect the characteristics of activation of Epac2 by cAMP and by 007, nor its inhibition by CE3F4. Finally, the evaluation of a series of CE3F4 structural analogs as GEF inhibitors allowed identifying structural features that are important for high Epac1 inhibitory activity of CE3F4. We conclude that the (R)-enantiomer of CE3F4 is a preferential inhibitor of Epac1 with high potency in the low micromolar range, and we suggest that this compound may be a useful pharmacological tool for investigating the functional role of Epac1 in cAMP signaling.  相似文献   

13.
cAMP is a universal second messenger of many G-protein-coupled receptors and regulates a wide variety of cellular events. cAMP exerts its effects via cAMP-dependent protein kinase (PKA), cAMP-gated ion channels, and two isoforms of exchange protein directly activated by cAMP (Epac). Here we report the development of novel fluorescent indicators for cAMP based on the cAMP-binding domains of Epac and PKA. Fluorescence resonance energy transfer between variants of green fluorescent protein (enhanced cyan fluorescent protein and enhanced yellow fluorescent protein) fused directly to the cAMP-binding domains was used to analyze spatial and temporal aspects of cAMP-signaling in different cells. In contrast to previously developed PKA-based indicators, these probes are comprised of only a single binding site lacking cooperativity, catalytic properties, and interactions with other proteins and thereby allow us to easily image free intracellular cAMP and rapid signaling events. Rapid beta-adrenergic receptor-induced cAMP signals were observed to travel with high speed ( approximately 40 microm/s) throughout the entire cell body of hippocampal neurons and peritoneal macrophages. The developed indicators could be ubiquitously applied to studying cAMP, its physiological role and spatio-temporal regulation.  相似文献   

14.
cAMP mediates its intracellular effects through activation of protein kinase A (PKA), nucleotide-gated ion channels, or exchange protein directly activated by cAMP (Epac). Although elevation of cAMP in lymphocytes leads to suppression of immune functions by a PKA-dependent mechanism, the effector mechanisms for cAMP regulation of immune functions in monocytes and macrophages are not fully understood. In this study, we demonstrate the presence of Epac1 in human peripheral blood monocytes and activation of Rap1 in response to cAMP. However, by using an Epac-specific cAMP analog (8-CPT-2'-O-Me-cAMP), we show that monocyte activation parameters such as synthesis and release of cytokines, stimulation of cell adhesion, chemotaxis, phagocytosis, and respiratory burst are not regulated by the Epac1-Rap1 pathway. In contrast, activation of PKA by a PKA-specific compound (6-Bnz-cAMP) or physiological cAMP-elevating stimuli like PGE(2) inhibits monocyte immune functions. Furthermore, we show that the level of Epac1 increases 3-fold during differentiation of monocytes into macrophages, and in monocyte-derived macrophages cAMP inhibits FcR-mediated phagocytosis via both PKA and the Epac1-Rap1 pathway. However, LPS-induced TNF-alpha production is only inhibited through the PKA pathway in these cells. In conclusion, the Epac1-Rap1 pathway is present in both monocytes and macrophages, but only regulates specific immune effector functions in macrophages.  相似文献   

15.
This review presents observations on the role of Epac proteins (exchange protein directly activated by cAMP) in immunoregulation mechanisms. Signaling pathways that involve Epac proteins and their domain organization and functions are considered. The role of Epac1 protein expressed in the immune system cells is especially emphasized. Molecular mechanisms of the cAMP-dependent signal via Epac1 are analyzed in monocytes/macrophages, T-cells, and B-lymphocytes. The role of Epac1 is shown in the regulation of adhesion, leukocyte chemotaxis, as well as in phagocytosis and bacterial killing. The molecular cascade initiated by Epac1 is examined under conditions of antigen activation of T-cells and immature B-lymphocytes.  相似文献   

16.
In diverse neuronal processes ranging from neuronal survival to synaptic plasticity cyclic adenosine monophosphate (cAMP)-dependent signaling is tightly connected with the protein kinase B (PKB)/Akt pathway but the precise nature of this connection remains unknown. In the current study we investigated the effect of two mainstream pathways initiated by cAMP, cAMP-dependent protein kinase (PKA) and exchange proteins directly activated by cAMP (Epac1 and Epac2) on PKB/Akt phosphorylation in primary cortical neurons and HT-4 cells. We demonstrate that PKA activation leads to a reduction of PKB/Akt phosphorylation, whereas activation of Epac has the opposite effect. This effect of Epac on PKB/Akt phosphorylation was mediated by Rap activation. The increase in PKB/Akt phosphorylation after Epac activation could be blocked by pretreatment with Epac2 siRNA and to a somewhat smaller extent by Epac1 siRNA. PKA, PKB/Akt and Epac were all shown to establish complexes with neuronal A-kinase anchoring protein150 (AKAP150). Interestingly, activation of Epac increased phosphorylation of PKB/Akt complexed to AKAP150. From experiments using PKA-binding deficient AKAP150 and peptides disrupting PKA anchoring to AKAPs, we conclude that AKAP150 acts as a key regulator in the two cAMP pathways to control PKB/Akt phosphorylation.  相似文献   

17.
Leptin regulates energy balance and glucose homeostasis. Shortly after leptin was identified, it was established that obesity is commonly associated with leptin resistance, though the molecular mechanisms remain to be identified. To explore potential mechanisms of leptin resistance, we employed organotypic brain slices to identify candidate signaling pathways that negatively regulate leptin sensitivity. We found that elevation of adenosine 3', 5'-monophosphate (cAMP) levels impairs multiple signaling cascades activated by leptin within the hypothalamus. Notably, this effect is independent of protein kinase A activation. In contrast, activation of Epac, a cAMP-regulated guanine nucleotide exchange factor for the small G protein Rap1, was sufficient to impair leptin signaling with concomitant induction of SOCS-3 expression. Epac activation also blunted leptin-induced depolarization of hypothalamic POMC neurons. Finally, central infusion of an Epac activator blunted the anorexigenic actions of leptin. Thus, activation of hypothalamic cAMP-Epac pathway is sufficient to induce multiple indices of leptin resistance.  相似文献   

18.
We examined whether nerve growth factor (NGF), an inflammatory mediator that contributes to chronic hypersensitivity, alters the intracellular signaling that mediates the sensitizing actions of PGE2 from activation of protein kinase A (PKA) to exchange proteins directly activated by cAMP (Epacs). When isolated sensory neurons are grown in the absence of added NGF, but not in cultures grown with 30 ng/ml NGF, inhibiting protein kinase A (PKA) activity blocks the ability of PGE2 to augment capsaicin-evoked release of the neuropeptide CGRP and to increase the number of action potentials (APs) evoked by a ramp of current. Growing sensory neurons in culture in the presence of increasing concentrations of NGF increases the expression of Epac2, but not Epac1. An intradermal injection of complete Freund''s adjuvant into the rat hindpaw also increases the expression of Epac2, but not Epac1 in the dorsal root ganglia and spinal cord: an effect blocked by intraplantar administration of NGF antibodies. Treating cultures grown in the presence of 30 ng/ml NGF with Epac1siRNA significantly reduced the expression of Epac1, but not Epac2, and did not block the ability of PGE2 to augment capsaicin-evoked release of CGRP from sensory neurons. Exposing neuronal cultures grown in NGF to Epac2siRNAreduced the expression of Epac2, but not Epac1 and prevented the PGE2-induced augmentation of capsaicin and potassium-evoked CGRP release in sensory neurons and the PGE2-induced increase in the number of APs generated by a ramp of current. In neurons grown with no added NGF, Epac siRNAs did not attenuate PGE2-induced sensitization. These results demonstrate that NGF, through increasing Epac2 expression, alters the signaling cascade that mediates PGE2-induced sensitization of sensory neurons, thus providing a novel mechanism for maintaining PGE2-induced hypersensitivity during inflammation.  相似文献   

19.
20.
Elevation of the intracellular cAMP concentration ([cAMP]i) regulates metabolism, cell proliferation, and differentiation and plays roles in memory formation and neoplastic growth. cAMP mediates its effects mainly through activation of protein kinase A (PKA) as well as Epac1 and Epac2, exchange factors activating the small GTPases Rap1 and Rap2. However, how cAMP utilizes these effectors to induce distinct biological responses is unknown. We here studied the specific roles of PKA and Epac in neuroendocrine PC12 cells. In these cells, elevation of [cAMP]i activates extracellular signal-regulated kinase (ERK) 1/2 and induces low-degree neurite outgrowth. The present study showed that specific stimulation of PKA triggered ERK1/2 activation that was considerably more transient than that observed upon simultaneous activation of both PKA and Epac. Unexpectedly, the PKA-specific cAMP analog induced cell proliferation rather than neurite outgrowth. The proliferative signaling pathway activated by the PKA-specific cAMP analog involved activation of the epidermal growth factor receptor and ERK1/2. Activation of Epac appeared to extend the duration of PKA-dependent ERK1/2 activation and converted cAMP from a proliferative into an anti-proliferative, neurite outgrowth-promoting signal. Thus, the present study showed that the outcome of cAMP signaling can depend heavily on the set of cAMP effectors activated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号