首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Halophilic enzymes: proteins with a grain of salt   总被引:9,自引:0,他引:9  
Halophilic enzymes, while performing identical enzymatic functions as their non-halophilic counterparts, have been shown to exhibit substantially different properties, among them the requirement for high salt concentrations, in the 1-4 M range, for activity and stability, and a high excess of acidic over basic amino residues. The following communication reviews the functional and structural properties of two proteins isolated from the extremely halophilic archaeon Haloarcula marismortui: the enzyme malate-dehydrogenase (hMDH) and the 2Fe-2S protein ferredoxin. It is argued that the high negative surface charge of halophilic proteins makes them more soluble and renders them more flexible at high salt concentrations, conditions under which non-halophilic proteins tend to aggregate and become rigid. This high surface charge is neutralized mainly by tightly bound water dipoles. The requirement of high salt concentration for the stabilization of halophilic enzymes, on the other hand, is due to a low affinity binding of the salt to specific sites on the surface of the folded polypeptide, thus stabilizing the active conformation of the protein.  相似文献   

2.
Madern D  Ebel C 《Biochimie》2007,89(8):981-987
Halophilic proteins have evolved to be soluble, stable and active in high salt concentration. Crystallographic studies have shown that surface enrichment by acidic amino acids is a common structural feature of halophilic proteins. In addition, ion-binding sites have also been observed in most of the cases. The role of chloride-binding sites in halophilic adaptation was addressed in a site-directed mutagenesis study of tetrameric malate dehydrogenase from Haloarcula marismortui. The mutation of K 205, which is involved in an inter-subunit chloride-binding site, drastically modified the enzyme stability in the presence of KCl, but not in the presence of KF. The oligomeric state of the [K205A] mutant changes with the nature of the anion. At high salt concentration, the [K205A] mutant is a dimer when the anion is a chloride ion, whereas it is a tetramer when the fluoride ion is used. The results highlight the role of anion-binding sites in protein adaptation to high salt conditions.  相似文献   

3.
Madern D  Zaccai G 《Biochimie》2004,86(4-5):295-303
Malate dehydrogenase from the extreme halophilic bacterium, Salinibacter ruber (Sr MalDH) was purified and characterised as a tetramer by sedimentation velocity measurements, showing the enzyme belongs to the LDH-like group of MalDHs. In contrast to most other halophilic enzymes, which unfold when incubated at low salt concentration, Sr MalDH is completely stable in absence of salt. Its amino acid composition does not display the strong acidic character specific of halophilic proteins. The enzyme displays a strong KCl-concentration dependent variation in K(m) for oxaloacetate, but not for the NADH co-factor. Its activity is reduced by high salt concentration, but remains sufficient for the enzyme to sustain catalysis at approximately 30% of its maximal rates in 3 M KCl. The properties of the protein were compared with those from other LDH-like MalDHs of bacterial and archaeal origins, showing that Sr MalDH in fact behaves like a non-halophilic enzyme.  相似文献   

4.
The stability of malate dehydrogenase (hMDH) from Halobacterium salinarum in aqueous medium at low salt concentrations (1 and 0.5 M NaCl) was studied at 4 degrees and 25 degrees C. The results showed that hMDH was more stable at the higher salt concentration and the low temperature. hMDH was introduced into reverse micelles of hexadecyltrimethylammonium bromide in cyclohexane with 1-butanol as co-surfactant. The hMDH stability in this system was studied at two omega(0) ([H(2)O]/[surfactant]) values and the effects of salt concentration, presence of substrate and dilution before or after its introduction into reverse micelles were examined. The results showed that the half-life of hMDH dissolved in buffer with 1 M NaCl was 12-50 days in reverse micelles (depending on the various conditions), in contrast to only about 1 day in aqueous medium at 25 degrees C. These observations indicate that reverse micelles provide a microenvironment that allows a much greater stability of this enzyme compared with an aqueous medium.  相似文献   

5.
Glutamate dehydrogenase (GDH) in human exists in GLUD1 and GLUD2 gene-encoded isoforms (hGDH1 and hGDH2, respectively), differing in their regulation and tissue expression pattern. Whereas hGDH1 is subject to GTP control, hGDH2 uses for its regulation, a novel molecular mechanism not requiring GTP. This is based on the ability of hGDH2 to maintain a baseline activity of <10% of its capacity subject to full activation by rising ADP/ l -leucine levels. Here we studied further the molecular mechanisms regulating hGDH2 function by creating and analyzing hGDH2 mutants harboring single amino acid substitutions in the regulatory domain (antenna, pivot helix) of the protein. Five hGDH2 mutants were obtained: two with an amino acid change (Gln441Arg, Ser445Leu) in the antenna, two (Lys450Glu, His454Tyr) in the pivot helix, and one (Ser448Pro) in the junction between the two structures. Functional analyses revealed that, while the antenna mutations increased basal enzyme activity without affecting its allosteric properties, the pivot helix mutations drastically reduced basal activity and impaired enzyme regulation. On the other hand, the Ser448Pro mutation reduced basal activity but did not alter allosteric regulation. Also, compared with wild-type hGDH2, the antenna mutants were relatively thermostable, whereas the pivot helix mutants were extremely heat labile. Hence, the present data further our understanding of the molecular mechanisms involved in the function and stability of hGDH2, an enzyme thought to be of importance for nerve tissue biology.  相似文献   

6.
Human glutamate dehydrogenase isozymes (hGDH1 and hGDH2) differ markedly in their inhibition by GTP. These regulatory preferences must arise from amino acid residues that are not common between hGDH isozymes. We have constructed chimeric enzymes by reciprocally switching the corresponding amino acid segments 390-465 in hGDH isozymes that are located within or near the C-terminal 48-residue antenna helix, which is thought to be part of the regulatory domain of mammalian GDHs. These resulted in triple mutations in amino acid sequences at 415, 443, and 456 sites that are not common between hGDH1 and hGDH2. The chimeric enzymes did not change their enzyme efficiency (kcat/Km) and expression level. Functional analyses, however, revealed that the chimeric mutants almost completely acquired the different GTP regulatory preference between hGDH isozymes. These results suggest that the 415, 443, and 456 residues acting in concert are responsible for the GTP inhibitory properties of hGDH isozymes.  相似文献   

7.
Human glutamate dehydrogenase isozymes (hGDH1 and hGDH2) have been known to be inhibited by palmitoyl-CoA with a high affinity. In this study, we have performed the cassette mutagenesis at six different Cys residues (Cys59, Cys93, Cys119, Cys201, Cys274, and Cys323) to identify palmitoyl-CoA binding sites within hGDH2. Four cysteine residues at positions of C59, C93, C201, or C274 may be involved, at least in part, in the inhibition of hGDH2 by palmitoyl-CoA. There was a biphasic relationship, depending on the levels of palmitoyl-CoA, between the binding of palmitoyl-CoA and the loss of enzyme activity during the inactivation process. The inhibition of hGDH2 by palmitoyl-CoA was not affected by the allosteric inhibitor GTP. Multiple mutagenesis studies on the hGDH2 are in progress to identify the amino acid residues fully responsible for the inhibition by palmitoyl-CoA. [BMB Reports 2012; 45(12): 707-712]  相似文献   

8.
Proteins of halophilic organisms, which accumulate molar concentrations of KCl in their cytoplasm, have a much higher content in acidic amino acids than proteins of mesophilic organisms. It has been proposed that this excess is necessary to maintain proteins hydrated in an environment with low water activity, either via direct interactions between water and the carboxylate groups of acidic amino acids or via cooperative interactions between acidic amino acids and hydrated cations. Our simulation study of five halophilic proteins and five mesophilic counterparts does not support either possibility. The simulations use the AMBER ff14SB force field with newly optimized Lennard-Jones parameters for the interactions between carboxylate groups and potassium ions. We find that proteins with a larger fraction of acidic amino acids indeed have higher hydration levels, as measured by the concentration of water in their hydration shell and the number of water/protein hydrogen bonds. However, the hydration level of each protein is identical at low (bKCl = 0.15 mol/kg) and high (bKCl = 2 mol/kg) KCl concentrations; excess acidic amino acids are clearly not necessary to maintain proteins hydrated at high salt concentration. It has also been proposed that cooperative interactions between acidic amino acids in halophilic proteins and hydrated cations stabilize the folded protein structure and would lead to slower dynamics of the solvation shell. We find that the translational dynamics of the solvation shell is barely distinguishable between halophilic and mesophilic proteins; if such a cooperative effect exists, it does not have that entropic signature.  相似文献   

9.
Reverse micelles were used as a cytoplasmic model to study the kinetics of an extreme halophilic enzyme such as the recombinant glucose dehydrogenase from the Archaeon Haloferax mediterranei. This enzyme was solubilized in reverse micelles of hexadecyltrimethylammoniumbromide in cyclohexane, with 1-butanol as co-surfactant. Glucose dehydrogenase retained its catalytic properties in this organic medium, showing good stability at low water content, even at low salt concentration (125 mM NaCl). The dependence of the enzymatic activity on the molar water surfactant ratio (w0=[H2O]/[surfactant]) increased with rising water content. Surprisingly, the activity of this extreme halophilic enzyme did not depend on the salt concentration in reverse micelles. The kinetic of the enzymatic oxidation of β-D-glucose to D-glucono-1,5-lactone using NADP+ as coenzyme for the glucose dehydrogenase from Haloferax mediterranei was also studied in the reverse micellar system.  相似文献   

10.
The salt-dependent stability of recombinant dimeric isocitrate dehydrogenase [ICDH; isocitrate: NADP oxidoreductase (decarboxylating), EC 1.1.1.42] from the halophilic archaeon Haloferax volcanii (Hv) was investigated in various conditions. Hv ICDH dissociation/deactivation was measured to probe the respective effect of anions and cations on stability. Surprisingly, enzyme stability was found to be mainly sensitive to cations and very little (or not) sensitive to anions. Divalent cations induced a strong shift of the active/inactive transition towards low salt concentration. A high resistance of Hv ICDH to chemical denaturation was also found. The data were analysed and are discussed in the framework of the solvation stability model for halophilic proteins.  相似文献   

11.
由高盐环境中生长的微生物里分离出的嗜盐酶在高盐度下仍然具有催化活性,工业上具有良好的应用前景。一些嗜盐酶已被克隆纯化出来,它们的分子结构特点也已经被广泛研究。该文从嗜盐酶的蛋白质序列和结构特征等方面综述了嗜盐酶嗜盐的分子结构基础研究进展,分析了存在的问题并对未来工作提出了展望。研究嗜盐酶盐适应性的分子基础,可以为新的功能蛋白的发展和鉴定提供依据。  相似文献   

12.
In general, halophilic proteins are stable only in the presence of salts at high concentrations. Not only is high salt concentration important for structural stability of halophilic proteins, but also refolding of a denatured halophilic protein requires high salt concentration. This review summarizes the importance of electrostatic charge shielding and hydrophobic interactions in the stability and refolding of halophilic proteins.  相似文献   

13.
Halophilic adaptation of enzymes   总被引:10,自引:0,他引:10  
It is now clear that the understanding of halophilic adaptation at a molecular level requires a strategy of complementary experiments, combining molecular biology, biochemistry, and cellular approaches with physical chemistry and thermodynamics. In this review, after a discussion of the definition and composition of halophilic enzymes, the effects of salt on their activity, solubility, and stability are reviewed. We then describe how thermodynamic observations, such as parameters pertaining to solvent–protein interactions or enzyme-unfolding kinetics, depend strongly on solvent composition and reveal the important role played by water and ion binding to halophilic proteins. The three high-resolution crystal structures now available for halophilic proteins are analyzed in terms of haloadaptation, and finally cellular response to salt stress is discussed briefly. Received: July 11, 1999 / Accepted: December 27, 1999  相似文献   

14.
Glutamate dehydrogenase (GDH) is a crucial enzyme on the crossroads of amino acid and energy metabolism and it is operating in all domains of life. According to current knowledge GDH is present only in one functional isoform in most animals, including mice. In addition to this housekeeping enzyme (hGDH1 in humans), humans and apes have acquired a second isoform (hGDH2) with a distinct tissue expression profile. In the current study we have cloned both mouse and human GDH constructs containing FLAG and (His)6 small genetically-encoded tags, respectively. The hGDH1 and hGDH2 constructs containing N-terminal (His)6 tags were successfully expressed in Sf9 cells and the recombinant proteins were isolated to ≥95 % purity in a two-step procedure involving ammonium sulfate precipitation and Ni2+-based immobilized metal ion affinity chromatography. To explore whether the presence of the FLAG and (His)6 tags affects the cellular localization and functionality of the GDH isoforms, we studied the subcellular distribution of the expressed enzymes as well as their regulation by adenosine diphosphate monopotassium salt (ADP) and guanosine-5′-triphosphate sodium salt (GTP). Through immunoblot analysis of the mitochondrial and cytosolic fraction of the HEK cells expressing the recombinant proteins we found that neither FLAG nor (His)6 tag disturbs the mitochondrial localization of GDH. The addition of the small tags to the N-terminus of the mature mitochondrial mouse GDH1 or human hGDH1 and hGDH2 did not change the ADP activation or GTP inhibition pattern of the proteins as compared to their untagged counterparts. However, the addition of FLAG tag to the C-terminus of the mouse GDH left the recombinant protein fivefold less sensitive to ADP activation. This finding highlights the necessity of the functional characterization of recombinant proteins containing even the smallest available tags.  相似文献   

15.
To investigate the mechanism of salt tolerance of gram-positive moderately halophilic bacteria, two-dimensional gel electrophoresis (2-D PAGE) was employed to achieve high resolution maps of proteins of Halobacillus dabanensis D-8T. Approximately 700 spots of proteins were identified from these 2-D PAGE maps. The majority of these proteins had molecular weights between 17.5 and 66 kDa, and most of them were distributed between the isoelectric points (pI) 4.0 and 5.9. Some protein spots were distributed in the more acidic region of the 2-D gel (pI <4.0). This pattern indicated that a number of proteins in the strain D-8T are acidic. To understand the adaptation mechanisms of moderately halophilic bacteria in response to sudden environmental changes, differential protein profiles of this strain were investigated by 2-D PAGE and Imagemaster 2D Platinum software after the cells were subjected to salt shock of 1 to 25% salinity for 5 and 50 min. Analysis showed 59 proteins with an altered level of expression as the result of the exposure to salt shock. Eighteen proteins had increased expression, 8 proteins were induced, and the expression of 33 proteins was down-regulated. Eight of the up-regulated proteins were identified using MALDI-TOF/MS and MASCOT, and were similar to proteins involved in signal transduction, proteins participating in energy metabolism pathways and proteins involved in stress.  相似文献   

16.
The effect of high NaCl concentrations on the activity of catalase (EC 1.11.1.6), peroxidase (EC 1.11.1.7) and malate dehydrogenase (NAD+-linked; EC 1.1.1.37) from leaves of Halimione portulacoides (L.) Aellen was studied. The plants were exposed to high salinity during growth and enzyme activity was measured either in the absence or in the presence of various concentrations of NaCl. Increasing salinity in vitro induced three types of effects: (1) an increase in activity (peroxidase); (2) a decrease in activity (catalase); (3) stimulation by low salt concentration but inhibition by higher concentrations (malate dehydrogenase). Salinity in vivo induced a marked decrease in catalase and malate dehydrogenase activities. However, peroxidase in vivo showed an optimum curve of activity vs external NaCl concentration, with an optimum at ca 1 M NaCl. Exposure of plants to salinity induced changes in the properties of the enzyme proteins: they precipitated at a higher (NH4)2SO4 concentration, were eluted later during Sephadex G-200 filtration, and showed a shift in the maximal, minimal and optimal temperatures. These data are interpreted as evidence for conformational changes in the enzymes due to prolonged exposure to high salinity stress; such changes could be disruption into monomers (catalase and malate dehydrogenase), or changes in molecular shape (in the peroxidase).  相似文献   

17.
Halotolerant and halophilic microorganisms can grow in (hyper)saline environments, but only halophiles specifically require salt. Genotypic and phenotypic adaptations are displayed by halophiles; the halotolerants adapt phenotypically, but it is not established whether they show genotypic adaptation. This paper reviews the various strategies of haloadaptation of membrane proteins and lipids by halotolerant and halophilic microorganisms. Moderate halophiles and halotolerants adapt their membrane lipid composition by increasing the proportion of anionic lipids, often phosphatidylglycerol and/or glycolipids, which in the moderately halophilic bacteriumVibrio costicola appears to be part of an osmoregulatory response to minimize membrane stress at high salinities. Extreme halophiles possess typical archaebacterial ether lipids, which are genotypically adapted by having additional substitutions with negatively-charged residues such as sulfate. In contrast to the lipids, it is less clear whether membrane proteins are haloadapted, although they may be more acidic; very few depend on salt for their activity.  相似文献   

18.
Glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.12) from the extremely halophilic archaebacterium Haloarcula vallismortis has been purified in a four step procedure to electrophoretic homogeneity. The enzyme is a tetramer with a relative molecular mass of 160000. It is strictly NAD+-dependent and exhibits its highest activity in 2 mol/l KCl at 45°C. Amino acid analysis and isoelectric focusing indicate an excess of acidic amino acids. Two parts of the primary sequence are reported. These peptides have been compared with glyceraldehyde 3-phosphate dehydrogenases from other archaebacteria, eubacteria and eucaryotes. The peptides show a high grade of similarity to glyceraldehyde 3-phosphate dehydrogenase from eucaryotes.Abbreviations BCA bicinchoninic acid - CTAB cetyltrimethyl ammonium bromide - DTE dithioerythritol - DTT dithiothreitol - GAP glyccraldehyde 3-phosphate - GAPDH glyceraldehyde 3-phosphate dehydrogenase  相似文献   

19.
We isolated a protein, P45, from the extreme halophilic archaeon Haloarcula marismortui, which displays molecular chaperone activities in vitro. P45 is a weak ATPase that assembles into a large ring-shaped oligomeric complex comprising about 10 subunits. The protein shows no significant homology to any known protein. P45 forms complexes with halophilic malate dehydrogenase during its salt-dependent denaturation/renaturation and decreases the rate of deactivation of the enzyme in an ATP-dependent manner. Compared with other halophilic proteins, the P45 complex appears to be much less dependent on salt for its various activities or stability. In vivo experiments showed that P45 accumulates when cells are exposed to a low salt environment. We suggest, therefore, that P45 could protect halophilic proteins against denaturation under conditions of cellular hyposaline stress.  相似文献   

20.
The extremely halophilic bacterium Salinibacter ruber was previously shown to have a high intracellular potassium content, comparable to that of halophilic Archaea of the family Halobacteriaceae. The amino acid composition of its bulk protein showed a high content of acidic amino acids, a low abundance of basic amino acids, a low content of hydrophobic amino acids, and a high abundance of serine. We tested the level of four cytoplasmic enzymatic activities at different KCl and NaCl concentrations. Nicotinamide adenine dinucleotide (NAD)-dependent isocitrate dehydrogenase functioned optimally at 0.5-2 M KCl, with rates of 60% of the optimum value at 3.3 M. NaCl provided less activation: 70% of the optimum rates in KCl were found at 0.2-1.2 M NaCl, and above 3 M NaCl, activity was low. We also detected nicotinamide adenine dinucleotide phosphate (NADP)-dependent isocitrate activity, which remained approximately constant between 0-3.2 M NaCl and increased with increasing KCl concentration. NAD-dependent malate dehydrogenase functioned best in the absence of salt, but rates as high as 25% of the optimal values were measured in 3-3.5 M KCl or NaCl. NAD-dependent glutamate dehydrogenase, assayed by the reductive amination of 2-oxoglutarate, showed low activity in the absence of salt. NaCl was stimulatory with optimum activity at 3-3.5 M. However, no activity was found above 2.5 M KCl. Although the four activities examined all function at high salt concentrations, the behavior of individual enzymes toward salt varied considerably. The results presented show that Salinibacter enzymes are adapted to function in the presence of high salt concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号