首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To test whether structural specializations of sand-cat ears are adaptations to their desert habitats we measured structural and acoustic features of their ears. The area of the external ear's pinna flange is similar to that of domestic cat. The dimensions of the ear canal are about twice domestic cat's, as is the volume of the middle-ear air space. The magnitude of the acoustic input-admittance at the tympanic membrane is about five times larger than that of domestic cat; both the middle-ear cavities and the ossicular chain contribute to the increase. Structure-based models suggest the acoustic admittance looking outward through the external ear is generally larger for sand cat than for domestic cat; the radiation power-efficiency is also larger in sand cat for frequencies below 2 kHz. Hearing sensitivity (estimated from measurements and model calculations) in sand cat is predicted to be about 8 dB greater than in domestic cat for frequencies below 2 kHz. Analysis of attenuation of sound in deserts implies that the increased sensitivity extends sand cat's hearing range beyond domestic cat by 0.4 km at 0.5 kHz. Thus, the structural specializations may provide habitat-specific survival value.  相似文献   

2.
We describe measurements of middle-ear input admittance in chinchillas (Chinchilla lanigera) before and after various manipulations that define the contributions of different middle-ear components to function. The chinchilla's middle-ear air spaces have a large effect on the low-frequency compliance of the middle ear, and removing the influences of these spaces reveals a highly admittant tympanic membrane and ossicular chain. Measurements of the admittance of the air spaces reveal that the high-degree of segmentation of these spaces has only a small effect on the admittance. Draining the cochlea further increases the middle-ear admittance at low frequencies and removes a low-frequency (less than 300 Hz) level dependence in the admittance. Spontaneous or sound-driven contractions of the middle-ear muscles in deeply anesthetized animals were associated with significant changes in middle-ear admittance.  相似文献   

3.
When confronted with a predator, many mammalian species emit vocalizations known as alarm calls. Vocal structure variation results from the interactive effects of different selective pressures and constraints affecting their production, transmission, and detection. Body size is an important morphological constraint influencing the lowest frequencies that an organism can produce. The acoustic environment influences signal degradation; low frequencies should be favoured in dense forests compared to more open habitats (i.e. the ‘acoustic adaptation hypothesis’). Such hypotheses have been mainly examined in birds, whereas the proximate and ultimate factors affecting vocalizations in nonprimate mammals have received less attention. In the present study, we investigated the relationships between the frequency of alarm calls, body mass, and habitat in 65 species of rodents. Although we found the expected negative relationship between call frequency and body mass, we found no significant differences in acoustic characteristics between closed and open‐habitat species. The results of the present study show that the acoustic frequencies of alarm calls can provide reliable information about the size of a sender in this taxonomic group, although they generally do not support the acoustic adaptation hypothesis.  相似文献   

4.
Jacobs DS  Barclay RM  Walker MH 《Oecologia》2007,152(3):583-594
The peak echolocation frequency of insectivorous bats generally declines as body size increases. However, there are notable exceptions to this rule, with some species, such as Rhinolophus clivosus, having a higher than expected peak frequency for their body size. Such deviations from allometry may be associated with partitioning of foraging habitat (the foraging habitat hypothesis) or insect prey (the prey detection hypothesis). Alternatively, the deviations may be associated with the partitioning of sonar frequency bands to allow effective communication in a social context (the acoustic communication hypothesis). We tested the predictions of these hypotheses through comparisons at the family, clade and species level, using species of rhinolophids in general and R. clivosus, a species with a wide distribution, as a specific test case. We compared the wing parameters, echolocation frequency and ecology of R. clivosus to those of the sympatric R. capensis. Rhinolophus clivosus has a much higher echolocation frequency than predicted from its wing loading or body mass. Furthermore, contrary to the predictions of the foraging habitat hypothesis, we found no difference in foraging habitat between R. clivosus and R. capensis. The size range of insect prey taken by the two species also overlapped almost completely, contrary to the prey detection hypothesis. On the other hand, the variation of echolocation frequencies around the allometric relationship for rhinolophids was smaller than that for Myotis spp., supporting the prediction of the acoustic communication hypothesis. We thus propose that the relatively high peak frequency of R. clivosus is the result of partitioning of sonar frequency bands to minimize the ambiguity of echolocation calls during social interactions.  相似文献   

5.
Climatic gradients impose clinal selection on animal ecological and physiological performance, often promoting geographic body size clines. Bergmann’s rule predicts that body size increases with decreasing environmental temperatures given the need to retain body-heat through adjustments of body-mass-to-surface-area ratio. This prediction generally holds for endotherms, but remains controversial for ectotherms. An alternative interpretation, the ‘resource rule’, suggests that food abundance, primary productivity and precipitation (which, unlike temperature, do not necessarily correlate with geography), drive body size clines. We investigate geographic variation in body size within 65 species of lizards and snakes (squamates) based on an intercontinental dataset (6,500+ specimens belonging to 56 Israeli species, and multiple populations of nine Liolaemus species from Argentina and Chile). Bergmann’s rule is only rarely supported by our data (in four species, 6 %), whereas six species (9 %) follow its converse (hence, it is unsupported in 94 % of cases). Similarly, size increases with resource abundance in only 12 species (18 %). Therefore, although neither of the rules is supported, factors suggested by the resource rule are better predictors of body size than temperature. Surprisingly, we show that some measures of the extent of a species’ climatic envelope do not affect the likelihood of it showing a size-climate relationship. We conclude that negative size-temperature associations are an exception rather than a generality among squamates.  相似文献   

6.
Laser interferometry was used to measure umbo velocity in the developing BALB/c mouse middle ear at 133 pure-tone frequencies between 2.0 kHz and 40.0 kHz, all at a constant 100 dB sound pressure level. Umbo velocities increased with age across the entire frequency range, and reached adult-like levels by about 19 days between 2.0 and 22.0 kHz. Velocities at 28.0 and 34.0 kHz took 27 and 52 days respectively to reach adult-like levels.A simple middle-ear model utilizing compliance, resistance, and inertia elements matched the general trends of our velocity results and provided an indication of the anatomical basis for the growth in umbo velocity. The model suggested that velocity development at the lowest frequencies may be attributed to increases in tympanic membrane compliance. The model also indicated that both the frictional resistance of the middle ear and the inertia of the tympanic membrane and ossicles decreased during the growth period.At frequencies below 20.0 kHz, age-related increases in umbo velocity coincided with improvements in Nj1 thresholds recorded from the round window and evoked potential thresholds obtained from the cochlear nucleus. These results indicated that the functional development of the middle-ear plays a major role in the development of hearing in the mouse.Portions of this work were presented at the Fifteenth Meeting of the Association for Research in Otolaryngology  相似文献   

7.
Anurans emit advertisement calls with the purpose of attracting mates and repelling conspecific competitors. The evolution of call traits is expected to be associated with the evolution of anatomical and behavioural traits due to the physics of call emission and transmission. The evolution of vocalizations might imply trade‐offs with other energetically costly behaviours, such as parental care. Here, we investigated the association between body size, calling site, parental care and call properties (call duration, number of notes, peak frequency, frequency bandwidth and call structure) of the advertisement calls of glassfrogs (Centrolenidae)—a family of Neotropical, leaf‐dwelling anurans—using phylogenetic comparative methods. We also explored the tempo and mode of evolution of these traits and compared them with those of three morphological traits associated with body size, locomotion and feeding. We generated and compiled acoustic data for 72 glassfrog species (46% of total species richness), including representatives of all genera. We found that almost all acoustic traits have significant, but generally modest, phylogenetic signal. Peak frequency of calls is significantly associated with body size, whereas call structure is significantly associated with calling site and paternal care. Thus, the evolution of body size, calling site and paternal care could constrain call evolution. The estimated disparity of acoustic traits was larger than that of morphological traits and the peak in disparity of acoustic traits generally occurred later in the evolution of glassfrogs, indicating a historically recent outset of the acoustic divergence in this clade.  相似文献   

8.
Environmental noise can be an important selective force modulating signal evolution in species with acoustic communication. Many anuran species breed alongside streams; hence, the sound produced by the flowing water is an important source of noise for acoustic communication. Since calling is physiologically very expensive in anurans, and communication is essential for reproduction, we expected adaptations that reduce environmental masking effects and allow acoustic communication in streamside breeders. This basic assumption of the acoustic adaptation hypothesis has not been yet evaluated at a large phylogenetic scale. We combined ahistorical and phylogenetic methods to test whether anuran species that breed alongside streams call at higher frequencies than species that breed away from streams. We compiled primary and secondary data on body size, breeding habitat, and the dominant frequency of the advertisement call for 110 species; 40 of them breed alongside streams and 70 away from streams. Call frequency was slightly higher and body size was significantly smaller in streamside breeding species. After controlling for the effects of body size and phylogenetic signal, only differences in body size persisted between species breeding at both kinds of habitats. Our data suggest that habitat filtering rather than acoustic adaptation explains the high call frequency of stream breeders. Species with large body size, pleiotropically constrained to utter low-frequency calls, would have succeeded less often in establishing viable populations alongside streams, due to the masking effect of low-frequency noise. Thus, small species calling at relatively high frequencies would be more common there. Although our data do not preclude adaptations to noisy habitats in some anuran species, they do not provide support for the acoustic adaptation hypothesis at a wider phylogenetic scale.  相似文献   

9.
Knowledge about the biology and ecology of neotropical aquatic taxa is crucial to establish general ecological rules and water protection systems. Based mainly on published data, the present work shows the following biological and ecological characteristics of Anacroneuria species (Klapálek 1909): (a) the wide range of environmental conditions of rivers where Anacroneuria species occur, (b) species number decreases along an increasing elevation gradient, (c) body size increases in relation to the maximum altitude of occurrence, (d) altitudinal range increases with body size, (e) there is a constant relationship between male and female body size, and finally, (f) larger females lay larger eggs. In temperate countries, the family Perlidae in general, and the genus Anacroneuria in particular, are viewed as excellent water quality indicators. We suggest that, considering the complexity of the group's ecology in South America, it should not be automatically considered an excellent bioindicator in the Neotropical region.  相似文献   

10.
Source–filter theory assumes that calls are generated by a vocal source and are subsequently filtered by the vocal tract. The air in the vocal tract vibrates preferentially at certain resonant frequencies, called formants. Formant frequencies can be a good indicator of the caller's characteristics, such as sex, age, body size or individual identity. Although source–filter theory was originally proposed for mammals, formants are also observed in birds, and some bird species have been shown to perceive formants. In this study, we evaluated the hypotheses that formant frequencies (1) are an indicator of body size and (2) can be used for individual discrimination by a nocturnal bird species, the corncrake (Crex crex). We analysed calls of 104 males from Poland and the Czech Republic. Linear regression models showed that the males with a longer head (including the bill length) had a significantly lower formant dispersion and lower fourth and fifth formant frequencies. However, we found no significant relationships between body weight and any filter‐related acoustic measurement. The formant frequencies had smaller within‐ than between‐individual coefficients of variation. This characteristic of the formant frequencies implies a high potential for individual coding. A discriminant function analysis correctly assigned 94.8% of the calls to the caller based on formants from second to fifth. Our results indicated that the formant frequencies are a weak indicator of the body size of the sender in the corncrake. However, even weak dependence between body size and acoustic properties of signal may be important in natural selection process. Alternatively, such a weak dependence may be observed, because receivers ignore the acoustical, formant‐based cues of body size. Simultaneously, the formants might potentially provide acoustic cues to individual discrimination and could be used to census and monitoring tasks.  相似文献   

11.
Size, peripheral auditory tuning and target strength in noctuid moths   总被引:1,自引:0,他引:1  
We investigated relationships among body size, the frequency of peak auditory sensitivity (best frequency) and acoustic conspicuousness (measured as target strength) to simulated bat echolocation calls in a range of tympanate moths (Lepidoptera: Noctuidae). Audiograms of Amphipyra pyramidea Linnaeus, Agrotis exclamationis Linnaeus, Omphaloscelis lunosa Haworth and Xestia xanthographa Denis and Schiffermüller are described for the first time. Best frequency was inversely related to forewing length, an index of body size. Models predict that target strength falls off rapidly once wavelength (1/frequency) exceeds some defined feature of target size (e.g. circumference for spheres). We investigated how target strength varies in relation to target size and emitted frequency for simple targets (paper discs) and for moths. Target strength fell rapidly when target radius/wavelength < 2 for paper discs of similar size to many noctuid moths. Target strength fell rapidly below wing‐length/wavelength ratios of 2 in relatively small (O. lunosa, wing‐length = 15.2 ± 0.4 mm, best frequency = 45 kHz) and large (N. pronuba, wing‐length = 24.6 ± 0.8 mm, best frequency = 15 kHz) noctuid species, and decreased rapidly at frequencies below 25 kHz in both species. These target strengths were used to predict the detection distance of the moths by bat sonar between 10 and 55 kHz. Predicted detection distances of both species were maximal for fictive call frequencies of 20 kHz, and were reduced at lower frequencies due to decreased target strength and at higher frequencies by excess atmospheric attenuation. Both relatively large and small noctuid moths are therefore strong acoustic targets to bats that echolocate at relatively low frequencies. Bats may emit allotonic calls at low frequency because the costs of reduced detection range are smaller than the benefits of reduced audibility to moths. Because best frequency scales with body size and maximum detection distance is not very sensitive to body size, noctuid moths in the size range examined do not necessarily have best frequencies that would match the call frequencies of bats that may detect the moths at greatest distance precisely. Hence, best frequency may be constrained in part by body size.  相似文献   

12.
Some species face greater anthropogenic threats than others, and have increased need for scarce conservation resources. Yet how resources are allocated for conservation remains little known. I examined the distribution of research effort, an index of resource allocation, across Felidae (the cat family), a diverse, widely-distributed, and threatened taxon. I performed complete searches of the published literature for all cat species from 1986 to 2007, collecting a total of 2,462 papers, of which 926 represented in situ studies. Threat status, as ranked by a World Conservation Union report in 1996, was significantly correlated with geographical range size, with narrowly distributed species tending to be more at risk. Unlike in many other taxa, threat status was not correlated with body size. The number of total and in situ publications (“research effort”) per species was significantly and positively related to body size, but not to threat status or geographical range size. Research effort, rather than being distributed according to actual threat status, is highly skewed towards large species. However, the ratio of the number of studies on the 10 smallest cat species to the number on the 10 largest species has increased significantly since 1986. Yet many species remain severely understudied; I identify 14 cat species that are threatened and have <10 in situ publications each. These species critically require a greater share of the conservation research effort.  相似文献   

13.
Communication among birds constitutes the foundation of social interactions, and acoustic signals should evolve based on their efficiency to convey information. We examined the acoustic signals of an Amazonian bird assemblage by testing whether vocal allometry was the main driver in song evolution. We expected the acoustic parameters of the songs to follow general allometric rules, as the size of the vocal apparatus limits the vibration capacity of the syrinx. We tested whether smaller species use lower than expected frequencies due to environmental filtering by examining deviations from allometric relationships. Alternatively, small species could use higher than expected frequencies as a consequence of competitive processes that promote the use of vacant portions of the acoustic spectrum. We recorded birdsongs between 2013 and 2018 and measured three spectral parameters: the dominant frequency (FDOM), the minimum fundamental frequency (FFMIN) and the maximum fundamental frequency (FFMAX). We created an allometric model based on the acoustic pattern of the larger species and used it to predict the frequencies of the smaller species. We compared the frequency values expected by allometry with the observed parameters of the avian assemblage. We found that FDOM and FFMIN were higher than expected by allometry alone, supporting competition structuring in the acoustic ecology of the assemblage. The successful insertion of many species into the acoustic space is the result of long processes of natural selection, with our data highlighting the importance of competition in the vocal structuring of the community.  相似文献   

14.
Action potentials of neurons in cat dorsal and posteroventral cochlear nuclei were recorded extracellularly with glass microelectrodes while the head of the cat was exposed to microwave pulses at 915 MHz using a diathermy applicator. Response thresholds to acoustic tones, acoustic clicks, and microwave pulses were determined for auditory units with characteristic frequencies (CFs) from 278 Hz to 39.2 kHz. Tests with pulsatile stimuli were performed for durations of 20-700 mus, principally 20, 70, and 200 mus. Brainstem midline specific absorption rate (SAR) threshold was as small as 11.1 mW/g per pulse, and specific absorption (SA) threshold was a small as 0.6 muJ/g per pulse. Microwave thresholds were generally lower for CF less than 9 kHz, as were most acoustic thresholds. However, microwave threshold was only weakly related to click threshold and CF-tone threshold of each unit.  相似文献   

15.
16.
17.
Synopsis Regional Indo-Pacific fish faunas were examined for broad patterns in species size composition. An analysis of the New Guinea fauna, based on data compiled by Munro (1967), revealed that (i) maximum body size for a species tended to be larger in the more advanced teleost families; (ii) intrafamilial size variation (expressed by the standard deviation of log-transformed maximum body size) was significantly lower in the suborder Percoidei than in families drawn from broader taxonomic groupings; and (iii) size variation was significantly positively correlated with mean maximum body size and, in the percoids only, with the number of species in a family. An analysis of Marshall Islands reef fish assemblages, based mainly on the data of Matt & Strasburg (1960), indicated, that (i) mean maximum body size varied significantly between habitats and feeding categories, and tended to increase with openness of habitat and with trophic level; (ii) size variation within feeding categories increased with the number of species, but not significantly so; and (iii) confamilial species generally exhibited close similarities in terms of preferred habitats, trophic levels and foraging modes. These findings indicate that interspecific body size variation is both phylogenetically and ecologically constrained. Size variation within ecological categories (especially habitats) was much greater than within families. Thus, confamilial species generally did not exhibit the range of body sizes theoretically open to members of their habitat feeding guilds. The results are also consistent with aspects of resource-partitioning theory, notably that resource-utilisation breadth should increase with the number of coexisting species.  相似文献   

18.
Chemical secretions that are explicitly tied to species recognition may potentially be informative for phylogenetic reconstruction, especially when traditional morphological or molecular characters lack resolution. Anal sac secretions from 16 species within the family Felidae (order Carnivora) were chemically analysed and their utility as phylogenetic characters was assessed. Results were generally consistent across the different chemical data types (e.g. glycolipids, neutral lipids, or phospholipids). Two major clades were indicated, falling out according to body size: one for species greater than 30 kg (Panthera, Uncia, and Puma) and another for those less than 12 kg (remaining species). The primary solutions agreed with respect to the species pairs Prionailurus + Leptailurus, Caracal + Lynx, Oncifelis+Leopardus, Otocolobus+Felis, Panthera leo + P pardus, and P. tigris + Uncia. The only area of disagreement between chemical types was the positioning of the mountain lion (Puma concolor); however, this species appears to cluster with the cheetah (Acinonyx jubatus) in the Tjig cat clade. Although our solutions differ from six previously proposed hypotheses of felid phylogeny (morphological and molecular), the previous estimates all differ strongly amongst themselves reflecting the historical uncertainty regarding felid systematics. Phytogenies derived from the lipid data were very robust and decisive. Few equally most parsimonious trees were obtained, consistency indices were much higher than their expected values, and bootstrap and Bremer support values were also high. Thus, our findings illustrate the species-specific nature of chemical signals and their usefulness as phylogenetic characters.  相似文献   

19.
A correlative study using similar-sized males of the croaking gourami Trichopsis vittata was carried out to investigate whether sound characteristics influenced winning and if relative fighting ability was assessed by acoustic signals. Pair-wise contests between males were decided using lateral displays (LD) and vocalization in 26 cases, whereas 66 fights escalated to the frontal display (FD) phase. Physical fighting (mouth wrestling) and injuries were rarely observed in this species. Winners were generally larger than their opponents, and this effect was more pronounced in non-escalated than in escalated contests. Sounds of fight winners had a higher sound pressure level and also a lower dominant frequency. Neither number of acoustic signals nor duration of lateral and frontal displays were predictors of contest outcome. Acoustic measures were highly correlated to body weight. These results indicate that traits correlated with RHP (such as sound pressure level and dominant frequency) were predictors of the outcome, while traits not correlated with size (such as number and duration of displays) did not influence winning. In accordance with the main prediction of assessment models, the contest duration (cost) increased with the decrease in asymmetry of body length as well as sound pressure level. No such relationships were found for weight and dominant frequencies in LD- and FD-contests. The present study indicates that morphological and sound characteristics influence winning in fish. Moreover, the results suggest that croaking gouramis settle conflicts without damaging combats by assessing asymmetries in different components of RHP such as body weight and length, which may reliably be signalled by acoustic and visual assessment signals.  相似文献   

20.
In frogs, acoustic signals are the most important communication mechanism, since they may be used in several social contexts. In many anurans, the dominant frequency of calls is negatively related to body size, and in such species, this spectral parameter may be considered a good predictor of fighting ability. We experimentally investigated the vocal behavior of 30 male Hypsiboas goianus in central Brazil to answer the following questions: (1) Do males change the acoustic parameters of their calls in response to conspecific intruders? and (2) Does the acoustic behavior of H. goianus depend on the simulated body size of their opponent? We used playback of synthesized calls with high (3573 Hz) and low (3123 Hz) dominant frequency to simulate small and large males, respectively. Males reduced the rate of advertisement calling in response to playback but did not change vocal behavior in response to low-frequency and high-frequency playback. So, while males adjust their calling activity in response to simulated conspecifics, there was no evidence that they assess the fighting ability of their opponents through acoustic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号