首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
At irradiances close to those representing a sunny day, red and green leaves of poinsettia (Euphorbia pulcherrima) showed only minor differences in their photosynthetic capacities despite the strong differences in their pigment composition. However, contrarily to green leaves, red leaves did not show inhibition of photosynthesis at high irradiances, because anthocyanins protected chloroplasts from photoinhibition.  相似文献   

2.
Are plants precursors for methane?   总被引:1,自引:0,他引:1  
  相似文献   

3.
4.
Overcompensation by plants: Herbivore optimization or red herring?   总被引:21,自引:0,他引:21  
Summary The increased growth rates, higher total biomass, and increased seed production occasionally found in grazed or clipped plants are more accurately interpreted as the results of growth at one end of a spectrum of normal plant regrowth patterns, rather than as overcompensation, herbivore-stimulated growth, plantherbivore mutualisms, or herbivore enhanced fitness. Plants experience injury from a wide variety of sources besides herbivory, including fire, wind, freezing, heat, and trampling; rapid regrowth may have been selected for by any one of the many types of physical disturbance or extreme conditions that damage plant tissues, or by a combination of all of them. Rapid plant regrowth is more likely to have evolved as a strategy to reduce the negative impacts of all types of damage than as a strategy to increase fitness following herbivory above ungrazed levels. There is no evolutionary justification and little evidence to support the idea that plant-herbivore mutualisms are likely to evolve. Neither life history theory nor recent theoretical models provide plausible explanations for the benefits of herbivory.Several assumptions underlie all discussions of the benefits of herbivory: that plant species are able to evolve a strategy of depending on herbivores to increase their productivity and fitness; that herbivores do not preferentially regraze the overcompensating plants; that resources will be sufficient for regrowth; and that being larger is always better than being smaller. None of these assumptions is necessarily correct.  相似文献   

5.
We have reported that Arabidopsis might have genetically distinct circadian oscillators in multiple cell-types.1 Rhythms of CHLOROPHYLL A/B BINDING PROTEIN2 (CAB2) promoter activity are 2.5 h longer in phytochromeB mutants in constant red light and in cryptocrome1 cry2 double mutant (hy4-1 fha-1) in constant blue light than the wild-type.2 However, we found that cytosolic free Ca2+ ([Ca2+]cyt) oscillations were undetectable in these mutants in the same light conditions.1 Furthermore, mutants of CIRCADIAN CLOCK ASSOCIATED1 (CCA1) have short period rhythms of leaf movement but have arrhythmic [Ca2+]cyt oscillations. More important, the timing of cab1-1 (toc1-1) mutant has short period rhythms of CAB2 promoter activity (∼21 h) but, surprisingly, has a wild-type period for circadian [Ca2+]cyt oscillations (∼24 h). In contrast, toc1-2, a TOC1 loss-of-function mutant, has a short period of both CAB2 and [Ca2+]cyt rhythms (∼21 h). Here we discuss the difference between the phenotypes of toc1-1 and toc1-2 and how rhythms of CAB2 promoter activity and circadian [Ca2+]cyt oscillations might be regulated differently.Key words: circadian rhythms, TOC1, multiple oscillators, CAB2, Ca2+ signalling, arabidopsis, circadian [Ca2+]cyt oscillations, aequorin, luciferase, central oscillatorThe plant circadian clock controls a multitude of physiological processes such as photosynthesis, organ and stomatal movements and transition to reproductive growth. A plant clock that is correctly matched to the rhythms in the environment brings about a photosynthetic advantage that results in more chlorophyll, more carbon assimilation and faster growth.3 One of the first circadian clock mutants to be described in plants was the short period timing of cab1-1 (toc1-1), which was identified using the rhythms of luciferase under a CHLOROPHYLL A/B BINDING PROTEIN2 (CAB2) promoter as a marker for circadian period.4Circadian rhythms of both CAB2 promoter activity and cytosolic-free Ca2+ ([Ca2+]cyt) oscillations depend on the function of a TOC1, CIRCADIAN CLOCK ASSOCIATED1 and LATE ELONGATED HYPOCOTYL (TOC1/CCA1/LHY) negative feedback loop.5 In tobacco seedlings, CAB2:luciferase (CAB2:luc) rhythms and circadian [Ca2+]cyt oscillations can be uncoupled in undifferentiated calli.6 In Arabidopsis, we reported that toc1-1 has different periods of rhythms of CAB2 promoter activity (∼21 h) and circadian [Ca2+]cyt oscillations (∼24 h). The mutant allele toc1-1 has a base pair change that leads to a full protein that has an amino acid change from Ala to Val in the CCT domain (CONSTANS, CONSTANS-LIKE and TOC1).7 On the other hand, the mutant toc1-2 has short period of both rhythms of CAB2 promoter activity and circadian [Ca2+]cyt oscillations (∼21 h).1,7 This allele has a base pair change that results in changes to preferential mRNA splicing, resulting in a truncated protein with only 59 residues.7 Thus, the mutated CCT domain in toc1-1 might lead to the uncoupling of rhythms of CAB2 promoter activity and circadian [Ca2+]cyt oscillations while the absence of TOC1 in toc1-2 causes the shortening of the period of both rhythms. Indeed, zeitlupe-1 (ztl-1) mutants, that have higher levels of TOC1, have long periods of both rhythms of CAB2 promoter activity and circadian [Ca2+]cyt oscillations.1 The biochemical function of the CCT domain is unknown but it is predicted to play an important role in protein-protein interactions8 and nuclear localization.9One model to explain the period difference of CAB2:luc expression and circadian [Ca2+]cyt oscillation is that the toc1-1 mutation has uncoupled two oscillators in the same cell. Uncoupled oscillators are a predicted outcome of certain mutations in the recently described three-loop mathematical model.1011 However, both rhythms of TOC1 and CCA1/LHY expression, which would be in uncoupled oscillators accordingly to the model, are described as short-period in toc1-1.5 Thus, we have favored the model in which CAB2:luc expression and circadian [Ca2+]cyt oscillation are reporting cell-types with different oscillators that are affected differently by toc1-1.It is possible that TOC1 could interact with a family of cell-type specific proteins. The interaction of TOC1 with each member of the family could be affected differently by the mutation in the CCT domain (Fig. 1). Two-hybrid assays have shown that TOC1 interacts with PIF proteins (PHYTOCHROME INTERACTING FACTOR3 and PIF4) and related PIL proteins (PIF3-LIKE PROTEIN 1, PIL2, PIL5 and PIL6).8 In fact, TOC1 interaction with both PIF3 and PIL1 is stronger when the N-terminus receiver domain is taken out and the CCT domain is left intact.8 Thus, it is possible that TOC1 and different PIF/PIL proteins interact to regulate the central oscillator. This interaction could be impaired by the Ala to Val change in the toc1-1 mutation, leading to the period shortening. However, lines misexpressing PIF3, PIL1 and PIL6 showed no changes in their circadian rhythms.1216Open in a separate windowFigure 1Models of how the toc1-1 mutation might differently affect cell-type specific circadian oscillators. The single mutant toc1-1 have 21 h rhythms of CAB2 promoter activity and 24 h-rhythms of [Ca2+]cyt oscillations. The toc1-1 mutation is a single amino acid change in the CCT domain. The CCT domain is involved in protein-protein interaction and/or nuclear localization. We have proposed that circadian oscillators with different periods are present in different cell-types. The luminescence generated by CAB2 promoter-drived luciferase (from the CAB2:luc) is probably originated in the epidermis and mesophyll cells. In this model, we propose that the mutation on the CCT domain impairs the mutated TOC1 interaction with the hypothetical protein Z in these cells-types. In contrast, in other cell-types, the mutated TOC1 still interacts with other hypothetical proteins (W), despite the mutation in the CCT domain. In those cell-types, the circadian oscillator could still run with a 24 h period for [Ca2+]cyt rhythms (from the 35S:AEQ construct). One possible identity for Z and W are the members of the PHYTOCHROME INTERACTING FACTOR (PIF) related PIF3-LIKE (PIL) family.One possible explanation for the absence of alterations in the period of circadian rhythms in lines misexpressing PIF/PIL is that they only have roles in certain cell-types. As an example, PIL6 and PIF3 are involved with flowering time and hypocotyl growth in red light1215 while PIL1 and PIL2 are involved with hypocotyl elongation in shade-avoidance responses.16 Both hypocotyl growth and flowering time require cell-type specific regulation: vascular bundle cells in the case of the flowering time17 and the cells in the shoot in the case of the hypocotyl elongation.16 If TOC1 interaction with certain PIF/PIL is indeed cell-type specific, the mutated CCT domain found in the toc1-1 mutant could affect the clock in different ways, depending on the type of PIF/PIL protein expressed in each cell-type. Therefore, a question that arises is: which cell-types are sensitive to the toc1-1 mutation?There is evidence that CAB2 and CATALASE3 (CAT3) are regulated by two oscillators that respond differently to temperature signals.18 These genes might be regulated by two distinct circadian oscillators within the same tissues or a single cell.18 Interestingly, the spatial patterns of expression of CAB2 and CATALASE3 overlap in the mesophyll of the cotyledons.18 Furthermore, rhythms of CAB2 and CHALCONE SYNTHASE (CHS) promoter activity have different periods and they are equally affected by toc1-1 mutation.19 Whereas CAB2 is mainly expressed in the mesophyll cells, CHS is mainly expressed in epidermis and root cells.19 However, rhythms of AEQUORIN luminescence, which reports [Ca2+]cyt oscillation, were insensitive to toc1-1 mutation and appear to come from the whole cotyledon.20 One cell-type which is found in the whole cotyledon but is distinct from either mesophyll or epidermis cells is the vascular tissue and associated cells.Another approach to determine which cell-types are insensitive to toc1-1 mutation is to compare the toc1-1 and toc1-2 phenotypes. The period of circadian [Ca2+]cyt oscillations is not the only phenotype that is different in toc1-1 and toc1-2 mutants. Rhythms in CAB2 promoter activity in constant red light are short period in toc1-1 but arrhythmic in toc1-2.21,22 COLD, CIRCADIAN RHYTHM AND RNA BINDING 2/GLYCINE-RICH RNA BINDING PROTEIN 7 (CCR2/GRP7) is also arrhythmic in toc1-2 but short period in toc1-1 in constant darkness.7,22 When the length of the hypocotyl was measured for both toc1-1 and toc1-2 plants exposed to various intensities of red light, only toc1-2 had a clear reduction in sensitivity to red light. Therefore, toc1-2 has long hypocotyl when maintained in constant red light while hypocotyl length in toc1-1 is nearly identical to that in the wild-type.22 These differences may allow us to separate which cell-types are sensitive to the toc1-1 mutation and which not.Hypocotyl growth is regulated by a large number of factors such as light, gravity, auxin, cytokinins, ethylene, gibberellins and brassinosteroids.23 There is also a correlation between the size of the hypocotyl in red light and defects in the circadian signaling network.24,25 The fact that toc1-1 has different hypocotyl sizes from toc1-2 suggests that circadian [Ca2+]cyt oscillations could be involved in the light-dependent control of hypocotyl growth. Circadian [Ca2+]cyt oscillations might encode temporal information to control cell expansion and hypocotyl growth.2628 toc1-1 have short-period rhythms of hypocotyl elongation, which indicates that the cells in the hypocotyl have a 21 h oscillator.29 However, toc1-1 might also have a wild-type hypocotyl length in continuous red light because cells which generate the signal to regulate hypocotyl growth might have 24 h oscillators.The toc1-1 mutation was the first to be directly associated with the plant circadian clock, revitalizing the field of study.4 Now, by either uncoupling two feedback loops or by distinct TOC1 protein-protein interaction in different cell-types, toc1-1 has shown new properties of the circadian clock that may deepen our understanding of this system.  相似文献   

6.
Weil JH 《IUBMB life》2005,57(4-5):311-314
So far, plants have been genetically modified essentially to achieve resistance to herbicides, or to pathogens (mainly insects, or viruses), but resistance to abiotic stresses (such as cold, heat, drought, or salt) is also being studied. Genetically modified (GM) plants with improved nutritional qualities have more recently been developed, such as plants containing higher proportions of unsaturated fatty acids (omega-3 and omega-6) in their oil (to prevent cardio-vascular diseases), or containing beta-carotene as in the golden rice (to prevent vitamin A deficiency). Possible risks for human health (such as the production of allergenic proteins), or for the environment (such as the appearance of superweeds as a result from gene flow), should be carefully studied, and a science-based assessment of benefits vs. risks should be made on a case by case basis, both for GM plants and for plants obtained by conventional breeding methods.  相似文献   

7.

Background  

The terrestrial habitat was colonized by the ancestors of modern land plants about 500 to 470 million years ago. Today it is widely accepted that land plants (embryophytes) evolved from streptophyte algae, also referred to as charophycean algae. The streptophyte algae are a paraphyletic group of green algae, ranging from unicellular flagellates to morphologically complex forms such as the stoneworts (Charales). For a better understanding of the evolution of land plants, it is of prime importance to identify the streptophyte algae that are the sister-group to the embryophytes. The Charales, the Coleochaetales or more recently the Zygnematales have been considered to be the sister group of the embryophytes However, despite many years of phylogenetic studies, this question has not been resolved and remains controversial.  相似文献   

8.
9.
10.
Are blue-green algae a suitable food for zooplankton? An overview   总被引:2,自引:15,他引:2  
de Bernardi  R.  Giussani  G. 《Hydrobiologia》1990,200(1):29-41

One of the reasons suggested to explain the dominance of blue-greens in eutrophic lakes is that they are not used as food by zooplankton; and even when ingested, they are poorly utilized.

An increase in herbivores might be the expected result of biomanipulation of the aquatic food chain. This attempt at controlling the algae population is, however, destined to fail if zooplankton do not also utilize blue-greens as food. In this respect, a series of in-lake experimental results indicates that after the food chain has been biomanipulated, there is a decrease in blue-green density in periods when there is an increase in herbivores. Is this only an accidental result or are the two facts interrelated; in other words, can the decrease in the density of blue-greens be attributed to the increased use of them by zooplankton herbivores?

The suitability of blue-greens as food for zooplankton has been widely investigated by many authors with contrasting and inconclusive results. Two main factors seem to play important role in determining their suitability as food: the biochemical properties of the different species, or even different strains of the same species; and the shape and size of the colonies.

In particular, biochemical properties can result in toxic effects on zooplankton, while size and shape may strongly interfere with filtering, thus reducing the possibility of gathering food.

  相似文献   

11.
Common mycorrhizal networks (CMNs) that connect individual plants of the same or different species together play important roles in nutrient and signal transportation, and plant community organization. However, about 10% of land plants are non-mycorrhizal species with roots that do not form any well-recognized types of mycorrhizas; and each mycorrhizal fungus can only colonize a limited number of plant species, resulting in numerous non-host plants that could not establish typical mycorrhizal symbiosis with a specific mycorrhizal fungus. If and how non-mycorrhizal or non-host plants are able to involve in CMNs remains unclear. Here we summarize studies focusing on mycorrhizal-mediated host and non-host plant interaction. Evidence has showed that some host-supported both arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) hyphae can access to non-host plant roots without forming typical mycorrhizal structures, while such non-typical mycorrhizal colonization often inhibits the growth but enhances the induced system resistance of non-host plants. Meanwhile, the host growth is also differentially affected, depending on plant and fungi species. Molecular analyses suggested that the AMF colonization to non-hosts is different from pathogenic and endophytic fungi colonization, and the hyphae in non-host roots may be alive and have some unknown functions. Thus we propose that non-host plants are also important CMNs players. Using non-mycorrhizal model species Arabidopsis, tripartite culture system and new technologies such as nanoscale secondary ion mass spectrometry and multi-omics, to study nutrient and signal transportation between host and non-host plants via CMNs may provide new insights into the mechanisms underlying benefits of intercropping and agro-forestry systems, as well as plant community establishment and stability.  相似文献   

12.
The "rule" that individuals of nonindigenous plant species are larger where they are introduced than where they are native is not borne out in detailed comparisons of European species introduced to California or the Carolinas and species from California and the Carolinas introduced to Europe. On average, individuals of California species are taller in California than in Europe, while individuals of species native to Europe do not differ between Europe and California. Similarly, individuals of species from the Carolinas are, on average, taller in the Carolinas than in Europe, while individuals of European species are the same height in Europe and the Carolinas or, depending on the nature of the statistical analysis, taller in Europe. Results for herbaceous species only are substantially the same. Although there is no general tendency for species to be taller in their introduced ranges, many species are, in fact, taller in some regions where they are introduced than in their native ranges. Absence of natural enemies in the introduced range is one hypothesis for such observations, but other hypotheses are possible, and the specific reasons for height differences must be sought case by case. The absence of a general tendency casts doubt on the biological control strategy of introducing sequences of phytophages, none of which delivers a knockout blow to a weed, with the expectation that each successive phytophage will force the plant to devote more resources to defense and fewer to traits such as increased size that make it more competitive.  相似文献   

13.
The discovery of RNA interference (RNAi) has augmented our knowledge of gene regulation and presents a fascinating technology that has a great potential for application in genetic analysis, disease therapy, plant protection, and many other areas. In this review, we will focus on the biological functions of RNAi and its application in agriculture with a brief introduction to the history of its discovery and molecular mechanism. Supported by National Natural Sciences of China (Grant No. 30630008) and National Key Basic Research and Development Program of China (Grant No. 2007CB108800).  相似文献   

14.
Clonal traits such as clonal integration and storage functions of rhizomes or stolons may provide clonal plants with additional advantages against grazing over non-clonal plants. Here, we hypothesize that clonal species have a larger capacity for compensatory growth than co-occurring non-clonal species. In inland dunes in northern China, individual plants of two rhizomatous clonal species (Bromus ircutensis and Psammochloa villosa) and two non-clonal ones (Artemisia intramongolica and Astragalus melilotoides) were subjected to 0% (control), 50% (moderate) and 90% (heavy) shoot removal. Compared with control, heavy clipping greatly increased the relative growth rate in Bromus and Psammochloa, but decreased that in Artemisia and Astragalus. Heavy clipping affected above-ground dry weight and the number of modules more negatively in Artemisia and Astragalus than in Bromus and Psammochloa. These results support the hypothesis and suggest that clonal species are more tolerant to grazing than co-occurring non-clonal species in inland dunes.  相似文献   

15.
The present paper reports four new species of Chinese marine red algae belonging to Ahnfeltiales and Gigartinales. They are Ahnfeltia yinggehaiensis Xia et Zhang, Ahnfeltiopsis guangdongensis Xia et Zhang, Ahnfeltiopsis hainanensis Xia et Zhang, Ahnfeltiopsis masudai Xia et Zhang. Key words Ahnfeltia;A.yinggehaiensis;Ahnfeltiopsis;A.guangdongensis;A.hainanensis;A.masudai;Hainan;Guangdong;New species  相似文献   

16.
Red algae sometimes turn yellow, but few studies have been conducted on the yellowing of subtidal bed-forming species and on the relationship between the color and environmental factors. We examined the seasonal changes in thallus color of macroscopic subtidal red algae and nutrient levels as in shallow waters at two sites: Hirasawa (0 to 3 m in depth) and Okinoshima Island (0 to 6 m in depth), central Pacific coast of Japan from April 2011 to March 2012. Yellowed red algae were found at all depths of the two sites. At Hirasawa, the ratio of yellowed species among the red algae (yellowing ratio, YR) calculated with data on a total of 23 species (3 to 14 species month?1) was high in months in which nitrate nitrogen (NO3-N) was low (1.73 to 2.19 μmol L?1); in months with higher NO3-N (5.91 to 6.01 μmol L?1), YR was 0 but exceptionally high in April probably because of the duration of fine days. At Okinoshima Island, YR calculated with data on a total of 40 species (3 to 22 species month?1) was high from March to July (except May), in which NO3-N was low (0.93 to 2.16 μmol L?1), but low from October to February among the months with higher NO3-N (4.56 to 5.62 μmol L?1). Totally, YR was negatively correlated with nitrate concentrations and NO3-N, which supports the possibility to use the value of YR as an indicator of nitrogen level although attention should also be paid to light conditions.  相似文献   

17.
Invasive ants threaten native communities, in part, through their potential to disrupt mutualisms, yet invasive species may also facilitate native species. The red imported fire ant (Solenopsis invicta) is one of the most conspicuous invasive ants in North America and its high densities, combined with its potential to displace native ants, have led to concerns that it may disrupt ant-plant seed dispersal mutualisms. We examined the potential of fire ants to disperse seeds in the longleaf pine ecosystem by comparing the removal of elaiosome-bearing seeds by fire ants versus native ants. A total of 14 ant species were observed removing seeds, with fire ants responsible for more than half of all removals. While fire ants were the dominant seed remover in this system, they did not remove significantly more seeds than would be expected based on their population density (46% of ground-dwelling ants). Moreover, red imported fire ants were similar to native ants with respect to distance of seed movement and frequency of moving seeds back to the nest. Areas of higher fire ant densities were found to have greater rates of seed removal by ants without a subsequent drop in seed dispersal by native ants, suggesting that fire ant-invaded areas may experience overall higher levels of seed dispersal. Thus, fire ants may actually facilitate dispersal of elaiosome-bearing plant species in the longleaf pine ecosystem.  相似文献   

18.
Are microorganisms more effective than plants at competing for nitrogen?   总被引:18,自引:0,他引:18  
Plant scientists have long debated whether plants or microorganisms are the superior competitor for nitrogen in terrestrial ecosystems. Microorganisms have traditionally been viewed as the victors but recent evidence that plants can take up organic nitrogen compounds intact and can successfully acquire N from organic patches in soil raises the question anew. We argue that the key determinants of 'success' in nitrogen competition are spatial differences in nitrogen availability and in root and microbial distributions, together with temporal differences in microbial and root turnover. Consequently, it is not possible to discuss plant-microorganism competition without taking into account this spatiotemporal context.  相似文献   

19.
The supposition that rudists may have lived in association with endosymbiotic zooxanthellae has been tested by comparing the shell wall structure of the radiolitid genus Osculigera with the recent bivalve Corculum. It is concluded that the wall structure of the upper valve could have been able to provide endosymbiotic algae in the mantle with light.  相似文献   

20.
Classical biological control (the introduction of exotic natural enemies) is often advocated as a tool for managing invasive species. Here, we review the effectiveness of biocontrol and explore the factors that determine whether it is an appropriate response to the invasive species problem. Although there have been some successes, biocontrol is generally poorly evaluated and, in many cases, its impact is unknown. In particular, there is limited understanding of the nature of the invasive species problem and no clear targets against which 'success' can be gauged. In addition, exotic natural enemies could act as invasive species in their own right. To improve the role of biocontrol in invasive species management, we need a better ecological understanding of the impacts of both the biocontrol agents and the target invasive species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号