首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arginase specific activity in the fibroblasts from three hyperargininemia patients is similar to that in controls. Kinetic features, pH-optimum, effect of Mn++, apparent Km values and DEAE- and CM-cellulose chromatography isozymes are identical in either cell type. The arginase gene functional in fibroblasts may be unrelated to the cause of hyperargininemia in humans. The latter mutation may solely affect the arginase of erythrocytes.  相似文献   

2.
Arginase deficiency is an inborn error of the last step in the urea cycle and leads to profound hyperargininemia. The enzyme deficiency has been demonstrated in the liver and red blood cells. In cultured patient fibroblasts, the activity is normal. Arginase exists in multiple molecular forms only one of which is missing in hyperargininemic patients. In fibroblasts, three arginase isoenzymes can be demonstrated by DEAE-cellulose column chromatography, two by electrophoresis and by immunoprecipitation methods. From the present data, it is improbable that part of the A1 isoenzyme in fibroblasts originates from fetal calf serum arginase which supplements the culture media. None of the techniques for the separation and analyses of arginase isoenzyme allows to differentiate between the normal and the arginase-deficient phenotype. A possible explanation would be that the defect in A1 arginase observed in the liver is the result of a regulatory defect.  相似文献   

3.
Arginase deficiency is a rare autosomal recessive disorder resulting from a loss of the liver arginase isoform, arginase 1 (ARG1), which is the final step in the urea cycle for detoxifying ammonia. ARG1 deficiency leads to hyperargininemia, characterized by progressive neurological impairment, persistent growth retardation and infrequent episodes of hyperammonemia. Using the Cre/loxP-directed conditional gene knockout system, we generated an inducible Arg1-deficient mouse model by crossing “floxed” Arg1 mice with CreERT2 mice. The resulting mice (Arg-Cre) die about two weeks after tamoxifen administration regardless of the starting age of inducing the knockout. These treated mice were nearly devoid of Arg1 mRNA, protein and liver arginase activity, and exhibited symptoms of hyperammonemia. Plasma amino acid analysis revealed pronounced hyperargininemia and significant alterations in amino acid and guanidino compound metabolism, including increased citrulline and guanidinoacetic acid. Despite no alteration in ornithine levels, concentrations of other amino acids such as proline and the branched-chain amino acids were reduced. In summary, we have generated and characterized an inducible Arg1-deficient mouse model exhibiting several pathologic manifestations of hyperargininemia. This model should prove useful for exploring potential treatment options of ARG1 deficiency.  相似文献   

4.
A method of introducing enzymes into the cytoplasm of fibroblasts in culture is described. Erythrocytes obtained from normal and arginase-deficient individuals were loaded with arginase in vitro and fused to arginase-deficient mouse and human fibroblasts. Erythrocyte ghost-fibroblast fusion was quantified by a 14C-radioactive assay for arginase in solubilized fibroblasts. Fusion was successfully induced by Sendai virus and also by the isolated glycoproteins of Sendai virus. After fusion the arginase activity associated with the Fibroblasts was 700--1500 U of arginase/mg of cell protein; this enzyme activity was 5- to 10-times higher than that normally found in the fibroblasts. The enrichment in arginase activity indicated that between four and ten ghosts had fused per fibroblast. The use of isolated viral proteins to mediate the transfer of enzymes into cells in vivo might alleviate clinical complications inherent in the use of whole virions. The enzyme replacement technique described in this report for a hyperargininemic model cell system should be applicable to the group of inborn errors of metabolism characterized by deficiency of an enzyme normally localized in the cytoplasmic compartment of cells.  相似文献   

5.
An intraperitoneal injection of an exogenous delta-sleep inducing peptide (DSIP) at a dose of 12 g/100 g body weight shifted the prooxidant–antioxidant balance of free radical process (FRP) in tissues and erythrocytes of rats: the activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase) and the concentrations of antioxidants (reduced glutathione in particular) increased. The DSIP stimulated the myeloperoxidase activity in blood neutrophils and had no effect on the activity of xanthine oxidase, a prooxidant enzyme, in the brain and liver. Cold stress displaced the prooxidant–antioxidant balance by increasing the xanthine oxidase activity in tissues and decreasing the myeloperoxidase activity in blood neutrophils; it also inhibited the enzyme antioxidant activities in tissues and erythrocytes that was neutralized by an increased ceruloplasmin activity in blood plasma and by an elevated level of antioxidants in rat blood and tissues. Preliminary administration of DSIP to animals exposed to cold stress restored the prooxidant–antioxidant balance: it normalized the myeloperoxidase activity in blood neutrophils, decreased the xanthine oxidase activity, and increased the activity of antioxidant enzymes in tissues and erythrocytes restoring the antioxidant level. The molecular regulation mechanism of free radical processes by DSIP in tissues under stressful conditions is discussed.  相似文献   

6.
The influences of hydrocortisone and thyroxine on the developmental changes of arginase activity in intestine, kidney, and brain of suckling rats were studied. A single injection of hydrocortisone (50 mg/kg) into rats aged 9 days evoked premature increase of jejunal arginase activity due to precocious formation of arginase A4. Arginase A4 can be detected about 48 hr after hydrocortisone injection, whereas in intact rats the enzyme appears in the intestinal mucosa on the 19th-21st days of postnatal life. After hydrocortisone administration to rats aged 6 days, a similar pattern of arginase activity in jejunum was observed. Under the same conditions, the influence of hydrocortisone on kidney arginase was weaker. The hormone did not have any influence on the activity of brain arginase. Daily injection of thyroxine (2 mg/kg) to 6-day-old rats (for 6 consecutive days) caused a precocious increase of the arginase activity in intestine. Under the same conditions, only a slight increase of the arginase activity was observed in kidney, whereas in brain the activity was unaffected.  相似文献   

7.
In macrophages, L-arginine can be used by NO synthase and arginase to form NO and urea, respectively. Therefore, activation of arginase may be an effective mechanism for regulating NO production in macrophages through substrate competition. Here, we examined whether IL-13 up-regulates arginase and thus reduces NO production from LPS-activated macrophages. The signaling molecules involved in IL-13-induced arginase activation were also determined. Results showed that IL-13 increased arginase activity through de novo synthesis of the arginase I mRNA and protein. The activation of arginase was preceded by a transient increase in intracellular cAMP, tyrosine kinase phosphorylation, and p38 mitogen-activated protein kinase (MAPK) activation. Exogenous cAMP also increased arginase activity and enhanced the effect of IL-13 on arginase induction. The induction of arginase was abolished by a protein kinase A (PKA) inhibitor, KT5720, and was down-regulated by tyrosine kinase inhibitors and a p38 MAPK inhibitor, SB203580. However, inhibition of p38 MAPK had no effect on either the IL-13-increased intracellular cAMP or the exogenous cAMP-induced arginase activation, suggesting that p38 MAPK signaling is parallel to the cAMP/PKA pathway. Furthermore, the induction of arginase was insensitive to the protein kinase C and p44/p42 MAPK kinase inhibitors. Finally, IL-13 significantly inhibited NO production from LPS-activated macrophages, and this effect was reversed by an arginase inhibitor, L-norvaline. Together, these data demonstrate for the first time that IL-13 down-regulates NO production through arginase induction via cAMP/PKA, tyrosine kinase, and p38 MAPK signalings and underline the importance of arginase in the immunosuppressive activity of IL-13 in activated macrophages.  相似文献   

8.
《遗传学报》2020,47(3):145-156
Arginine catabolism involves enzyme-dependent reactions in both mitochondria and the cytosol,defects in which may lead to hyperargininemia,a devastating developmental disorder.It is largely unknown if defective arginine catabolism has any effects on mitochondria.Here we report that normal arginine catabolism is essential for mitochondrial homeostasis in Caenorhabditis elegans.Mutations of the arginase gene argn-1 lead to abnormal mitochondrial enlargement and reduced adenosine triphosphate(ATP) production in C elegans hypodermal cells.ARGN-1 localizes to mitochondria and its loss causes arginine accumulation,which disrupts mitochondrial dynamics.Heterologous expression of human ARGl or ARG2 rescued the mitochondrial defects of argn-1 mutants.Importantly,genetic inactivation of the mitochondrial basic amino acid transporter SLC-25A29 or the mitochondrial glutamate transporter SLC-25A18.1 fully suppressed the mitochondrial defects caused by argn-1 mutations.These findings suggest that mitochondrial damage probably contributes to the pathogenesis of hyperargininemia and provide clues for developing therapeutic treatments for hyperargininemia.  相似文献   

9.
The effects of agmatine on oxidative and nonoxidative metabolic pathways of L-arginine were investigated both in plasma and erythrocytes under experimental diabetes mellitus. It was indicated, that agmatine prevents the development of oxidative-nitrosative stress in diabetic rats. After treatment of animals by agmatine NO-synthase methabolic pathway of L-arginine is depressed whereas arginase one increases in erythrocytes of rats with experimental diabetes mellitus.  相似文献   

10.
Hemoglobin affinity to oxygen, enzyme activity and metabolite concentration of carbohydrate metabolism were determined in erythrocytes of rats which were administered insulin solution. A valid decrease of the hemoglobin value P50 (pressure of hemoglobin half-saturation with oxygen), as well as a decrease of the enzyme activity of 2,3-diphosphoglycerate shunt and increase of the activity of regulatory glycolysis enzymes--hexokinase and pyruvate kinase in erythrocytes with multiple introduction of hormones to animals have been established. Such changes in rat erythrocytes were registered with the simultaneous effect of insulin and hypoxic hypoxia evoked by the "lift" of rats in the altitude chamber to the conditional altitude of 9000 m. It is found out that preliminary injection of insulin considerably increases survivability of rats under hypoxic hypoxia at great altitudes.  相似文献   

11.
Arginases catalyze the divalent cation-dependent hydrolysis of L-arginine to urea and L-ornithine. There is significant interest in using arginase as a therapeutic anti-neogenic agent against L-arginine auxotrophic tumors and in enzyme replacement therapy for treating hyperargininemia. Both therapeutic applications require enzymes with sufficient stability under physiological conditions. To explore sequence elements that contribute to arginase stability we used SCHEMA-guided recombination to design a library of chimeric enzymes composed of sequence fragments from the two human isozymes Arginase I and II. We then developed a novel active learning algorithm that selects sequences from this library that are both highly informative and functional. Using high-throughput gene synthesis and our two-step active learning algorithm, we were able to rapidly create a small but highly informative set of seven enzymatically active chimeras that had an average variant distance of 40 mutations from the closest parent arginase. Within this set of sequences, linear regression was used to identify the sequence elements that contribute to the long-term stability of human arginase under physiological conditions. This approach revealed a striking correlation between the isoelectric point and the long-term stability of the enzyme to deactivation under physiological conditions.  相似文献   

12.
L-Arginine, the sole substrate for the nitric oxide (NO) synthase (NOS) enzyme in producing NO, is also a substrate for arginase. We examined normal feline hearts and hearts with compensated left ventricular (LV) hypertrophy (LVH) produced by ascending aorta banding. Using Western blot analysis, we examined the abundance of arginase isozymes in crude homogenates and isolated cardiac myocytes obtained from the LVs of normal and LVH hearts. We examined the functional significance of myocyte arginase via measurement of shortening and intracellular calcium in isolated myocytes in the presence and absence of boronoethyl chloride (BEC), a specific pharmacological inhibitor of arginase. Both arginase I and II were detected in crude myocardial homogenates, but only arginase I was present in isolated cardiac myocytes. Arginase I was downregulated in LVH compared with normal. Inhibition of arginase with BEC reduced fractional shortening, maximal rate of shortening (+dL/dt) and relengthening (-dL/dt), and the peak of the free cytosolic calcium transient in normal myocytes but did not affect these parameters in LVH myocytes. These negative inotropic actions of arginase inhibition were associated with increases in cGMP generation. These studies indicate that only arginase I is present in cardiac myocytes where it tends to limit NO and cGMP production with the effect of supporting basal contractility. In experimental LVH induced by pressure overload, our studies demonstrate reduced arginase I expression and reduced functional significance, allowing greater arginine substrate availability for NO/cGMP signaling.  相似文献   

13.

Background

Pharmacological inhibition of arginase and remote ischemic perconditioning (RIPerc) are known to protect the heart against ischemia/reperfusion (IR) injury.

Purpose

The objective of this study was to investigate whether (1) peroxynitrite-mediated RhoA/Rho associated kinase (ROCK) signaling pathway contributes to arginase upregulation following myocardial IR; (2) the inhibition of this pathway is involved as a cardioprotective mechanism of remote ischemic perconditioning and (3) the influence of diabetes on these mechanisms.

Methods

Anesthetized rats were subjected to 30 min left coronary artery ligation followed by 2 h reperfusion and included in two protocols. In protocol 1 rats were randomized to 1) control IR, 2) RIPerc induced by bilateral femoral artery occlusion for 15 min during myocardial ischemia, 3) RIPerc and administration of the nitric oxide synthase inhibitor NG-monomethyl-L-arginine (L-NMMA), 4) administration of the ROCK inhibitor hydroxyfasudil or 5) the peroxynitrite decomposition catalyst FeTPPS. In protocol 2 non-diabetic and type 1 diabetic rats were randomosed to IR or RIPerc as described above.

Results

Infarct size was significantly reduced in rats treated with FeTPPS, hydroxyfasudil and RIPerc compared to controls (P<0.001). FeTPPS attenuated both ROCK and arginase activity (P<0.001 vs. control). Similarly, RIPerc reduced arginase and ROCK activity, peroxynitrite formation and enhanced phospho-eNOS expression (P<0.05 vs. control). The cardioprotective effect of RIPerc was abolished by L-NMMA. The protective effect of RIPerc and its associated changes in arginase and ROCK activity were abolished in diabetes.

Conclusion

Arginase is activated by peroxynitrite/ROCK signaling cascade in myocardial IR. RIPerc protects against IR injury via a mechanism involving inhibition of this pathway and enhanced eNOS activation. The beneficial effect and associated molecular changes of RIPerc is abolished in type 1 diabetes.  相似文献   

14.
The authors attempted at experimental elimination of sequestration function of the spleen in Wistar rats using an i.v. injection of ethyl palmitate emulsion, both in "hypersplenic" animals being long-term applied i.p. methyl cellulose solution, and in control rats. In the rats clearance of 51Cr-labelled and thermally damaged erythrocytes from blood was examined and their sequestration in the spleen and liver followed. The ethyl palmitate injection resulted in both experimental groups in a significant decrease of the erythrocyte counts sequestrated in the spleen, and significant prolongation of the elimination half time for thermally damaged erythrocytes from the blood.  相似文献   

15.
The erythrocytes of Wistar rats, subjected to heating at 40 degrees C (4 times, each heating lasting 40 min.) were found to be more immunogenic in mice than the erythrocytes of intact rats. The immunization of intact Wistar rats, in a single injection, with syngeneic erythrocytes obtained from the heated animals did not induce immunological response reaction, whereas 5 injections of these erythrocytes caused an increase in the number of rosette-forming cells. The injection of syngeneic erythrocytes obtained from the heated rats to intact animals also stimulated the development of immune response to sheep erythrocytes.  相似文献   

16.
The separation of cells with different ages from erythrocyte populations of adult rats and young or adult chickens have been achieved by counter-current distribution (CCD). A thin-layer CCD apparatus has been employed. Erythrocytes from blood samples taken at different times after 59Fe i.p. injection were separated by CCD. By compilation in a "composite curve" of the hemoglobin and radioactivity CCD profiles obtained for each erythrocyte population, the distribution of cells according to age can be inferred. Young erythrocytes of rats are located at the right part of the CCD curves, while older cells are distributed towards the left. An opposite distribution has been found for erythrocytes from adult or young chickens. As a first attempt for the application of the CCD procedure to the assay of enzyme activities, it was found a decrease in phytase activity as the age of chicken erythrocytes increases and an increase in phosphoglycerate kinase and phosphofructokinase as the age of rat erythrocytes increases.  相似文献   

17.
The developmental patterns for mouse liver and kidney arginase were measured by a sensitive radioactive assay from day 8 of gestation until adulthood. On day 8 high arginase activity is generally distributed throughout early embryos. Then, as development proceeds, the arginase activity drops rapidly in liver and kidney, apparently because of mass increase unaccompanied by net arginase synthesis. Suddenly, on day 12 of gestation in liver and on day 16 in kidney, arginase activity begins to accelerate toward adult values.In order to study the mechanisms controlling arginase acceleration, 12- and 13-day fetal livers were explanted to organ cultures containing various exogenous chemicals, and subsequently assayed for arginase. Physiological concentrations of hydrocortisone causes the arginase activity to rise more than 100-fold to adult levels within 4 days in culture. Glucagon, thyroxine, and dibutyryl adenosine-3′-5′-cyclic phosphate have no effect in this system. Experiments with cycloheximide, actinomycin D, and 5-fluorodeoxyuridine suggest that the hydrocortisone response is dependent upon protein and RNA synthesis but independent of DNA synthesis.  相似文献   

18.

Introduction

Endothelial dysfunction (ED) participates to atherogenesis associated to rheumatoid arthritis. We recently reported increased arginase activity/expression in vessels from adjuvant-induced arthritis (AIA) rats. In the present study, we investigated the effects of a curative treatment with the arginase inhibitor Nw-hydroxy-nor-L-arginine (nor-NOHA) on vascular dysfunction in AIA rats.

Methods

AIA rats were treated with nor-NOHA (40 mg/kg/d, ip) for 21 days after the onset of arthritis. A group of untreated AIA rats and a group of healthy rats served as controls. ED was assessed by the vasodilatory effect of acetylcholine (Ach) on aortic rings. The role of superoxide anions, prostanoids, endothelium-derived hyperpolarizing factor (EDHF) and nitric oxide synthase (NOS) pathway was studied. Plasma levels of IL-6 and vascular endothelial growth factor (VEGF) were determined by ELISA kits. Arthritis severity was estimated by a clinical, radiological and histological analysis.

Results

Nor-NOHA treatment fully restored the aortic response to Ach to that of healthy controls. The results showed that this beneficial effect is mediated by an increase in NOS activity and EDHF and reduced superoxide anion production as well as a decrease in the activity of cyclooxygenase (COX)-2, thromboxane and prostacyclins synthases. In addition, nor-NOHA decreased IL-6 and VEGF plasma levels in AIA rats. By contrast, the treatment did not modify arthritis severity in AIA rats.

Conclusions

The treatment with an arginase inhibitor has a potent effect on ED in AIA independently of the severity of the disease. Our results suggest that this new pharmacological approach has the potential as a novel add-on therapy in the treatment of RA.  相似文献   

19.
It has been found that, in Neurospora crassa, arginine synthesized from exogenous citrulline was not as effectively hydrolyzed as exogenous arginine. This was explained by the observed inhibition of arginase in vitro and in vivo by citrulline. The high arginine pool formed from exogenous citrulline feedback inhibits the arginine pathway. These two factors allow exogenous citrulline to be used adventitiously and efficiently as an arginine source. Finally, it was found that ornithine was a strong inhibitor of arginase. This suggests that the characteristically high ornithine pool of minimal cultures of Neurospora may act to control a potentially wasteful catabolism of endogenous arginine by arginase.  相似文献   

20.
The present study investigated the ability of the arginine analog L-NAME (N(omega)-Nitro-L-arginine methyl ester) to modulate the activity of arginase. L-NAME inhibited the activity of arginase in lysates from rat colon cancer cells and liver. It also inhibited the arginase activity of tumor cells in culture. Furthermore, in vivo treatment of rats with L-NAME inhibited arginase activity in tumor nodules and liver, and the effect persisted after treatment ceased. The effect of L-NAME on arginase requires consideration when it is used in vivo in animal models with the aim of inhibiting endothelial NO-synthase, another enzyme using arginine as substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号