首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Congenital multiple ocular defects (MOD) in Japanese black cattle is a hereditary ocular disorder with an autosomal recessive manner of inheritance, showing developmental defects of the lens, retina, and iris, persistent embryonic eye vascularization, and microphthalmia. In the present study, we mapped the locus responsible for the disorder by linkage analysis using 240 microsatellite markers covering the entire bovine genome and an inbred pedigree obtained from commercial herds. The linkage analysis demonstrated a significant linkage between the disorder locus and markers on the proximal region of bovine Chromosome (BTA) 18 with the maximum LOD score of 5.1. Homozygosity mapping using the haplotype of the linked markers further refined the critical region. The results revealed the localization of the locus responsible for MOD in an approximately 6.6-cM region of BTA18. Comparison of published linkage and radiation hybrid (RH) maps of BTA18 with its evolutionary ortholog, human Chromosome (HSA) 16, revealed several potential candidate genes for the disorder including the MAF and FOXC2 genes.  相似文献   

2.
The aspermia mutation of the rat exhibits male sterility caused by arrest of spermatogenesis, which is controlled by an autosomal single recessive gene (as). The as locus has been mapped on rat chromosome 12. We recently identified a causative mutation for the aspermia phenotype of the as homozygous rats in the gene encoding Fkbp6, a member of the immunophilins FK506 binding proteins. In this paper, we report the fine mapping of the as locus by linkage analysis combined with comparative mapping using rat, mouse, and human genomic sequences and expression analysis of genes located in the as region. We constructed a fine linkage map of the region of rat chromosome 12 close to the as locus by using 13 microsatellite markers and localized the as locus to a 1.0-cM interval. Comparison of the linkage map with physical maps of rat, mouse, and human refined the as critical region in a 2.2-Mb segment of the rat physical map between the D12Nas3 and D12Nas8 genes, which includes the Fkbp6 gene. A centromeric part of this segment corresponds to the region commonly deleted in Williams syndrome, a human complex developmental disorder, on human chromosome 7q11.23. The expression analysis of 23 genes located on the 2.2-Mb segments in various mouse tissues identified genes exclusively or strongly expressed in the testis.  相似文献   

3.
4.
Segments of the long arm of human chromosome 21 are conserved, centromere to telomere, in mouse chromosomes 16, 17, and 10. There have been 28 genes identified in human chromosome 21 between TMPRSS2, whose orthologue is the most distal gene mapped to mouse chromosome 16, and PDXK, whose orthologue is the most proximal gene mapped to mouse chromosome 10. Only 6 of these 28 genes have been mapped in mouse, and all are located on chromosome 17. To better define the chromosome 17 segment and the 16 to 17 transition, we used a combination of mouse radiation hybrid panel mapping and physical mapping by mouse: human genomic sequence comparison. We have determined the mouse chromosomal location of an additional 12 genes, predicted the location of 7 more,and defined the endpoints of the mouse chromosome 17 region. The mouse chromosome 16/chromosome 17 evolutionary breakpoint is between human genes ZNF295 and UMODL1, showing there are seven genes in the chromosome 16 segment distal to Tmprss2. The chromosome 17/chromosome 10 breakpoint seems to have involved a duplication of the gene PDXK, which on chromosome 21 lies immediately distal to the KIAA0179 gene. These data suggest that there may be as few as 21 functional genes in the mouse chromosome 17 segment. This information is important for defining existing and constructing more complete mouse models of Down syndrome.  相似文献   

5.
Five sequence-related genes encoding four adrenergic receptors and a serotonin receptor were localized to specific regions of four mouse chromosomes with respect to 11 other genetic markers. Linkage was established by the analysis of the haplotypes of 114 interspecific backcross mice. Adra2r (alpha 2-C10) and Adrb1r (beta 1) receptors mapped to the distal region of mouse chromosome 19. These genes were separated by 2.6 +/- 1.5 cM in a segment of mouse chromosome 19 that has a similar organization of these genes on the long arm of human chromosome 10. The Adra1r (alpha 1B), Adrb2r (beta 2), and Htra1 (5HT1A) genes mapped to proximal mouse chromosome 11, proximal mouse chromosome 18, and distal mouse chromosome 13, respectively. The organization of genes linked to these loci on regions of the three mouse chromosomes is consistent with the organization of homologous human genes on human chromosome 5. These findings further define the relationship of linkage groups conserved during the evolution of the mouse and human genomes. We have identified a region that may have been translocated during evolution and suggest that the human genomic organization of adrenergic receptors more closely resembles that of a putative primordial ancestor.  相似文献   

6.
Several constitutional chromosomal rearrangements occur on human chromosome 17. Patients who carry constitutional deletions of 17q21.3-q24 exhibit distinct phenotypic features. Within the deletion interval, there is a genomic segment that is bounded by the myeloperoxidase and homeobox B1 genes. This genomic segment is syntenically conserved on mouse chromosome 11 and is bounded by the mouse homologs of the same genes (Mpo and HoxB1). To attain functional information about this syntenic segment in mice, we have generated a 6.9-Mb deletion [Df(11)18], the reciprocal duplication [Dp(11)18] between Mpo and Chad (the chondroadherin gene), and a 1.8-Mb deletion between Chad and HoxB1. Phenotypic analyses of the mutant mouse lines showed that the Dp(11)18/Dp(11)18 genotype was responsible for embryonic or adolescent lethality, whereas the Df(11)18/+ genotype was responsible for heart defects. The cardiovascular phenotype of the Df(11)18/+ fetuses was similar to those of patients who carried the deletions of 17q21.3-q24. Since heart defects were not detectable in Df(11)18/Dp(11)18 mice, the haplo-insufficiency of one or more genes located between Mpo and Chad may be responsible for the abnormal cardiovascular phenotype. Therefore, we have identified a new dosage-sensitive genomic region that may be critical for normal heart development in both mice and humans.  相似文献   

7.
More than 375,000 BAC-end sequences (BES) of the CHORI-243 ovine BAC library have been deposited in public databases. blastn searches with these BES against HSA18 revealed 1806 unique and significant hits. We used blastn-anchored BES for an in silico prediction of gene content and chromosome assignment of comparatively mapped ovine BAC clones. Ovine BES were selected at approximately 1.3-Mb intervals of HSA18 and incorporated into a human-sheep comparative map. An ovine 5000-rad whole-genome radiation hybrid panel (USUoRH5000) was typed with 70 markers, all of which mapped to OAR23. The resulting OAR23 RH map included 43 markers derived from BES with high and unique BLAST hits to the sequence of the orthologous HSA18, nine EST-derived markers, 16 microsatellite markers taken from the ovine linkage map and two bovine microsatellite markers. Six new microsatellite markers derived from the 43 mapped BES and the two bovine microsatellite markers were linkage-mapped using the International Mapping Flock (IMF). Thirteen additional microsatellite markers were derived from other ovine BES with high and unique BLAST hits to the sequence of the orthologous HSA18 and also positioned on the ovine linkage map but not incorporated into the OAR23 RH map. This resulted in 24 markers in common and in the same order between the RH and linkage maps. Eight of the BES-derived markers were mapped using fluorescent in situ hybridization (FISH), to thereby align the RH and cytogenetic maps. Comparison of the ovine chromosome 23 RH map with the HSA18 map identified and localized three major breakpoints between HSA18 and OAR23. The positions of these breakpoints were equivalent to those previously shown for syntenic BTA24 and HSA18. This study presents evidence for the usefulness of ovine BES when constructing a high-resolution comprehensive map for a single sheep chromosome. The comparative analysis confirms and refines knowledge about chromosomal conservation and rearrangements between sheep, cattle and human. The constructed RH map demonstrates the resolution and utility of the newly constructed ovine RH panel.  相似文献   

8.
Loci from human chromosome 12 were mapped in cattle to compare the gene order between species. Polymorphisms were detected in cattle in six loci that had been mapped with high precision in humans. Four of these loci, LALBA, SLC2A3, SYT1, and TPI1, mapped to bovine chromosome 5, and one, PLA2G1B, mapped to bovine chromosome 17. The sixth locus, SLC2A3L, due to a fragment produced by the SLC2A3 primers, maps to the telomeric region of BTA18. The differences in gene order between human chromosome 12 and cattle chromosome 5, when these loci are added to others already mapped in cattle, show evidence of significant rearrangement in gene order requiring several evolutionary events. There is also evidence in cattle chromosome 5 of the interspersal of material conserved on human chromosome 22 into the material conserved on human chromosome 12, consistent with ZOOFISH analyses. This analysis indicates that the larger block near the centromere is conserved on the long arm of human chromosome 12 and the smaller block near the telomere is conserved as part of the short arm of human chromosome 12. The level of variation detected in the amplified cattle DNA was approximately 1 variant per 464 nucleotides of haploid DNA using single-strand conformation polymorphism analysis. This corresponds to a per individual level of 1 variant per 1, 961 nucleotides of haploid DNA. This confirms lower genetic variability in cattle compared to humans but indicates the potential for millions of single nucleotide polymorphisms in cattle.  相似文献   

9.
Current comparative maps between human chromosome 21 and the proximal part of cattle chromosome 1 are insufficient to define chromosomal rearrangements because of the low density of mapped genes in the bovine genome. The recently completed sequence of human chromosome 21 facilitates the detailed comparative analysis of corresponding segments on BTA1. In this study eight bovine bacterial artificial chromosome (BAC) clones containing bovine orthologues of human chromosome 21 genes, i.e. GRIK1, CLDN8, TIAM1, HUNK, SYNJ1, OLIG2, IL10RB, and KCNE2 were physically assigned by fluorescence in situ hybridization (FISH) to BTA1q12.1-q12.2. Sequence tagged site (STS) markers derived from these clones were mapped on the 3000 rad Roslin/Cambridge bovine radiation hybrid (RH) panel. In addition to these eight novel markers, 17 known markers from previously published BTA1 linkage or RH maps were also mapped on the Roslin/Cambridge bovine RH panel resulting in an integrated map with 25 markers of 355.4 cR(3000) length. The human-cattle genome comparison revealed the existence of three chromosomal breakpoints and two probable inversions in this region.  相似文献   

10.
The growth hormone gene locus (GH) of cattle and sheep was mapped to a chromosomal region in each species by using in situ hybridization. The probe employed was an 830-bp cDNA sequence from the ovine growth hormone gene. Based on QFQ chromosome preparations, our results show that the GH locus is on cattle chromosome 19 in the region of bands q26-qter and in sheep on chromosome region 11q25-qter. The GH assignments together with previous localizations of type I cytokeratin genes (KRTA) and one homeobox (HOX2) gene in cattle and one type I cytokeratin gene (KRTA) in sheep identify a strongly conserved chromosomal segment on human chromosome 17, bovine chromosome 19, and sheep chromosome 11.  相似文献   

11.
12.
Genome-wide scans have mapped economically important quantitative trait loci (QTL) for mastitis susceptibility in dairy cattle at the telomeric end of bovine chromosome 18 (BTA18). In order to increase the density of markers in this chromosomal region and to improve breakpoint resolution in the human-bovine comparative map, this study describes the chromosomal assignment of seven newly developed gene-associated markers and five microsatellites and eight previously mapped sequence tagged site markers near these QTL. The orientation of KCNJ14, BAX, CD37, NKG7, LIM2, PRKCG, TNNT1, MGC2705, RPL28, EPN1, ZNF582, ZIM2, STK13, ZNF132 and SLC27A5 on the 3000-rad radiation hybrid (RH) map of BTA18 is homologous to the organization found on the corresponding 10 Mbp of human chromosome 19q (HSA19q). The resulting bovine RH map with a length of 20.9 cR spans over about 11 cM on the bovine linkage map. The location of KCNJ14 and SLC27A5 flanking the RH map on BTA18q25-26 has been confirmed by fluorescence in situ hybridization. The data of this refined human-bovine comparative map should improve selection of candidate genes for mastitis susceptibility in dairy cattle.  相似文献   

13.
Q Gao  L Li  & J E Womack 《Animal genetics》1997,28(2):146-149
Theileriosis, or East Coast fever, a parasitic disease in cattle, is associated with overexpression of casein kinase II. Casein kinase II is composed of two catalytic subunits (α or α') and two regulatory β subunits. The genes encoding these subunits of casein kinase II were mapped to bovine chromosomes by polymerase chain reaction analysis of a well-characterized bovine × rodent somatic hybrid cell panel. The α-subunit (CSNK2A1) was mapped to bovine chromosome 13, the α'-subunit (CSNK2A2) to chromosome 5 and the β-subunit (CSNK2B) to chromosome 23. Both CSNK2A1 and CSNK2B mapped to known regions of conserved synteny between human and cattle, while CSNK2A2 defined a new homology segment between the human and bovine genomes.  相似文献   

14.
15.
DNAs from cow-hamster and cow-mouse somatic hybrid cells segregating bovine chromosomes have been analyzed by Southern blotting and hybridization with human fibronectin and gamma crystallin probes. Concordancy of retention of these bovine genes was compared to cattle isozyme loci representing previously described syntenic groups. Bovine fibronectin (FNI) and gamma crystallin (CRYG) fragments were concordant with each other and with isocitrate dehydrogenase 1 (IDH1), representing the bovine syntenic group U17. The syntenic relationship of these genes is conserved on human chromosome 2q and also on mouse chromosome 1. In addition, bovine RFLPs were identified with both fibronectin and gamma crystallin probes. These polymorphisms will be used to study recombination between the syntenic loci in pedigreed herds and to mark a segment of the bovine genome that is likely homologous to the Lsh region of mouse chromosome 1, which confers resistance in mice to several intracellular parasites.  相似文献   

16.
Several developmentally important genomic regions map within the piebald deletion complex on distal mouse chromosome 14. We have combined computational gene prediction and comparative sequence analysis to characterize an approximately 4.3-Mb segment of the piebald region to identify candidate genes for the phenotypes presented by homozygous deletion mice. As a result we have ordered 13 deletion breakpoints, integrated the sequence with markers from a bacterial artificial chromosome (BAC) physical map, and identified 16 known or predicted genes and >1500 conserved sequence elements (CSEs) across the region. The candidate genes identified include Phr1 (formerly Pam) and Spry2, which are mouse homologs of genes required for development in Drosophila melanogaster. Gene content, order, and position are highly conserved between mouse chromosome 14 and the orthologous region of human chromosome 13. Our studies combining computational gene prediction with genetic and comparative genomic analyses provide insight regarding the functional composition and organization of this defined chromosomal region.  相似文献   

17.
The genetic and cytogenetic map around the chromosome 1 region shown to be linked with polledness and intersexuality (PIS) in the domestic goat (Capra hircus) was refined. For this purpose, a goat BAC library was systematically screened with primers from human coding sequences, scraped chromosome 1 DNA, bovine microsatellites from the region, and BAC ends. All the BACs (n = 30) were mapped by fluorescence in situ hybridization (FISH) on goat chromosome 1q41-q45. The genetic mapping of 30 new goat polymorphic markers, isolated from these BACs, made it possible to reduce the PIS interval to a region of less than 1 cM on goat chromosome 1q43. The PIS locus is now located between the two genes ATP1B and COP, which both map to 3q23 in humans. Genetic, cytogenetic, and comparative data suggest that the PIS region is now probably circumscribed to an approximately 1-Mb DNA segment for which construction of a BAC contig is in progress. In addition, a human YAC contig encompassing the blepharophimosis-ptosis-epicanthus-inversus region was mapped by FISH to goat chromosome 1q43. This human disease, mapped to HSA 3q23 and affecting the development and maintenance of ovarian function, could be a potential candidate for goat PIS.  相似文献   

18.
The absence of horns in Bos taurus is under genetic control of the autosomal dominant polled locus which has been genetically mapped to the centromeric region of cattle Chromosome 1. Recently a 4-Mb BAC contig of this chromosomal region has been constructed. Toward positional cloning of the bovine polled locus, we identified 20 additional microsatellite markers spread over the contig map by random sequencing of bacterial artificial chromosome (BAC) subclones. A total of 26 markers were genotyped in 30 two-generation half-sib families of six different German cattle breeds segregating for the hornless phenotype including 336 informative meioses for the polled character. Our fine-mapping study involving 19 recombinant haplotypes allowed us to narrow the critical region for the bovine polled locus to a 1-Mb segment with a centromeric boundary at RP42-218J17_MS1 and a telomeric boundary at BM6438. For marker-assisted selection purposes, the first evidence of informative flanking markers helps to predict polled genotypes with a higher degree of accuracy within families until testing of the causative mutation is available.  相似文献   

19.
To establish syntenic relationships of phototransduction genes, we have mapped the genes encoding the alpha-, beta-, and gamma-subunits of rod cGMP phosphodiesterase (PDE) (PDEA, PDEB, PDEG), the alpha'-subunit of cone PDE (PDEA2), and the rod cGMP-gated channel (CNCG) to bovine syntenic groups. The rod cGMP PDE alpha-, beta-, and gamma-subunit genes map to bovine syntenic groups U22, U15 (chromosome 6), and U21 (chromosome 19), respectively. The rod cGMP-gated channel gene also maps to syntenic group U15, and the bovine cone alpha'-subunit gene maps to U26 (chromosome 26). With the exception of the cone PDE alpha'-subunit gene, which has not been mapped in other mammals, all of these genes have been assigned to conserved chromosomal regions shared among bovine, human, and mouse. A compilation of currently known syntenic assignments and predictions regarding future assignments of phototransduction genes in human, mouse, and cattle is presented.  相似文献   

20.
Iddm4 is one of several susceptibility genes that have been identified in the BB rat model of type 1 diabetes. The BB rat allele of this gene confers dominant predisposition to diabetes induction by immune perturbation in both the diabetes-prone and the diabetes-resistant substrains, whereas the Wistar Furth (WF) allele confers resistance. We have positioned the gene in a 2.8-cM region on rat Chromosome (Chr) 4, proximal to Lyp/Ian4l1. We have produced a radiation hybrid map of the Iddm4-region that includes a number of rat genes with their mouse and human orthologs. We present a comparative map of the rat Iddm4 region in rat, human, and mouse, assigning the gene to a 6.3-Mb segment between PTN and ZYX at 7q32 in the human genome, and to a 5.7-Mb segment between Ptn and Zyx in the mouse genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号