共查询到20条相似文献,搜索用时 15 毫秒
1.
Heat shock proteins or Hsps are critical in mounting plant resistance against heat stress. The complex Hsp spectrum of Arabidopsis thaliana plant contains over two hundred proteins belonging to six different families namely Hsp20, Hsp40, Hsp60, Hsp70, Hsp90 and Hsp100. Importantly, the cellular function(s) of most Hsps remains to be established. We aimed at phenotyping of stress and development response of the selected, homozygous hsp mutant lines produced by T-DNA insertional mutagenesis method. The heat stress phenotype was assessed for basal and acquired heat stress response at seed and seedling stages. Distinct phenotype was noted for the hot1-3 mutant (knockout mutant of Hsp101 gene) showing higher heat sensitivity and for the salk_087844 mutant (knockout mutant of Hsc70-2 gene) showing higher heat tolerance than the wild type seedlings. The homozygous cs808162 mutant (mutant of ClpB-p gene encoding for the chloroplast-localized form of Hsp101) did not survive even under unstressed, control condition. salk_064887C mutant (mutant of cpn60β4 gene) showed accelerated development cycling. The hot1-3 mutant apart from showing different heat response, exhibited development lesions like bigger size of seeds, buds, siliques, and pollen compared to the wild type plants. In response to controlled deterioration treatment of seeds, hot1-3 seeds showed higher accumulation of reactive oxygen species molecules, higher rates of protein and lipid oxidation and a faster decline in germination rate as compared to wild type seeds. Our findings show that Hsps perform diverse metabolic functions in plant response to stress, growth, and development. 相似文献
3.
We have developed experimental systems to study hydrotropism in seedling roots of Arabidopsis thaliana (L.) Heynh. Arabidopsis roots showed a strong curvature in response to a moisture gradient, established by applying 1% agar and a saturated solution of KCl or K(2)CO(3) in a closed chamber. In this system, the hydrotropic response overcame the gravitropic response. Hydrotropic curvature commenced within 30 min and reached 80-100 degrees within 24 h of hydrostimulation. When 1% agar and agar containing 1 MPa sorbitol were placed side-by-side in humid air, a water potential gradient formed at the border between the two media. Although the gradient changed with time, it still elicited a hydrotropic response in Arabidopsis roots. The roots curved away from 0.5-1.5 MPa of sorbitol agar. Various Arabidopsis mutants were tested for their hydrotropic response. Roots of aba1-1 and abi2-1 mutants were less sensitive to hydrotropic stimulation. Addition of abscisic acid restored the normal hydrotropic response in aba1-1 roots. In comparison, mutants that exhibit a reduced response to gravity and auxin, axr1-3 and axr2-1, showed a hydrotropic response greater than that of the wild type. Wavy mutants, wav2-1 and wav3-1, showed increased sensitivity to the induction of hydrotropism by the moisture gradient. These results suggest that auxin plays divergent roles in hydrotropism and gravitropism, and that abscisic acid plays a positive role in hydrotropism. Furthermore, hydrotropism and the wavy response may share part of a common molecular pathway controlling the directional growth of roots. 相似文献
4.
The growth and development of plants is regulated by light viathe action of photoreceptors which are responsive to the red/far-red,blue and UV regions of the spectrum. Phytochrome B (the apoproteinof which is encoded by the PHYB gene) is one of the red/far-redabsorbing photoreceptors active in this process. In this paper,the isolation and characterization of three new EMS-inducedmutations of Arabidopsis which confer phytochrome B deficiencyare described. Complementation analysis showed that these mutations( phyB-101, phyB-102 and phyB-104) were allelic with PHYB. DNAsequence analysis showed that all three mutants contain nucleotidesubstitutions in the PHYB-101 gene sequence. phyB-101 carriesa nucleotide substitution within the second exon of the PHYBgene. This G-to-A substitution is a missense mutation that convertsa glutamate residue at position 812 of the phytochrome B apoproteinto a lysine residue. phyB-102, another missense mutant, carriesa C-to-T substitution which converts a serine residue at position349 of the phytochrome B apoprotein to a phenylalanine residue. phyB-104 carries a premature stop codon as a result of a G-to-Amutation 1190 bp down-stream of the ATG start codon of the PHYBsequence. The missense mutations in phyB-101 and phyB-102 causesignificant alterations in the predicted second ary structureof their respective mutant polypeptides, and identify aminoacid residues playing crucial roles in phytochrome B function,assembly or stability. Key words: Arabidopsis thaliana, phytochromet, phyB mutants, missense mutations 相似文献
6.
Boron (B) stress (deficiency and toxicity) is common in plants, but as the functions of this essential micronutrient are incompletely understood, so too are the effects of B stress. To investigate mechanisms underlying B stress, we examined protein profiles in leaves of Arabidopsis thaliana plants grown under normal B (30 μM), compared to plants transferred for 60 and 84 h (i.e., before and after initial visible symptoms) in deficient (0 μM) or toxic (3 mM) levels of B. B-responsive polypeptides were sequenced by mass spectrometry, following 2D gel electrophoresis, and 1D gels and immunoblotting were used to confirm the B-responsiveness of some of these proteins. Fourteen B-responsive proteins were identified, including: 9 chloroplast proteins, 6 proteins of photosynthetic/carbohydrate metabolism (rubisco activase, OEC23, photosystem I reaction center subunit II-1, ATPase δ-subunit, glycolate oxidase, fructose bisphosphate aldolase), 6 stress proteins, and 3 proteins involved in protein synthesis (note that the 14 proteins may fall into multiple categories). Most (8) of the B-responsive proteins decreased under both B deficiency and toxicity; only 3 increased with B stress. Boron stress decreased, or had no effect on, 3 of 4 oxidative stress proteins examined, and did not affect total protein. Hence, our results indicate relatively early specific effects of B stress on chloroplasts and protein synthesis. 相似文献
7.
Arsenate [As (V)] is taken up by phosphate [P (V)] transporters in the plasma membrane of roots cells, but the translocation of As from roots to shoots is not well understood. Two mutants of Arabidopsis thaliana (L.) [( pho1 , P deficient) and ( pho2 , P accumulator)], with defects in the regulation and translocation of P (V) from roots to shoots, were therefore used in this study to investigate uptake, translocation and speciation of As in roots and shoots of plants grown in soil or nutrient solution. The shoots of the pho2 mutant contained higher P concentrations, but similar or slightly higher As concentrations, in comparison with the wild type. In the pho1 mutant, the P concentration in the shoots was lower, and the As concentration was higher, in comparison with the wild type. Both pho2 and the wild type contained mainly As (III) in roots and shoot (67–90% of total As). Arsenic was likely to be translocated by a different pathway to P (V) in the pho2 and pho1 mutants . Therefore, it is suggested that As (III) is the main As species translocated from roots to shoots in Arabidopsis thaliana. 相似文献
8.
The aim of this work was to investigate the effects on carbohydrate metabolism of a reduction in the capacity to degrade leaf starch in Arabidopsis. The major roles of leaf starch are to provide carbon for sucrose synthesis, respiration and, in developing leaves, for biosynthesis and growth. Wild-type plants were compared with plants of a starch-excess mutant line ( sex4) deficient in a chloroplastic isoform of endoamylase. This mutant has a reduced capacity for starch degradation, leading to an imbalance between starch synthesis and degradation and the gradual accretion of starch as the leaves age. During the night the conversion of starch into sucrose in the mutant is impaired; the leaves of the mutant contained less sucrose than those of the wild type and there was less movement of 14C-label from starch to sucrose in radio-labelling experiments. Furthermore, the rate of assimilate export to the roots during the night was reduced in the mutant compared with the wild type. During the day however, photosynthetic partitioning was altered in the mutant, with less photosynthate partitioned into starch and more into sugars. Although the sucrose content of the leaves of the mutant was similar to the wild type during the day, the rate of export of sucrose to the roots was increased more than two-fold. The changes in carbohydrate metabolism in the mutant leaves during the day compensate partly for its reduced capacity to synthesize sucrose from starch during the night. 相似文献
10.
An allelic series of cad1, cadmium-sensitive mutants of Arabidopsis thaliana, was isolated. These mutants were sensitive to cadmium to different extents and were deficient in their ability to form cadmium-peptide complexes as detected by gel-filtration chromatography. Each mutant was deficient in its ability to accumulate phytochelatins (PCs) as detected by high-performance liquid chromatography and the amount of PCs accumulated by each mutant correlated with its degree of sensitivity to cadmium. The mutants had wild-type levels of glutathione, the substrate for PC biosynthesis, and in vitro assays demonstrated that each of the mutants was deficient in PC synthase activity. These results demonstrate conclusively the importance of PCs for cadmium tolerance in plants. 相似文献
11.
Competition is a major density-dependent factor structuring plant populations and communities in both natural and agricultural
systems. Seedlings of the model plant species Arabidopsis thaliana cv. Columbia, and the Columbia-derived stomatal mutants sdd1 and tmm1, were grown under controlled conditions at increasing densities of 1, 10, 20, and 50 plants per pot. We demonstrate significant
effects of time (days after planting), density, genotype, density and genotype, and the three-way interaction with time upon
several fitness components (plant height, silique number, leaf biomass and flowering stalk biomass) in Columbia and these
mutants. 相似文献
12.
Ten Arabidopsis lines that carry recessive mutations in the cop1 (constitutively photomorphogenic) locus have been isolated. These lines define at least four different alleles. All of the mutant lines produce dark-grown seedlings that mimic wild-type seedlings grown in the light. The phenotype of the dark-grown mutant seedlings includes: short hypocotyls, open and enlarged cotyledons, accumulation of anthocyanin, cell-type differentiation and chloroplast-like plastid differentiation in cotyledons. Moreover, in more prolonged dark-growth periods the mutants exhibit true leaf development that parallels that in light-grown siblings. The four mutant alleles represent two types of mutations: three alleles ( cop 1-1, cop 1-2, and cop 1-3) have severely affected phenotypes whereas one allele ( cop 1-4) has a less severe phenotype. Compared to the severe alleles, the cop 1-4 mutant has slightly longer hypocotyls in dark-grown seedlings and does not accumulate abnormal levels of anthocyanin. The cop1–1/ cop1-4 hybrid seedlings are intermediate in many physiological properties under both dark- and light-growth conditions, relative to the two parents. These results may suggest that the extent of residual cop1 gene activity in the mutants dictates the degree to which the aberrant plant phenotype is expressed. Analysis of plants carrying both cop1 and hy, a mutation that results in a deficiency of active phyto-chrome, suggests that the cop1 gene product acts downstream of phytochrome. The differentiation of chloroplasts in the roots of light-grown cop1 plants but not in wild-type plants suggests that the wild-type cop1 gene product also normally plays a role in suppressing chloroplast development in the roots of light-grown plants. To aid the eventual molecular cloning of the cop1 locus, its chromosomal location has been mapped and a molecular marker that is located about 1 centimorgan away from the cop1 locus obtained. 相似文献
13.
The transfer of xylose from UDP-xylose to the core beta-linked mannose of N-linked oligosaccharides by beta1,2-xylosyltransferase (XylT) is a widespread feature of plant glycoproteins which renders them immunogenic and allergenic in man. Here, we report the isolation of the Arabidopsis thaliana XylT gene, which contains two introns and encodes a 60.2 kDa protein with a predicted type II transmembrane protein topology typical for Golgi glycosyltransferases. Upon expression of A. thaliana XylT cDNA in the baculovirus/insect cell system, a recombinant protein was produced that exhibited XylT activity in vitro. Furthermore, the recombinant enzyme displayed XylT activity in vivo in the insect cells, as judged by the acquired cross-reaction of cellular glycoproteins with antibodies against the beta1,2-xylose epitope. The cloned XylT cDNA as well as the recombinant enzyme are essential tools to study the role of beta1,2-xylose in the immunogenicity and allergenicity of plant glycoproteins at the molecular level. 相似文献
14.
The raz1 mutant of Arabidopsis thaliana (L.) Heynh. has been selected as resistant to the toxic proline analogue, azetidine-2-carboxylic acid (2AZ). Seedlings of the mutant tolerated fivefold higher concentrations of 2AZ (ED 50 = 0.25 mM) than the wild-type seedlings (ED 50 = 0.05 mM). The mutant gene was found to be semi-dominant and the corresponding RAZ1 locus was mapped on chromosome 5 at 69.6±1.8 cM. The resistance to 2AZ could be fully and exclusively accounted for by the lower uptake rate of the proline analogue in the mutant. The influx of L-proline in roots of wild-type seedlings could be dissected into two components: (i) a component with a high affinity and a low capacity for l-proline ( K m≈20 gmM, V max≈60 nmol·(g FW) -1·h -1) and also a high affinity for L-2AZ ( K i≈40 μM) and (ii) a low-affinity, high-capacity component ( K m≈5 mM: V max = 1300 nmol·(g FW) -1·h -1). Clearly, the raz1 mutation affects the activity of a high-affinity transporter, because the high-affinity uptake of proline in the mutant was at least fivefold lower than in the wild-type, whereas the low-affinity uptake was unchanged. 相似文献
15.
Two auxin-resistant mutants of Arabidopsis thaliana L. have been characterized physiologically: aux-2 is a recessive mutation and is unlinked to a dominant mutation, Dwf, which is apparently lethal when homozygous. The progeny of selfed Dwf plants segregate into Dwf (agravitropic) and dwf
+ (normal) phenotypes.
aux-2 phenotype was indistinguishable from the wild-type on criteria other than resistance to exogenous auxins: 3-fold to 2,4-D and 2-fold to IAA. On the other hand, Dwf plants had a typical dwarf phenotype with single unbranched roots which lacked hairs. Compared to the wild-type, Dwf seedling roots were highly resistant to exogenous auxins: 2000-fold to 2,4-D and 360-fold to IAA. Both aux-2 and Dwf were normal in their response to exogenous ABA. The dwarf phenotype was insensitive to gibberellins but root hair formation was restored by application of auxins.The results indicate that altered auxin phsysiology can lead to agravitropism and dwarfism.Abbrevations ABA
Abscisic acid
- GA 3
Gibberellic acid
- IAA
indole-3-acetic acid
- 2,4-D
2,4-dichlorophenoxyacetic acid 相似文献
16.
Arabidopsis possesses several genes encoding aspartate aminotransferase, which catalyzes the bidirectional conversion of aspartate into glutamate. These amino acids together with asparagine and glutamine play an important role in N storage and distribution. In addition, they act as precursors for other amino acids. The gene encoding cytosolic aspartate aminotransferase, Asp2, was found to be induced upon infection with the necrotrophic pathogen Botrytis cinerea in Arabidopsis. Asp2 over-expression lines and a T-DNA insertion mutant were used to study the role of aspartate aminotransferase in Arabidopsis defence responses. Over-expression of Asp2 led to changes in aspartate content and aspartate-derived amino acids. The Asp2 knockout mutant was also slightly affected in its amino acid composition. Under standard growth conditions, the Asp2 transgenic lines did not show morphological changes in comparison with the wild-type. However, transgenic lines with the highest Asp2 expression displayed more spreading lesions when infected with B. cinerea. We discuss how this gene involved in amino acid metabolism might interact with plant defence responses. 相似文献
17.
A mutant of Arabidopsis thaliana, amt-1, was previously selected for resistance to growth inhibition by the tryptophan analog alpha-methyltryptophan. This mutant had elevated tryptophan levels and exhibited higher anthranilate synthase (AS) activity that showed increased resistance to feedback inhibition by tryptophan. In this study, extracts of the mutant callus exhibited higher AS activity than wild-type callus when assayed with either glutamine or ammonium sulfate as amino donor, thus suggesting that elevated AS activity in the mutant was due to an alteration in the alpha subunit of the enzyme. The mutant also showed cross-resistance to 5-methylanthranilate and 6-methylanthranilate and mapped to chromosome V at or close to ASA1 (a gene encoding the AS alpha subunit). ASA1 mRNA and protein levels were similar in mutant and wild-type leaf extracts. Levels of ASA1 mRNA and protein were also similar in callus cultures of mutant and wild type, although the levels in callus were higher than in leaf tissue. Sequencing of the ASA1 gene from amt-1 revealed a G to A transition relative to the wild-type gene that would result in the substitution of an asparagine residue in place of aspartic acid at position 341 in the predicted amino acid sequence of the ASA1 protein. The mutant allele in strain amt-1 has been renamed trp5-1. 相似文献
18.
1. The effect of triperidol on the metabolism of glucose, pyruvate, glutamate, aspartate and glycine was studied with rat brain-cortex slices, U- 14C-labelled substrates and a quantitative radiochromatographic technique. 2. Triperidol at a concentration of 0·2m m decreased the oxygen uptake and the 14CO 2 production by about 30% when glucose, pyruvate and glutamate were used as substrates, whereas no effects were observed with aspartate and glycine. 3. The drug did not alter qualitatively the metabolic pattern of the substrates. 4. Quantitatively, triperidol decreased the incorporation of 14C from [U- 14C]glucose and [U 14-C]-pyruvate into glutamate, glutamine and γ-aminobutyrate but not into lactate, alanine and aspartate. The overall utilization rates of glucose and pyruvate were decreased. The relative specific radioactivities of glutamate and aspartate were also decreased. 5. Triperidol increased the rate of disappearance of U- 14C-labelled glutamate, aspartate and glycine from the incubation medium, and altered the distribution of their metabolites between medium and tissue. 6. No appreciable effect of triperidol on [1- 14C]galactose disappearance was found. 相似文献
19.
The FAH1 and F3H genes encode ferulate-5-hydroxylase and flavanone-3-hydroxylase, which are enzymes in the pathways leading to the synthesis of sinapic acid esters and flavonoids, respectively. Nucleotide variation at these genes was surveyed by sequencing a sample of 20 worldwide Arabidopsis thaliana ecotypes and one Arabidopsis lyrata spp. petraea stock. In contrast with most previously studied genes, the percentage of singletons was rather low in both the FAH1 and the F3H gene regions. There was, therefore, no footprint of a recent species expansion in the pattern of nucleotide variation in these regions. In both FAH1 and F3H, nucleotide variation was structured into two major highly differentiated haplotypes. In both genes, there was a peak of silent polymorphism in the 5' part of the coding region without a parallel increase in silent divergence. In FAH1, the peak was centered at the beginning of the second exon. In F3H, nucleotide diversity was highest at the beginning of the gene. The observed pattern of variation in both FAH1 and F3H, although suggestive of balancing selection, was compatible with a neutral model with no recombination. 相似文献
20.
- Stomata modulate the exchange of water and CO2 between plant and atmosphere. Although stomatal density is known to affect CO2 diffusion into the leaf and thus photosynthetic rate, the effect of stomatal density and patterning on CO2 assimilation is not fully understood.
- We used wild types Col‐0 and C24 and stomatal mutants sdd1‐1 and tmm1 of Arabidopsis thaliana, differing in stomatal density and pattern, to study the effects of these variations on both stomatal and mesophyll conductance and CO2 assimilation rate. Anatomical parameters of stomata, leaf temperature and carbon isotope discrimination were also assessed.
- Our results indicate that increased stomatal density enhanced stomatal conductance in sdd1‐1 plants, with no effect on photosynthesis, due to both unchanged photosynthetic capacity and decreased mesophyll conductance. Clustering (abnormal patterning formed by clusters of two or more stomata) and a highly unequal distribution of stomata between the adaxial and abaxial leaf sides in tmm1 mutants also had no effect on photosynthesis.
- Except at very high stomatal densities, stomatal conductance and water loss were proportional to stomatal density. Stomatal formation in clusters reduced stomatal dynamics and their operational range as well as the efficiency of CO2 transport.
相似文献
|