首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

The imputation of missing values is necessary for the efficient use of DNA microarray data, because many clustering algorithms and some statistical analysis require a complete data set. A few imputation methods for DNA microarray data have been introduced, but the efficiency of the methods was low and the validity of imputed values in these methods had not been fully checked.  相似文献   

2.

Background  

Missing values frequently pose problems in gene expression microarray experiments as they can hinder downstream analysis of the datasets. While several missing value imputation approaches are available to the microarray users and new ones are constantly being developed, there is no general consensus on how to choose between the different methods since their performance seems to vary drastically depending on the dataset being used.  相似文献   

3.
Gan X  Liew AW  Yan H 《Nucleic acids research》2006,34(5):1608-1619
Gene expressions measured using microarrays usually suffer from the missing value problem. However, in many data analysis methods, a complete data matrix is required. Although existing missing value imputation algorithms have shown good performance to deal with missing values, they also have their limitations. For example, some algorithms have good performance only when strong local correlation exists in data while some provide the best estimate when data is dominated by global structure. In addition, these algorithms do not take into account any biological constraint in their imputation. In this paper, we propose a set theoretic framework based on projection onto convex sets (POCS) for missing data imputation. POCS allows us to incorporate different types of a priori knowledge about missing values into the estimation process. The main idea of POCS is to formulate every piece of prior knowledge into a corresponding convex set and then use a convergence-guaranteed iterative procedure to obtain a solution in the intersection of all these sets. In this work, we design several convex sets, taking into consideration the biological characteristic of the data: the first set mainly exploit the local correlation structure among genes in microarray data, while the second set captures the global correlation structure among arrays. The third set (actually a series of sets) exploits the biological phenomenon of synchronization loss in microarray experiments. In cyclic systems, synchronization loss is a common phenomenon and we construct a series of sets based on this phenomenon for our POCS imputation algorithm. Experiments show that our algorithm can achieve a significant reduction of error compared to the KNNimpute, SVDimpute and LSimpute methods.  相似文献   

4.
Gaussian mixture clustering and imputation of microarray data   总被引:3,自引:0,他引:3  
MOTIVATION: In microarray experiments, missing entries arise from blemishes on the chips. In large-scale studies, virtually every chip contains some missing entries and more than 90% of the genes are affected. Many analysis methods require a full set of data. Either those genes with missing entries are excluded, or the missing entries are filled with estimates prior to the analyses. This study compares methods of missing value estimation. RESULTS: Two evaluation metrics of imputation accuracy are employed. First, the root mean squared error measures the difference between the true values and the imputed values. Second, the number of mis-clustered genes measures the difference between clustering with true values and that with imputed values; it examines the bias introduced by imputation to clustering. The Gaussian mixture clustering with model averaging imputation is superior to all other imputation methods, according to both evaluation metrics, on both time-series (correlated) and non-time series (uncorrelated) data sets.  相似文献   

5.

Background

In modern biomedical research of complex diseases, a large number of demographic and clinical variables, herein called phenomic data, are often collected and missing values (MVs) are inevitable in the data collection process. Since many downstream statistical and bioinformatics methods require complete data matrix, imputation is a common and practical solution. In high-throughput experiments such as microarray experiments, continuous intensities are measured and many mature missing value imputation methods have been developed and widely applied. Numerous methods for missing data imputation of microarray data have been developed. Large phenomic data, however, contain continuous, nominal, binary and ordinal data types, which void application of most methods. Though several methods have been developed in the past few years, not a single complete guideline is proposed with respect to phenomic missing data imputation.

Results

In this paper, we investigated existing imputation methods for phenomic data, proposed a self-training selection (STS) scheme to select the best imputation method and provide a practical guideline for general applications. We introduced a novel concept of “imputability measure” (IM) to identify missing values that are fundamentally inadequate to impute. In addition, we also developed four variations of K-nearest-neighbor (KNN) methods and compared with two existing methods, multivariate imputation by chained equations (MICE) and missForest. The four variations are imputation by variables (KNN-V), by subjects (KNN-S), their weighted hybrid (KNN-H) and an adaptively weighted hybrid (KNN-A). We performed simulations and applied different imputation methods and the STS scheme to three lung disease phenomic datasets to evaluate the methods. An R package “phenomeImpute” is made publicly available.

Conclusions

Simulations and applications to real datasets showed that MICE often did not perform well; KNN-A, KNN-H and random forest were among the top performers although no method universally performed the best. Imputation of missing values with low imputability measures increased imputation errors greatly and could potentially deteriorate downstream analyses. The STS scheme was accurate in selecting the optimal method by evaluating methods in a second layer of missingness simulation. All source files for the simulation and the real data analyses are available on the author’s publication website.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-014-0346-6) contains supplementary material, which is available to authorized users.  相似文献   

6.
Missing value estimation methods for DNA microarrays   总被引:39,自引:0,他引:39  
MOTIVATION: Gene expression microarray experiments can generate data sets with multiple missing expression values. Unfortunately, many algorithms for gene expression analysis require a complete matrix of gene array values as input. For example, methods such as hierarchical clustering and K-means clustering are not robust to missing data, and may lose effectiveness even with a few missing values. Methods for imputing missing data are needed, therefore, to minimize the effect of incomplete data sets on analyses, and to increase the range of data sets to which these algorithms can be applied. In this report, we investigate automated methods for estimating missing data. RESULTS: We present a comparative study of several methods for the estimation of missing values in gene microarray data. We implemented and evaluated three methods: a Singular Value Decomposition (SVD) based method (SVDimpute), weighted K-nearest neighbors (KNNimpute), and row average. We evaluated the methods using a variety of parameter settings and over different real data sets, and assessed the robustness of the imputation methods to the amount of missing data over the range of 1--20% missing values. We show that KNNimpute appears to provide a more robust and sensitive method for missing value estimation than SVDimpute, and both SVDimpute and KNNimpute surpass the commonly used row average method (as well as filling missing values with zeros). We report results of the comparative experiments and provide recommendations and tools for accurate estimation of missing microarray data under a variety of conditions.  相似文献   

7.
Missing value imputation for epistatic MAPs   总被引:1,自引:0,他引:1  

Background  

Epistatic miniarray profiling (E-MAPs) is a high-throughput approach capable of quantifying aggravating or alleviating genetic interactions between gene pairs. The datasets resulting from E-MAP experiments typically take the form of a symmetric pairwise matrix of interaction scores. These datasets have a significant number of missing values - up to 35% - that can reduce the effectiveness of some data analysis techniques and prevent the use of others. An effective method for imputing interactions would therefore increase the types of possible analysis, as well as increase the potential to identify novel functional interactions between gene pairs. Several methods have been developed to handle missing values in microarray data, but it is unclear how applicable these methods are to E-MAP data because of their pairwise nature and the significantly larger number of missing values. Here we evaluate four alternative imputation strategies, three local (Nearest neighbor-based) and one global (PCA-based), that have been modified to work with symmetric pairwise data.  相似文献   

8.

Background  

In microarray experiments the numbers of replicates are often limited due to factors such as cost, availability of sample or poor hybridization. There are currently few choices for the analysis of a pair of microarrays where N = 1 in each condition. In this paper, we demonstrate the effectiveness of a new algorithm called PINC (PINC is Not Cyber-T) that can analyze Affymetrix microarray experiments.  相似文献   

9.

Background  

Typically, pooling of mRNA samples in microarray experiments implies mixing mRNA from several biological-replicate samples before hybridization onto a microarray chip. Here we describe an alternative smart pooling strategy in which different samples, not necessarily biological replicates, are pooled in an information theoretic efficient way. Further, each sample is tested on multiple chips, but always in pools made up of different samples. The end goal is to exploit the compressibility of microarray data to reduce the number of chips used and increase the robustness to noise in measurements.  相似文献   

10.

Background  

The main goal in analyzing microarray data is to determine the genes that are differentially expressed across two types of tissue samples or samples obtained under two experimental conditions. Mixture model method (MMM hereafter) is a nonparametric statistical method often used for microarray processing applications, but is known to over-fit the data if the number of replicates is small. In addition, the results of the MMM may not be repeatable when dealing with a small number of replicates. In this paper, we propose a new version of MMM to ensure the repeatability of the results in different runs, and reduce the sensitivity of the results on the parameters.  相似文献   

11.
MOTIVATION: Significance analysis of differential expression in DNA microarray data is an important task. Much of the current research is focused on developing improved tests and software tools. The task is difficult not only owing to the high dimensionality of the data (number of genes), but also because of the often non-negligible presence of missing values. There is thus a great need to reliably impute these missing values prior to the statistical analyses. Many imputation methods have been developed for DNA microarray data, but their impact on statistical analyses has not been well studied. In this work we examine how missing values and their imputation affect significance analysis of differential expression. RESULTS: We develop a new imputation method (LinCmb) that is superior to the widely used methods in terms of normalized root mean squared error. Its estimates are the convex combinations of the estimates of existing methods. We find that LinCmb adapts to the structure of the data: If the data are heterogeneous or if there are few missing values, LinCmb puts more weight on local imputation methods; if the data are homogeneous or if there are many missing values, LinCmb puts more weight on global imputation methods. Thus, LinCmb is a useful tool to understand the merits of different imputation methods. We also demonstrate that missing values affect significance analysis. Two datasets, different amounts of missing values, different imputation methods, the standard t-test and the regularized t-test and ANOVA are employed in the simulations. We conclude that good imputation alleviates the impact of missing values and should be an integral part of microarray data analysis. The most competitive methods are LinCmb, GMC and BPCA. Popular imputation schemes such as SVD, row mean, and KNN all exhibit high variance and poor performance. The regularized t-test is less affected by missing values than the standard t-test. AVAILABILITY: Matlab code is available on request from the authors.  相似文献   

12.

Background  

To identify differentially expressed genes across experimental conditions in oligonucleotide microarray experiments, existing statistical methods commonly use a summary of probe-level expression data for each probe set and compare replicates of these values across conditions using a form of the t-test or rank sum test. Here we propose the use of a statistical method that takes advantage of the built-in redundancy architecture of high-density oligonucleotide arrays.  相似文献   

13.
14.

Introduction

A common problem in metabolomics data analysis is the existence of a substantial number of missing values, which can complicate, bias, or even prevent certain downstream analyses. One of the most widely-used solutions to this problem is imputation of missing values using a k-nearest neighbors (kNN) algorithm to estimate missing metabolite abundances. kNN implicitly assumes that missing values are uniformly distributed at random in the dataset, but this is typically not true in metabolomics, where many values are missing because they are below the limit of detection of the analytical instrumentation.

Objectives

Here, we explore the impact of nonuniformly distributed missing values (missing not at random, or MNAR) on imputation performance. We present a new model for generating synthetic missing data and a new algorithm, No-Skip kNN (NS-kNN), that accounts for MNAR values to provide more accurate imputations.

Methods

We compare the imputation errors of the original kNN algorithm using two distance metrics, NS-kNN, and a recently developed algorithm KNN-TN, when applied to multiple experimental datasets with different types and levels of missing data.

Results

Our results show that NS-kNN typically outperforms kNN when at least 20–30% of missing values in a dataset are MNAR. NS-kNN also has lower imputation errors than KNN-TN on realistic datasets when at least 50% of missing values are MNAR.

Conclusion

Accounting for the nonuniform distribution of missing values in metabolomics data can significantly improve the results of imputation algorithms. The NS-kNN method imputes missing metabolomics data more accurately than existing kNN-based approaches when used on realistic datasets.
  相似文献   

15.

Introduction

The generic metabolomics data processing workflow is constructed with a serial set of processes including peak picking, quality assurance, normalisation, missing value imputation, transformation and scaling. The combination of these processes should present the experimental data in an appropriate structure so to identify the biological changes in a valid and robust manner.

Objectives

Currently, different researchers apply different data processing methods and no assessment of the permutations applied to UHPLC-MS datasets has been published. Here we wish to define the most appropriate data processing workflow.

Methods

We assess the influence of normalisation, missing value imputation, transformation and scaling methods on univariate and multivariate analysis of UHPLC-MS datasets acquired for different mammalian samples.

Results

Our studies have shown that once data are filtered, missing values are not correlated with m/z, retention time or response. Following an exhaustive evaluation, we recommend PQN normalisation with no missing value imputation and no transformation or scaling for univariate analysis. For PCA we recommend applying PQN normalisation with Random Forest missing value imputation, glog transformation and no scaling method. For PLS-DA we recommend PQN normalisation, KNN as the missing value imputation method, generalised logarithm transformation and no scaling. These recommendations are based on searching for the biologically important metabolite features independent of their measured abundance.

Conclusion

The appropriate choice of normalisation, missing value imputation, transformation and scaling methods differs depending on the data analysis method and the choice of method is essential to maximise the biological derivations from UHPLC-MS datasets.
  相似文献   

16.
We focus on the problem of generalizing a causal effect estimated on a randomized controlled trial (RCT) to a target population described by a set of covariates from observational data. Available methods such as inverse propensity sampling weighting are not designed to handle missing values, which are however common in both data sources. In addition to coupling the assumptions for causal effect identifiability and for the missing values mechanism and to defining appropriate estimation strategies, one difficulty is to consider the specific structure of the data with two sources and treatment and outcome only available in the RCT. We propose three multiple imputation strategies to handle missing values when generalizing treatment effects, each handling the multisource structure of the problem differently (separate imputation, joint imputation with fixed effect, joint imputation ignoring source information). As an alternative to multiple imputation, we also propose a direct estimation approach that treats incomplete covariates as semidiscrete variables. The multiple imputation strategies and the latter alternative rely on different sets of assumptions concerning the impact of missing values on identifiability. We discuss these assumptions and assess the methods through an extensive simulation study. This work is motivated by the analysis of a large registry of over 20,000 major trauma patients and an RCT studying the effect of tranexamic acid administration on mortality in major trauma patients admitted to intensive care units. The analysis illustrates how the missing values handling can impact the conclusion about the effect generalized from the RCT to the target population.  相似文献   

17.

Background  

Microarray technology has become popular for gene expression profiling, and many analysis tools have been developed for data interpretation. Most of these tools require complete data, but measurement values are often missing A way to overcome the problem of incomplete data is to impute the missing data before analysis. Many imputation methods have been suggested, some na?ve and other more sophisticated taking into account correlation in data. However, these methods are binary in the sense that each spot is considered either missing or present. Hence, they are depending on a cutoff separating poor spots from good spots. We suggest a different approach in which a continuous spot quality weight is built into the imputation methods, allowing for smooth imputations of all spots to larger or lesser degree.  相似文献   

18.

Background  

A common feature of microarray experiments is the occurence of missing gene expression data. These missing values occur for a variety of reasons, in particular, because of the filtering of poor quality spots and the removal of undefined values when a logarithmic transformation is applied to negative background-corrected intensities. The efficiency and power of an analysis performed can be substantially reduced by having an incomplete matrix of gene intensities. Additionally, most statistical methods require a complete intensity matrix. Furthermore, biases may be introduced into analyses through missing information on some genes. Thus methods for appropriately replacing (imputing) missing data and/or weighting poor quality spots are required.  相似文献   

19.

Background  

The evaluation of statistical significance has become a critical process in identifying differentially expressed genes in microarray studies. Classical p-value adjustment methods for multiple comparisons such as family-wise error rate (FWER) have been found to be too conservative in analyzing large-screening microarray data, and the False Discovery Rate (FDR), the expected proportion of false positives among all positives, has been recently suggested as an alternative for controlling false positives. Several statistical approaches have been used to estimate and control FDR, but these may not provide reliable FDR estimation when applied to microarray data sets with a small number of replicates.  相似文献   

20.
Microarray experiments generate data sets with information on the expression levels of thousands of genes in a set of biological samples. Unfortunately, such experiments often produce multiple missing expression values, normally due to various experimental problems. As many algorithms for gene expression analysis require a complete data matrix as input, the missing values have to be estimated in order to analyze the available data. Alternatively, genes and arrays can be removed until no missing values remain. However, for genes or arrays with only a small number of missing values, it is desirable to impute those values. For the subsequent analysis to be as informative as possible, it is essential that the estimates for the missing gene expression values are accurate. A small amount of badly estimated missing values in the data might be enough for clustering methods, such as hierachical clustering or K-means clustering, to produce misleading results. Thus, accurate methods for missing value estimation are needed. We present novel methods for estimation of missing values in microarray data sets that are based on the least squares principle, and that utilize correlations between both genes and arrays. For this set of methods, we use the common reference name LSimpute. We compare the estimation accuracy of our methods with the widely used KNNimpute on three complete data matrices from public data sets by randomly knocking out data (labeling as missing). From these tests, we conclude that our LSimpute methods produce estimates that consistently are more accurate than those obtained using KNNimpute. Additionally, we examine a more classic approach to missing value estimation based on expectation maximization (EM). We refer to our EM implementations as EMimpute, and the estimate errors using the EMimpute methods are compared with those our novel methods produce. The results indicate that on average, the estimates from our best performing LSimpute method are at least as accurate as those from the best EMimpute algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号