首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Exploring metabolic evolution is a way to understand metabolic complexity. The substrate transport of mitochondrial carrier family (MCF) influences direct metabolic activities, making it possible to understand indirectly metabolic evolution from the evolution of substrate transport of MCF. However, the evolutionary study of substrate transport of MCF does not mean that all the concrete structures of mitochondrial carriers (MCs) must first be gained.  相似文献   

2.

Background  

The evolution of complexity is among the most important questions in biology. The evolution of complexity is often observed as the increase of genetic information or that of the organizational complexity of a system. It is well recognized that the formation of biological organization – be it of molecules or ecosystems – is ultimately instructed by the genetic information, whereas it is also true that the genetic information is functional only in the context of the organization. Therefore, to obtain a more complete picture of the evolution of complexity, we must study the evolution of both information and organization.  相似文献   

3.

Background  

Alternative splicing (AS) is important for evolution and major biological functions in complex organisms. However, the extent of AS in mammals other than human and mouse is largely unknown, making it difficult to study AS evolution in mammals and its biomedical implications.  相似文献   

4.

Background  

The vertebrate tetraspanin family has many features which make it suitable for preserving the imprint of ancient sequence evolution and amenable for phylogenomic analysis. So we believe that an in-depth analysis of the tetraspanin evolution not only provides more complete understanding of tetraspanin biology, but offers new insights into the influence of the two rounds of whole genome duplication (2R-WGD) at the origin of vertebrates.  相似文献   

5.

Background  

SARS coronavirus (SARS-CoV) was identified as the etiological agent of SARS, and extensive investigations indicated that it originated from an animal source (probably bats) and was recently introduced into the human population via wildlife animals from wet markets in southern China. Previous studies revealed that the spike (S) protein of SARS had experienced adaptive evolution, but whether other functional proteins of SARS have undergone adaptive evolution is not known.  相似文献   

6.

Background  

An important question is whether evolution favors properties such as mutational robustness or evolvability that do not directly benefit any individual, but can influence the course of future evolution. Functionally similar proteins can differ substantially in their robustness to mutations and capacity to evolve new functions, but it has remained unclear whether any of these differences might be due to evolutionary selection for these properties.  相似文献   

7.
8.

Background  

A number of recent papers have cast doubt on the applicability of the quasispecies concept to virus evolution, and have argued that population genetics is a more appropriate framework to describe virus evolution than quasispecies theory.  相似文献   

9.

Background  

Understanding genome evolution provides insight into biological mechanisms. For many years comparative genomics and analysis of conserved chromosomal regions have helped to unravel the mechanisms involved in genome evolution and their implications for the study of biological systems. Detection of conserved regions (descending from a common ancestor) not only helps clarify genome evolution but also makes it possible to identify quantitative trait loci (QTLs) and investigate gene function.  相似文献   

10.

Background  

Twenty amino acids comprise the universal building blocks of proteins. However, their biosynthetic routes do not appear to be universal from an Escherichia coli-centric perspective. Nevertheless, it is necessary to understand their origin and evolution in a global context, that is, to include more 'model' species and alternative routes in order to do so. We use a comparative genomics approach to assess the origins and evolution of alternative amino acid biosynthetic network branches.  相似文献   

11.

Background  

It has long been known that rates of synonymous substitutions are unusually low in mitochondrial genes of flowering and other land plants. Although two dramatic exceptions to this pattern have recently been reported, it is unclear how often major increases in substitution rates occur during plant mitochondrial evolution and what the overall magnitude of substitution rate variation is across plants.  相似文献   

12.

Background  

Public databases now contain multitude of complete bacterial genomes, including several genomes of the same species. The available data offers new opportunities to address questions about bacterial genome evolution, a task that requires reliable fine comparison data of closely related genomes. Recent analyses have shown, using pairwise whole genome alignments, that it is possible to segment bacterial genomes into a common conserved backbone and strain-specific sequences called loops.  相似文献   

13.
14.

Background  

Positive selection of host proteins that interact with pathogens can indicate factors relevant for infection and potentially be a measure of pathogen driven evolution.  相似文献   

15.
16.

Background  

General protein evolution models help determine the baseline expectations for the evolution of sequences, and they have been extensively useful in sequence analysis and for the computer simulation of artificial sequence data sets.  相似文献   

17.

Background  

Any DNA sequence is a result of compromise between the selection and mutation pressures exerted on it during evolution. It is difficult to estimate the relative influence of each of these pressures on the rate of accumulation of substitutions. However, it is important to discriminate between the effect of mutations, and the effect of selection, when studying the phylogenic relations between taxa.  相似文献   

18.

Background  

Rodent and primate pregnancy-specific glycoprotein (PSG) gene families have expanded independently from a common ancestor and are expressed virtually exclusively in placental trophoblasts. However, within each species, it is unknown whether multiple paralogs have been selected for diversification of function, or for increased dosage of monofunctional PSG. We analysed the evolution of the mouse PSG sequences, and compared them to rat, human and baboon PSGs to attempt to understand the evolution of this complex gene family.  相似文献   

19.

Background  

There is increasing interest in the evolution of protein-protein interactions because this should ultimately be informative of the patterns of evolution of new protein functions within the cell. One model proposes that the evolution of new protein-protein interactions and protein complexes proceeds through the duplication of self-interacting genes. This model is supported by data from yeast. We examined the relationship between gene duplication and self-interaction in the human genome.  相似文献   

20.

Background  

Short-term laboratory evolution of bacteria followed by genomic sequencing provides insight into the mechanism of adaptive evolution, such as the number of mutations needed for adaptation, genotype-phenotype relationships, and the reproducibility of adaptive outcomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号