首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nucleoside triphosphate-dependent restriction enzymes   总被引:13,自引:8,他引:5       下载免费PDF全文
The known nucleoside triphosphate-dependent restriction enzymes are hetero-oligomeric proteins that behave as molecular machines in response to their target sequences. They translocate DNA in a process dependent on the hydrolysis of a nucleoside triphosphate. For the ATP-dependent type I and type III restriction and modification systems, the collision of translocating complexes triggers hydrolysis of phosphodiester bonds in unmodified DNA to generate double-strand breaks. Type I endonucleases break the DNA at unspecified sequences remote from the target sequence, type III endonucleases at a fixed position close to the target sequence. Type I and type III restriction and modification (R-M) systems are notable for effective post-translational control of their endonuclease activity. For some type I enzymes, this control is mediated by proteolytic degradation of that subunit of the complex which is essential for DNA translocation and breakage. This control, lacking in the well-studied type II R-M systems, provides extraordinarily effective protection of resident DNA should it acquire unmodified target sequences. The only well-documented GTP-dependent restriction enzyme, McrBC, requires methylated target sequences for the initiation of phosphodiester bond cleavage.  相似文献   

2.
Eco KI, a type I restriction enzyme, specifies DNA methyltransferase, ATPase, endonuclease and DNA translocation activities. One subunit (HsdR) of the oligomeric enzyme contributes to those activities essential for restriction. These activities involve ATP-dependent DNA translocation and DNA cleavage. Mutations that change amino acids within recognisable motifs in HsdR impair restriction. We have used an in vivo assay to monitor the effect of these mutations on DNA translocation. The assay follows the Eco KI-dependent entry of phage T7 DNA from the phage particle into the host cell. Earlier experiments have shown that mutations within the seven motifs characteristic of the DEAD-box family of proteins that comprise known or putative helicases severely impair the ATPase activity of purified enzymes. We find that the mutations abolish DNA translocation in vivo. This provides evidence that these motifs are relevant to the coupling of ATP hydrolysis to DNA translocation. Mutations that identify an endonuclease motif similar to that found at the active site of type II restriction enzymes and other nucleases have been shown to abolish DNA nicking activity. When conservative changes are made at these residues, the enzymes lack nuclease activity but retain the ability to hydrolyse ATP and to translocate DNA at wild-type levels. It has been speculated that nicking may be necessary to resolve the topological problems associated with DNA translocation by type I restriction and modification systems. Our experiments show that loss of the nicking activity associated with the endonuclease motif of Eco KI has no effect on ATPase activity in vitro or DNA translocation of the T7 genome in vivo.  相似文献   

3.
During conditions of cell stress, the type I restriction and modification enzymes of bacteria show reduced, but not zero, levels of restriction of unmethylated foreign DNA. In such conditions, chemically identical unmethylated recognition sequences also occur on the chromosome of the host but restriction alleviation prevents the enzymes from destroying the host DNA. How is this distinction between chemically identical DNA molecules achieved? For some, but not all, type I restriction enzymes, alleviation is partially due to proteolytic degradation of a subunit of the enzyme. We identify that the additional alleviation factor is attributable to the structural difference between foreign DNA entering the cell as a random coil and host DNA, which exists in a condensed nucleoid structure coated with many non-specific ligands. The type I restriction enzyme is able to destroy the ‘naked’ DNA using a complex reaction linked to DNA translocation, but this essential translocation process is inhibited by DNA condensation and the presence of non-specific ligands bound along the DNA.  相似文献   

4.
For type I restriction systems, recently determined nucleotide sequences predict conserved amino acids in the subunit that is essential for restriction but not modification (HsdR). The conserved sequences emphasize motifs characteristic of the DEAD-box family of proteins which comprises putative helicases, and they identify a new candidate for motif IV. We provide evidence based on an analysis of Eco KI which supports both the relevance of DEAD-box motifs to the mechanism of restriction and the new definition of motif IV. Amino acid substitutions within the newly identified motif IV and those in six other previously identified DEAD-box motifs, but not in the original motif IV, confer restriction-deficient phenotypes. We have examined the relevance of the DEAD-box motifs to the restriction pathway by determining the steps permitted in vitro by the defective enzymes resulting from amino acid substitutions in each of the seven motifs. Eco KI purified from the seven restriction-deficient mutants binds to an unmethylated target sequence and, in the presence of AdoMet, responds to ATP by undergoing the conformational change essential for the pathway of events leading to DNA cleavage. The seven enzymes have little or no ATPase activity and no endonuclease activity, but they retain the ability to nick unmodified DNA, though at reduced rates. Nicking of a DNA strand could therefore be an essential early step in the restriction pathway, facilitating the ATP-dependent translocation of DNA, particularly if this involves DNA helicase activity.  相似文献   

5.
The requirement of S-adenosyl-L-methionine (AdoMet) in the cleavage reaction carried out by type III restriction-modification enzymes has been investigated. We show that DNA restriction by EcoPI restriction enzyme does not take place in the absence of exogenously added AdoMet. Interestingly, the closely related EcoP15I enzyme has endogenously bound AdoMet and therefore does not require the addition of the cofactor for DNA cleavage. By employing a variety of AdoMet analogs, which differ structurally from AdoMet, this study demonstrates that the carboxyl group and any substitution at the epsilon carbon of methionine is absolutely essential for DNA cleavage. Such analogs could bring about the necessary conformational change(s) in the enzyme, which make the enzyme proficient in DNA cleavage. Our studies, which include native polyacrylamide gel electrophoresis, molecular size exclusion chromatography, UV, fluorescence and circular dichroism spectroscopy, clearly demonstrate that the holoenzyme and apoenzyme forms of EcoP15I restriction enzyme have different conformations. Furthermore, the Res and Mod subunits of the EcoP15I restriction enzyme can be separated by gel filtration chromatography in the presence of 2 M NaCl. Reconstitution experiments, which involve mixing of the isolated subunits, result in an apoenzyme form, which is restriction proficient in the presence of AdoMet. However, mixing the Res subunit with Mod subunit deficient in AdoMet binding does not result in a functional restriction enzyme. These observations are consistent with the fact that AdoMet is required for DNA cleavage. In vivo complementation of the defective mod allele with a wild-type mod allele showed that an active restriction enzyme could be formed. Furthermore, we show that while the purified c2-134 mutant restriction enzyme is unable to cleave DNA, the c2-440 mutant enzyme is able to cleave DNA albeit poorly. Taken together, these results suggest that AdoMet binding causes conformational changes in the restriction enzyme and is necessary to bring about DNA cleavage.  相似文献   

6.
The S subunits of type I DNA restriction/modification enzymes are responsible for recognising the DNA target sequence for the enzyme. They contain two domains of approximately 150 amino acids, each of which is responsible for recognising one half of the bipartite asymmetric target. In the absence of any known tertiary structure for type I enzymes or recognisable DNA recognition motifs in the highly variable amino acid sequences of the S subunits, it has previously not been possible to predict which amino acids are responsible for sequence recognition. Using a combination of sequence alignment and secondary structure prediction methods to analyse the sequences of S subunits, we predict that all of the 51 known target recognition domains (TRDs) have the same tertiary structure. Furthermore, this structure is similar to the structure of the TRD of the C5-cytosine methyltransferase, Hha I, which recognises its DNA target via interactions with two short polypeptide loops and a beta strand. Our results predict the location of these sequence recognition structures within the TRDs of all type I S subunits.  相似文献   

7.
Type I DNA restriction enzymes are large, molecular machines possessing DNA methyltransferase, ATPase, DNA translocase and endonuclease activities. The ATPase, DNA translocase and endonuclease activities are specified by the restriction (R) subunit of the enzyme. We demonstrate that the R subunit of the Eco KI type I restriction enzyme comprises several different functional domains. An N-terminal domain contains an amino acid motif identical with that forming the catalytic site in simple restriction endonucleases, and changes within this motif lead to a loss of nuclease activity and abolish the restriction reaction. The central part of the R subunit contains amino acid sequences characteristic of DNA helicases. We demonstrate, using limited proteolysis of this subunit, that the helicase motifs are contained in two domains. Secondary structure prediction of these domains suggests a structure that is the same as the catalytic domains of DNA helicases of known structure. The C-terminal region of the R subunit can be removed by elastase treatment leaving a large fragment, stable in the presence of ATP, which can no longer bind to the other subunits of Eco KI suggesting that this domain is required for protein assembly. Considering these results and previous models of the methyltransferase part of these enzymes, a structural and operational model of a type I DNA restriction enzyme is presented.  相似文献   

8.
Restriction enzymes are well known as reagents widely used by molecular biologists for genetic manipulation and analysis, but these reagents represent only one class (type II) of a wider range of enzymes that recognize specific nucleotide sequences in DNA molecules and detect the provenance of the DNA on the basis of specific modifications to their target sequence. Type I restriction and modification (R-M) systems are complex; a single multifunctional enzyme can respond to the modification state of its target sequence with the alternative activities of modification or restriction. In the absence of DNA modification, a type I R-M enzyme behaves like a molecular motor, translocating vast stretches of DNA towards itself before eventually breaking the DNA molecule. These sophisticated enzymes are the focus of this review, which will emphasize those aspects that give insights into more general problems of molecular and microbial biology. Current molecular experiments explore target recognition, intramolecular communication, and enzyme activities, including DNA translocation. Type I R-M systems are notable for their ability to evolve new specificities, even in laboratory cultures. This observation raises the important question of how bacteria protect their chromosomes from destruction by newly acquired restriction specifities. Recent experiments demonstrate proteolytic mechanisms by which cells avoid DNA breakage by a type I R-M system whenever their chromosomal DNA acquires unmodified target sequences. Finally, the review will reflect the present impact of genomic sequences on a field that has previously derived information almost exclusively from the analysis of bacteria commonly studied in the laboratory.  相似文献   

9.
Type I restriction-modification enzymes differ significantly from the type II enzymes commonly used as molecular biology reagents. On hemi-methylated DNAs type I enzymes like the EcoR124I restriction-modification complex act as conventional adenine methylases at their specific target sequences, but unmethylated targets induce them to translocate thousands of base pairs through the stationary enzyme before cleaving distant sites nonspecifically. EcoR124I is a superfamily 2 DEAD-box helicase like eukaryotic double-strand DNA translocase Rad54, with two RecA-like helicase domains and seven characteristic sequence motifs that are implicated in translocation. In Rad54 a so-called extended region adjacent to motif III is involved in ATPase activity. Although the EcoR124I extended region bears sequence and structural similarities with Rad54, it does not influence ATPase or restriction activity as shown in this work, but mutagenesis of the conserved glycine residue of its motif III does alter ATPase and DNA cleavage activity. Through the lens of molecular dynamics, a full model of HsdR of EcoR124I based on available crystal structures allowed interpretation of functional effects of mutants in motif III and its extended region. The results indicate that the conserved glycine residue of motif III has a role in positioning the two helicase domains.  相似文献   

10.
Type I restriction endonucleases are intriguing, multifunctional complexes that restrict DNA randomly, at sites distant from the target sequence. Restriction at distant sites is facilitated by ATP hydrolysis-dependent, translocation of double-stranded DNA towards the stationary enzyme bound at the recognition sequence. Following restriction, the enzymes are thought to remain associated with the DNA at the target site, hydrolyzing copious amounts of ATP. As a result, for the past 35 years type I restriction endonucleases could only be loosely classified as enzymes since they functioned stoichiometrically relative to DNA. To further understand enzyme mechanism, a detailed analysis of DNA cleavage by the EcoR124I holoenzyme was done. We demonstrate for the first time that type I restriction endonucleases are not stoichiometric but are instead catalytic with respect to DNA. Further, the mechanism involves formation of a dimer of holoenzymes, with each monomer bound to a target sequence and, following cleavage, each dissociates in an intact form to bind and restrict subsequent DNA molecules. Therefore, type I restriction endonucleases, like their type II counterparts, are true enzymes. The conclusion that type I restriction enzymes are catalytic relative to DNA has important implications for the in vivo function of these previously enigmatic enzymes.  相似文献   

11.
The Type III restriction endonuclease EcoP15I forms a hetero-oligomeric enzyme complex that consists of two modification (Mod) subunits and two restriction (Res) subunits. Structural data on Type III restriction enzymes in general are lacking because of their remarkable size of more than 400 kDa and the laborious and low-yield protein purification procedures. We took advantage of the EcoP15I-overexpressing vector pQEP15 and affinity chromatography to generate a quantity of EcoP15I high enough for comprehensive proteolytic digestion studies and analyses of the proteolytic fragments by mass spectrometry. We show here that in the presence of specific DNA the entire Mod subunit is protected from trypsin digestion, whereas in the absence of DNA stable protein domains of the Mod subunit were not detected. In contrast, the Res subunit is comprised of two trypsin-resistant domains of approximately 77-79 kDa and 27-29 kDa, respectively. The cofactor ATP and the presence of DNA, either specific or unspecific, are important stabilizers of the Res subunit. The large N-terminal domain of Res contains numerous functional motifs that are predicted to be involved in ATP-binding and hydrolysis and/or DNA translocation. The C-terminal small domain harbours the catalytic center. Based on our data, we conclude that both structural Res domains are connected by a flexible linker region that spans 23 amino acid residues. To confirm this conclusion, we have investigated several EcoP15I enzyme mutants obtained by insertion mutagenesis in and around the predicted linker region within the Res subunit. All mutants tolerated the genetic manipulation and did not display loss of function or alteration of the DNA cleavage position.  相似文献   

12.
For efficient DNA hydrolysis, Type III restriction endonuclease EcoP15I interacts with two inversely oriented recognition sites in an ATP-dependent process. EcoP15I consists of two methylation (Mod) subunits and a single restriction (Res) subunit yielding a multifunctional enzyme complex able to methylate or to hydrolyse DNA. Comprehensive sequence alignments, limited proteolysis and mass spectroscopy suggested that the Res subunit is a fusion of a motor or translocase (Tr) domain of superfamily II helicases and an endonuclease domain with a catalytic PD…EXK motif. In the Tr domain, seven predicted helicase motifs (I, Ia, II–VI), a recently discovered Q-tip motif and three additional regions (IIIa, IVa, Va) conserved among Type III restriction enzymes have been identified that are predicted to be involved in DNA binding and ATP hydrolysis. Because DNA unwinding activity for EcoP15I (as for bona fide helicases) has never been found and EcoP15I ATPase rates are only low, the functional importance of the helicase motifs and regions was questionable and has never been probed systematically. Therefore, we mutated all helicase motifs and conserved regions predicted in Type III restriction enzyme EcoP15I and examined the functional consequences on EcoP15I enzyme activity and the structural integrity of the variants by CD spectroscopy. The resulting eleven enzyme variants all, except variant IVa, are properly folded showing the same secondary structure distribution as the wild-type enzyme. Classical helicase motifs I–VI are important for ATP and DNA cleavage by EcoP15I and mutations therein led to complete loss of ATPase and cleavage activity. Among the catalytically inactive enzyme variants three preserved the ability to bind ATP. In contrast, newly assigned motifs Q-tip, Ia and Va are not essential for EcoP15I activity and the corresponding enzyme variants were still catalytically active. DNA binding was only marginally reduced (2–7 fold) in all enzyme variants tested.  相似文献   

13.
The HsdS subunit of a type I restriction-modification (R-M) system plays an essential role in the activity of both the modification methylase and the restriction endonuclease. This subunit is responsible for DNA binding, but also contains conserved amino acid sequences responsible for protein-protein interactions. The most important protein-protein interactions are those between the HsdS subunit and the HsdM (methylation) subunit that result in assembly of an independent methylase (MTase) of stoichiometry M(2)S(1). Here, we analysed the impact on the restriction and modification activities of the change Trp(212)-->Arg in the distal border of the central conserved region of the EcoR124I HsdS subunit. We demonstrate that this point mutation significantly influences the ability of the mutant HsdS subunit to assemble with the HsdM subunit to produce a functional MTase. As a consequence of this, the mutant MTase has drastically reduced DNA binding, which is restored only when the HsdR (restriction) subunit binds with the MTase. Therefore, HsdR acts as a chaperon allowing not only binding of the enzyme to DNA, but also restoring the methylation activity and, at sufficiently high concentrations in vitro of HsdR, restoring restriction activity.  相似文献   

14.
The type III restriction-modification enzyme EcoP15I requires the interaction of two unmethylated, inversely oriented recognition sites 5'-CAGCAG in head to head configuration to allow an efficient DNA cleavage. It has been hypothesized that two convergent DNA-translocating enzyme-substrate complexes interact to form the active cleavage complex and that translocation is driven by ATP hydrolysis. Using a half-automated, fluorescence-based detection method, we investigated how the distance between two inversely oriented recognition sites affects DNA cleavage efficiency. We determined that EcoP15I cleaves DNA efficiently even for two adjacent head to head or tail to tail oriented target sites. Hence, DNA translocation appears not to be required for initiating DNA cleavage in these cases. Furthermore, we report here that EcoP15I is able to cleave single-site substrates. When we analyzed the interaction of EcoP15I with DNA substrates containing adjacent target sites in the presence of non-hydrolyzable ATP analogues, we found that cleavage depended on the hydrolysis of ATP. Moreover, we show that cleavage occurs at only one of the two possible cleavage positions of an interacting pair of target sequences. When EcoP15I bound to a DNA substrate containing one recognition site in the absence of ATP, we observed a 36 nucleotide DNaseI-footprint that is asymmetric on both strands. All of our footprinting experiments showed that the enzyme did not cover the region around the cleavage site. Analyzing a DNA fragment with two head to head oriented recognition sites, EcoP15I protected 27-33 nucleotides around the recognition sequence, including an additional region of 26 bp between both cleavage sites. For all DNA substrates examined, the presence of ATP caused altered footprinting patterns. We assume that the altered patterns are most likely due to a conformational change of the enzyme. Overall, our data further refine the tracking-collision model for type III restriction enzymes.  相似文献   

15.
Type I restriction enzymes bind to specific DNA sequences but subsequently translocate non-specific DNA past the complex in a reaction coupled to ATP hydrolysis and cleave DNA at any barrier that can halt the translocation process. The restriction subunit of these enzymes, HsdR, contains a cluster of seven amino acid sequence motifs typical of helicase superfamily II, that are believed to be relevant to the ATP-dependent DNA translocation. Alignment of all available HsdR sequences reveals an additional conserved region at the protein N-terminus with a consensus sequence reminiscent of the P-D.(D/E)-X-K catalytic motif of many type II restriction enzymes. To investigate the role of these conserved residues, we have produced mutants of the type IB restriction enzyme Eco AI. We have found that single alanine substitutions at Asp-61, Glu-76 and Lys-78 residues of the HsdR subunit abolished the enzyme's restriction activity but had no effect on its ATPase and DNA translocation activities, suggesting that these residues are part of the active site for DNA cleavage.  相似文献   

16.
Type III restriction/modification systems recognize short non-palindromic sequences, only one strand of which can be methylated. Replication of type III-modified DNA produces completely unmethylated recognition sites which, according to classical mechanisms of restriction, should be signals for restriction. We have shown previously that suicidal restriction by the type III enzyme EcoP15I is prevented if all the unmodified sites are in the same orientation: restriction by EcoP15I requires a pair of unmethylated, inversely oriented recognition sites. We have now addressed the molecular mechanism of site orientation-specific DNA restriction. EcoP15I is demonstrated to possess an intrinsic ATPase activity, the potential driving force of DNA translocation. The ATPase activity is uniquely recognition site-specific, but EcoP15I-modified sites also support the reaction. EcoP15I DNA restriction patterns are shown to be predetermined by the enzyme-to-site ratio, in that site-saturating enzyme levels elicit cleavage exclusively between the closest pair of head-to-head oriented sites. DNA restriction is blocked by Lac repressor bound in the intervening sequence between the two EcoP15I sites. These results rule out DNA looping and strongly suggest that cleavage is triggered by the close proximity of two convergently tracking EcoP15I-DNA complexes.  相似文献   

17.
The EcoA restriction enzyme from Escherichia coli 15T- has been isolated. It proves to be an unusual enzyme, clearly related functionally to the classical type I restriction enzymes. The basic enzyme is a two subunit modification methylase. Another protein species can be purified which by itself has no enzymatic activities but which converts the modification methylase to an ATP and S-adenosylmethionine-dependent restriction endonuclease. The DNA recognition sequence of EcoA has an overall structure that is very similar to previously determined type I sequences. It is: 5'-GAGNNNNNNNGTCA-3' 3'-CTCNNNNNNNCAGT-5' where N can be any nucleotide. Modification methylates the adenosyl residue in the specific trinucleotide and the adenosyl residue in the lower strand of the specific tetranucleotide.  相似文献   

18.
Much insight into the interactions of DNA and enzymes has been obtained using a number of single-molecule techniques. However, recent results generated using two of these techniques-atomic force microscopy (AFM) and magnetic tweezers (MT)-have produced apparently contradictory results when applied to the action of the ATP-dependent type III restriction endonucleases on DNA. The AFM images show extensive looping of the DNA brought about by the existence of multiple DNA binding sites on each enzyme and enzyme dimerisation. The MT experiments show no evidence for looping being a requirement for DNA cleavage, but instead support a diffusive sliding of the enzyme on the DNA until an enzyme-enzyme collision occurs, leading to cleavage. Not only do these two methods appear to disagree, but also the models derived from them have difficulty explaining some ensemble biochemical results on DNA cleavage. In this 'Survey and Summary', we describe several different models put forward for the action of type III restriction enzymes and their inadequacies. We also attempt to reconcile the different models and indicate areas for further experimentation to elucidate the mechanism of these enzymes.  相似文献   

19.
The SgrAI endonuclease usually cleaves DNA with two recognition sites more rapidly than DNA with one site, often converting the former directly to the products cut at both sites. In this respect, SgrAI acts like the tetrameric restriction enzymes that bind two copies of their target sites before cleaving both sites concertedly. However, by analytical ultracentrifugation, SgrAI is a dimer in solution though it aggregates to high molecular mass species when bound to its specific DNA sequence. Its reaction kinetics indicate that it uses different mechanisms to cleave DNA with one and with two SgrAI sites. It cleaves the one-site DNA in the style of a dimeric restriction enzyme acting at an individual site, mediating neither interactions in trans, as seen with the tetrameric enzymes, nor subunit associations, as seen with the monomeric enzymes. In contrast, its optimal reaction on DNA with two sites involves an association of protein subunits: two dimers bound to sites in cis may associate to form a tetramer that has enhanced activity, which then cleaves both sites concurrently. The mode of action of SgrAI differs from all restriction enzymes characterised previously, so this study extends the range of mechanisms known for restriction endonucleases.  相似文献   

20.
The transmissive plasmid R64 (IncI1) performs an antirestriction function, reducing the efficiency of EcoKI-dependent restriction in Escherichia coli K12 cells approximately fivefold. The R64 ardA gene has been cloned and sequenced. The ArdA proteins specifically inhibit type I restriction–modification enzymes. R64 ArdA is highly homologous to ColIb-P9 ArdA: only 4 out of 166 amino acid residues differ. While ColIb-P9 inhibits both endonuclease and methylase activities of the type I restriction–modification enzyme EcoKI (R2M2S), R64 ArdA inhibits only its endonuclease activity. It has been assumed that R64 ArdA suppresses the binding of unmodified DNA with the R subunit, which is responsible for DNA translocation and cleavage. ColIb-P9 ArdA suppresses DNA binding not only with the R, but also with the S subunit, which contacts the sK site containing target adenines. The binding of ArdA with the specific site inhibits both endonuclease and methylase activities; the binding of ArdA with the nonspecific site of the R subunit inhibits only the endonuclease activity ofEcoKI (R2M2S).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号