首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Axonal transport of [3H]protein in the nigro-neostriatal pathway in rats was examined during acute and chronic morphine administration and during morphine abstinence. Two days after a microinjection of [3H]lysine into the left substantia nigra zona compacta, more than 95% of the radioactivity present in the rat forebrain was protein-bound. Examination of frozen frontal brain sections revealed that 80–90% of the labelled protein of the injected side was located in brain areas traversed by the nigro-neostriatal pathway. As a positive control, intranigrally administered colchicine reduced the amount of [3H]protein transported after 5 days to the nucleus caudatus-putamen (neostriatum) to approx 18-26% of control. In animals rendered morphine-dependent by subcutaneous implantation of tablets containing 75 mg of morphine base, 27–86% more radioactivity accumulated in the neostriatum at 3, 4 and 5 days after [3H]lysine injection. In contrast, 23–48% less radioactivity was recovered in the neostriatal areas of animals withdrawing from morphine 24 h after [3H]lysine. Gel electrophoresis of soluble and particulate [3H]protein fractions from neostriatal tissues indicated that the gel patterns of radioactivity were not altered by chronic morphine administration. Neither morphine administration nor morphine abstinence altered the rate or amount of [3H]lysine incorporation into protein of the substantia nigra. These data demonstrate that chronic morphine administration was accompanied by a generalized increase in the amount of labelled protein transported to the neostriatum but the procedure was not sufficiently sensitive to detect a minor qualitative alteration of any particular protein(s). Furthermore, these data suggest that either the capacity or the rate of nigro-neostriatal protein transport may be increased during chronic morphine administration in the rat.  相似文献   

3.
Binding of tritiated ligands of muscarinic and dopamine receptors was analysed in rats 1, 7, 14, 28, 60 days and 24-30 months old. The following ganglia were studied: the nodose ganglion, the lumbar ganglia of sympathetic chain, the main pelvic ganglion in male rats and the paracervical ganglion in female rats. The same level was found for binding of each of ligands for all investigated ganglia. Parameters of postnatal dynamics of development M-cholino- and dopamine reception systems prove to be quite similar, but not identical. Both of the systems reach matured level during first 2 postnatal weeks. In comparison with quinuclidinylbenzilate binding failure of dopamine binding in aged rats is to be more pronounced.  相似文献   

4.
This paper describes the results of intracellular injections of radiolabelled neurotransmitters and transmitter precursor substances, including glutamate, GABA, aspartate, octopamine, tyramine, tryptophan, and choline, into cell bodies of identified excitatory and inhibitory neurons innervating lobster extensor musculature. The distributions and identities of radioactive substances appearing in axons were examined at various times following injection and in vitro incubation. Injected GABA and glutamate were found in appreciable quantities in both excitatory and inhibitory axons and migrated down axons at an estimated rate of between 16 and 22 mm/day at 12 degrees C, whereas the other substances tested were present in substantially smaller quantities and migrated at an estimated rate of less than 7.5 mm/day at 12 degrees C. Injected GABA, D-glutamate and L-glutamate accumulated proximal to ligatures tied around nerves, whereas neither octopamine nor aspartate accumulated proximal to ligatures. Since GABA is the transmitter substance released by inhibitory neurons and L-glutamate is thought to be released from excitatory nerve terminals, these results are consistent with the suggestion that amino acids serving as neurotransmitters are axonally transported. The specificity of axonal transport does not appear to be restricted to the cognate neurotransmitter, as indicated by the movement of L-glutamate in inhibitory axons and GABA in excitatory axons and of D-glutamate in both excitatory and inhibitory axons, but rather may be relaxed to include substances closely related to the neurotransmitter. Some restrictions, however, are apparently placed on axonal transport of small charged molecules in these neurons in that other substances tested migrated down nerves at a considerably slower rate.  相似文献   

5.
[3H]Spiperone ([3H]SPI) binding sites in rat or bovine striata have been solubilized using CHAPS or digitonin detergents. Solubilized sites retained the binding characteristics of those in native membrane preparations. The same solubilized material, however, did not bind [3H]tyramine ([3H]PTA), thus indicating that [3H]PTA binding sites and DA receptors are different chemico-physical entities. In membrane preparations or crude synaptosomes obtained from the c.striatum of neonatally-rendered hypothyroid rats, when central DA-pathways are impaired, both [3H]PTA binding and [3H]DA uptake processes were markedly decreased, with no effect on [3H]mazindol ([3H]MAZ) binding, compared to euthyroids. Reserpine, a well-known inhibitor of DA-uptake into a variety of secretory vesicles, and a potent in vivo andin vitro inhibitor of [3H]PTA binding, did not affect the [3H]MAZ binding process. This further supported the suggestion that while [3H]PTA binding sites are almost totally associated with the vesicular transporter for DA, [3H]MAZ does label a site involved in the DA-translocation across the neuronal membrane. The latter process seems to be rather insensitive to thyroid hypofunction, when however the intracellular storage of DA might be consistently impaired. In conclusion, PTA might be well exploited as a marker of the DA vesicular transporter through its molecular characterization, whenever possible.Special issue dedicated to Dr. Paola S. Timiras  相似文献   

6.
7.
8.
9.
10.
Tubulin transport in neurons   总被引:3,自引:2,他引:1       下载免费PDF全文
《The Journal of cell biology》1996,133(6):1355-1366
A question of broad importance in cellular neurobiology has been, how is microtubule cytoskeleton of the axon organized? It is of particular interest because of the history of conflicting results concerning the form in which tubulin is transported in the axon. While many studies indicate a stationary nature of axonal microtubules, a recent series of experiments reports that microtubules are recruited into axons of neurons grown in the presence of a microtubule-inhibitor, vinblastine (Baas, P.W., and F.J. Ahmad. 1993.J. Cell Biol. 120:1427-1437: Ahmad F.J., and P.W. Baas. 1995. J. Cell Sci, 108:2761-2769; Sharp, D.J., W. Yu, and P.W. Baas. 1995. J. Cell Biol, 130:93-103; Yu, W., and P.W. Baas. 1995. J. Neurosci. 15:6827-6833.). Since vinblastine stabilizes bulk microtubule-dynamics in vitro, it was concluded that preformed microtubules moved into newly grown axons. By visualizing the polymerization of injected fluorescent tubulin, we show that substantial microtubule polymerization occurs in neurons grown at reported vinblastine concentrations. Vinblastine inhibits, in a concentration-dependent manner, both neurite outgrowth and microtubule assembly. More importantly, the neuron growth conditions of low vinblastine concentration allowed us to visualize the footprints of the tubulin wave as it polymerized and depolymerized during its slow axonal transport. In contrast, depolymerization resistant fluorescent microtubules did not move when injected in neurons. We show that tubulin subunits, not microtubules, are the primary form of tubulin transport in neurons.  相似文献   

11.
Axonal transport in neurons has been shown to be microtubule dependent, driven by the molecular motor proteins kinesin and dynein. However, organelles undergoing fast transport can often pause or rapidly change directions without apparent dissociation from their transport tracks. Cytoskeletal polymers such as neurofilaments and microtubules have also been shown to make infrequent but rapid movements in axons indicating that their transport is likely to involve molecular motors. In addition, neurons have multiple compartments that are devoid of microtubules where transport of organelles is still seen to occur. These areas are rich in other cytoskeletal polymers such as actin filaments. Transported organelles have been shown to associate with multiple motor proteins including myosins. This suggests that nonmicrotubule-based transport may be myosin driven. In this review we will focus our attention on myosin motors known to be present in neurons and evaluate the evidence that they contribute to transport or other functions in the different compartments of the neuron.  相似文献   

12.
13.
Retrograde axonal transport process was investigated in the afferent systems to the rat olfactory bulb, after [3H]noradrenaline ([3H]NA) injection into the olfactory bulb, in order to provide evidence regarding its specificity and the biochemical basis supporting this specificity.

Radioautographs showed that [3H]NA unilaterally injected into the olfactory bulb at a concentration of 10−3 M, resulted in labeling of the structures afferent to the olfactory bulb, mainly on the injected side: locus coeruleus (LC), dorsal and central raphes, nucleus of the lateral olfactory tract and piriform cortex. Heavy labeling was observed on the noradrenergic LC cell bodies, whereas the radioautographic reaction was less intense on the other structures. After 10−4 M injection, the labeling intensity of the LC cell bodies was lower while very rare weakly labeled cell bodies persisted in the dorsal raphe, nucleus of the lateral olfactory tract and piriform cortex. The LC cell bodies were exclusively labeled when the concentration of [3H]NA injection was 10−5 M. All the other structures were devoid of labeling. It was still possible to detect labeled cell bodies in the LC for a 10−6 M concentration.

Following bilateral injections of [3H]NA (10−3 M) the total radioactivity retrogradely transported to the LC represented about 4 times the total radioactivity measured in the periaqueductal gray substance (as control tissue of the tracer diffusion). Fractional study by ethanol of LC tissue homogenate and liquid scintillation counting of each fraction showed that 60% of the total radioactivity (about 2.5 times the control value) was in the supernatant and 40% (about 20 times the control value) was associated with the precipitate. In the other regions such as the dorsal and central raphes and periaqueductal gray substance, radioactivity was mainly found in the supernatant, except for the dorsal raphe whose precipitate contained a low amount of radioactivity (about 4 times the control value).

Colchicine (an axonal transport inhibitor) bilaterally injected into the medial forebrain bundle and systemic administration of desipramine (a noradrenaline uptake inhibitor) decreased the radioactivity associated with the LC precipitate by 90 and 85% and the LC supernatant radioactivity by 55 and 35%, respectively. These pretreatments did not significantly affect the radioactivity amounts measured in the different fractions of dorsal and central raphes and periaqueductal gray substance. Radioautographic study after colchicine treatment showed a large decrease in the labeling intensity of the LC cell bodies as compared to the non-treated side.

Therefore, we suggest that low concentrations (10−5 M) of [3H]NA injected in the olfactory bulb determine specific conditions of noradrenergic pathway labeling. This specific labeling after migration could be supported by the radioactive ethanol precipitate which would appear to contain [3H]NA- and/or 3H-derivatives-binding protein. Such a 3H-macromolecular complex, which could represent the specific carrier, may well undergo retrograde transport from the nerve terminals towards the cell bodies.  相似文献   


14.
In acute experiments on urethane-anesthetized rats, the number of neostriatal neurons responding to single electrical stimulations of the motor cortex regions (MI–MII) by short-latent (8.0 msec or less) spikes was found to decrease gradually during the first day after a single reserpine injection (5 mg/kg, i.p.). Such responses almost disappeared; then, during the following days, their number increased gradually and became close to the control value a month after reserpine injection. The gradual disturbance and the gradual recovery of corticoneostriatal impulsation are believed to be secondary processes independent of dopamine level in the neostriatum. These processes are caused by the toxic effects of an excessive amount of glutamate released in the corticoneostriatal synaptic contacts.Neirofiziologiya/Neurophysiology, Vol. 26, No. 2, pp. 146–149, March–April, 1994.  相似文献   

15.
After a single i.p. injection of tritiated-5-hydroxytryptamine to young, old or stressed rats, the blood plasma was filtered through Sephadex-G 25 column. Two peaks of radioactivity were obtained. One was excluded from the column and eluted together with plasma proteins, the other was retained on the column and eluted as free indoles. The radioactivity bound to plasma proteins was identified as 5-hydroxyindole acetic acid. The free radioactivity was identified as 5-hydroxytryptamine.  相似文献   

16.
The polarized morphology of neurons poses a particular challenge to intracellular signal transduction. Local signals generated at distal sites must be retrogradely transported to the nucleus to produce persistent changes in neuronal function. Such communication of signals between distal neuronal compartments and the nucleus occurs during axon guidance, synapse formation, synaptic plasticity and following neuronal injury. Recent studies have begun to delineate a role for the active nuclear import pathway in transporting signals from axons and dendrites to the nucleus. In this pathway, soluble cargo proteins are recognized by nuclear transport carriers, called importins, which mediate their translocation from the cytoplasm into the nucleus. In neurons, importins might serve an additional function by carrying signals from distal sites to the soma.  相似文献   

17.
We have previously shown that a nerve conditioning lesion (CL) made 2 weeks prior to amputation results in an earlier onset of limb regeneration in newts. Studies in fish and mammals demonstrate that when a CL precedes a nerve testing lesion, slow component b (SCb) of axonal transport is increased compared to axons that had not received a CL. We wanted to know whether the earlier initiation of limb regeneration after a CL was associated with an increase in SCb transport. The transport of [35S]methionine labeled SCb proteins was measured by using SDS-PAGE, fluorography, and scintillation counting. The rate of transport and quantity of SCb proteins was determined at 7, 14, 21, and 28 days after injection of [35S]methionine into the motor columns of normal; single lesioned (i.e., transection axotomy, amputation axotomy, or sham CL followed by amputation); and double-lesioned limb axons (i.e., nerve transection CL followed 2 weeks later by amputation axotomy). The rate of SCb transport in axons of unamputated newt limbs was 0.19 mm/day. There was an increase in the amount of labeled SCb proteins transported in axons regenerating as the result of a single lesion but no acceleration in the rate of SCb transport, which was 0.21 mm/day in axons that received a sham CL followed by limb amputation. The rate of SCb transport doubled (0.40 mm/day) and the amount of labeled SCb proteins being transported was increased when amputation was preceded by a CL. This study demonstrates that the earlier onset of limb regrowth, seen when amputation follows a CL, is associated with an increased transport of SCb proteins. This suggests that limb regeneration is, in part, regulated by axonal regrowth. We propose that the blastema requires a minimum quantity of innervation before progressing to the next stage of limb regeneration, and that the transport of SCb proteins determines when that quantity will be available.  相似文献   

18.
19.
Characterization of the catecholamine transporter in chromaffin granule membranes has been hampered by the lack of a radioligand with high specific activity which binds selectively to the carrier with high affinity. We report here the identification of a high affinity binding site for [3H]reserpine on chromaffin granule membranes isolated from bovine adrenal gland which has the characteristics expected of the catecholamine transporter. [3H]Reserpine bound predominately to a high affinity site with a Kd for [3H]reserpine of 9 nM and a binding site density of 7.8 pmol/mg of protein. Comparison of the characteristics of the high affinity reserpine binding site to the characteristics of catecholamine transport indicated that (a) the Ki and rank order of potency for inhibition of [3H]reserpine binding by various biogenic amines was similar to their Ki for inhibition of catecholamine transport (b) both the inhibition of (-)-[3H]norepinephrine transport and inhibition of [3H]reserpine binding showed similar stereo-specificity, and (c) Kd for binding of reserpine to chromaffin granule membranes was similar to the Ki for reserpine inhibition of catecholamine transport. These results demonstrate that the high affinity binding site for [3H]reserpine on chromaffin granule membranes is associated with the catecholamine transporter.  相似文献   

20.
Microtubule-dependent transport of secretory vesicles in RBL-2H3 cells   总被引:1,自引:0,他引:1  
Antigen-mediated activation of mast cells results in Ca2+-dependent exocytosis of preformed mediators of the inflammatory response. To investigate the role of secretory vesicle motility in this response, we have performed time-lapse confocal microscopy on RBL-2H3 cells transfected with a green fluorescent protein-Fas ligand fusion protein (GFP-FasL). Green fluorescent protein-labeled vesicles exhibit rapid, bidirectional movement in both resting and activated cells and can be localized adjacent to microtubules. Colchicine treatment inhibits the motility of secretory vesicles as measured by fluorescence recovery after photobleaching (FRAP). Colchicine also inhibits both the extent and the rate of exocytosis triggered by receptor activation or by Ca2+ ionophore, demonstrating that microtubule-dependent movement of secretory vesicles plays an important role in the exocytic response .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号