首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism for the increased association of CTP:phosphocholine cytidylyltransferase (CT) with membranes of hepatocytes derived from choline-deficient, compared with choline-supplemented rats, has been investigated. The cells were maintained in culture for 4 h in a choline- and methionine-deficient medium. (Methionine is required for synthesis of phosphatidylcholine (PC) via methylation of phosphatidylethanolamine.) Afterward, the cells were incubated +/- choline for various times up to 4 h. In the presence, but not in the absence, of choline there was a translocation of CT activity from membranes to cytosol. During this time period there was no change in the amounts of unesterified fatty acids or diacylglycerol recovered from the hepatocytes. In addition, there was no evidence for a difference in the incorporation of 32P into CT or other cytosolic proteins isolated from hepatocytes +/- choline. In contrast, there was a highly significant correlation between the concentration of PC in the membranes and the increased activity of CT in the cytosol (R = 0.98) and the decreased activity in the membranes (R = 0.93). The concentration of PC could alternatively be altered by incubation of the choline-deficient hepatocytes with methionine or lyso-PC. With either of these supplementations highly significant correlation coefficients were observed between the concentration of PC in membranes and decreased activity of CT in membranes or increased activity in cytosol. The concentration of PC was reduced in the endoplasmic reticulum, but not the Golgi membranes, isolated from choline-deficient compared with choline-supplemented livers. The data suggest that the amount of PC in the endoplasmic reticulum feedback regulates the amount of CT associated with this membrane.  相似文献   

2.
Two forms of CTP:phosphocholine cytidylyltransferase were identified in rat liver cytosol by gel filtration chromatography. The low molecular weight form (L form) is the major form in fresh cytosol. The enzyme associates into a high molecular weight form (H form) upon storage of the cytosol at 4 degrees C. Aggregation of the purified L form of cytidylyltransferase is caused by total rat liver lipids, neutral lipids, diacylglycerol, or phosphatidylglycerol. Diacylglycerol was the only lipid isolated from the rat liver that caused aggregation of the purified enzyme. Although the addition of diacylglycerol to the cytosol did not change the amount of aggregation of the enzyme, a 2.5-fold increase in H form was observed in cytosol pretreated with phospholipase C, or in cytosol from rats fed a high cholesterol diet. In both of these cytosolic preparations, the concentration of diacylglycerol was elevated twofold. Phosphatidylglycerol did not seem to affect the association of the enzyme in cytosol since it is present in very low concentrations in the rat liver cytosol, and its degradation in cytosol by a specific phospholipase did not affect the rate of aggregation. The results suggest that diacylglycerol in an appropriate form is required for association of cytidylyltransferase in rat liver cytosol.  相似文献   

3.
We report CTP:phosphocholine cytidylyltransferase (CT) as another target enzyme of sphingosine actions in addition to the well-characterized protein kinase C. Effects of sphingosine and lysophingolipids were studied on the activity of purified cytidylyltransferase prepared by the method of Weinhold et al. (Weinhold, P. A., Rounsifer, M.E., and Feldman, D.A. (1986) J. Biol. Chem. 261, 5104-5110). The sphingolipids were tested as components of egg phosphatidylcholine (PC) vesicles, 25 mol% sphingosine inhibited the CT activity by about 50%. The inhibition of CT by sphingosine and lysosphingolipids was reversible. Sphingosine was found to be a reversible inhibitor of CT with respect to the activating lipids such as phosphatidylserine, phosphatidylinositol, phosphatidylglycerol, and fatty acid:phosphatidylcholine vesicles. Egg PC vesicles containing sphingosine, psychosine (galactosylsphingosine), glucopsychosine (glucosylsphingosine), and lysosphingomyelin (sphingosylphosphorylcholine) suppressed the activation by PC/oleic acid vesicles, whereas the parent sphingolipids did not. Egg PC vesicles containing oleylamine and hexadecyltrimethylamine inhibited CT activity, whereas egg PC-octylamine vesicles did not alter the enzyme activity. This indicates the importance of an amino group and long alkyl chain. LysoPC, a known detergent, did not inhibit the enzyme activity under the same assay conditions in which sphingosine inhibited. These results are the first report of a lipid inhibitor of purified CT.  相似文献   

4.
Experimental evidence is reported that the addition in vitro of a polyunsaturated soybean phospholipid material (EPL) to a CTP:PC cytidylyltransferase preparation from rat liver (E.C. 2.7.7.15) produces noticeable stimulation of this enzymatic activity. Preincubation for different time intervals of EPL under air or oxygen further stimulates the activating effects. Little influence is exerted on the same enzyme by saturated lipids, such as dipalmitoyl-sn-glycero-3-phosphorylcholine and distearoyl-sn-glycero-3-phosphorylcholine. It is proposed that the lipid components of the EPL which exert the stimulatory action may be lyso-phospholipid moieties derived from EPL upon preincubation or directly present in the product. The biological significance of these activations in liver tissue is discussed.  相似文献   

5.
Chlorpromazine (25 microM) and trifluoperazine (25 microM) inhibited by 5-fold the activity of CTP:phosphocholine cytidylyltransferase, the rate-limiting enzyme for phosphatidylcholine biosynthesis, in rat liver cytosol. Addition of saturating amounts of rat liver phospholipid to the enzyme assay rapidly reversed the drug-mediated inhibition. Three-fold or greater concentrations of these drugs were required to produce a 50% inhibition of the microsomal cytidylyltransferase. Incubation of rat hepatocytes with 20 microM trifluoperazine or chlorpromazine did not inhibit phosphatidylcholine biosynthesis. These results provide additional evidence for the hypothesis that the active form of cytidylyltransferase is on the endoplasmic reticulum and the enzyme in cytosol appears to be latent.  相似文献   

6.
CTP:phosphocholine cytidylyltransferase is thought to be a rate-limiting enzyme in phosphatidylcholine synthesis. This enzyme has not been well studied in intestine. We found that activity was greater in the non-lipid stimulated state (cytosolic form of the enzyme) than any previous tissue investigated (2.7 nM/min per mg protein). On addition of lysophosphatidylethanolamine, the enzyme only increased in activity 2.4-fold which is less than any previously reported tissue on lipid stimulation. As compared to liver, the enzyme was resistant to inhibition by chlorpromazine (gut, 100% activity remaining at 80 microM; 14% in liver). Tetracaine and propranolol were found to be impotent as inhibitors of the intestinal enzyme. Octanol-water partitioning showed that both chlorpromazine and tetracaine were hydrophobic, propranolol was not. pKa studies demonstrated that at the reaction pH, chlorpromazine would be uncharged. Physiologic experiments in which de novo phosphatidylcholine synthesis was either stimulated by bile duct fistulization and triacylglycerol infusion or suppressed by including phosphatidylcholine in a lipid infusion demonstrated that the enzyme (cytosolic enzyme) responded by decreasing Vmax but that the Km remained the same. In sum, these studies suggest that CTP:phosphocholine cytidylyltransferase in intestine is unique as compared to other tissues and that its response to a physiological stimulus is counter to that which would be adaptive.  相似文献   

7.
8.
The specificity of CTP:phosphocholine cytidylyltransferase from rat liver for phosphorylated bases has been investigated. The apparent Km for phosphocholine was 0.17 mM. As the number of methyl substituents on the phospho-base decreased, the apparent Km increased: 4.0 mM for phosphodimethylethanolamine, 6.9 for phosphomonomethylethanolamine and 68.4 for phosphoethanolamine. The Vmax for the reaction was similar for phosphocholine (12.6 mumol/min per mg protein), phosphomonomethylethanolamine (13.5 mumol/min per mg protein) and phosphoethanolamine (9.2 mumol/min per mg protein). When phosphodimethylethanolamine was the substrate, the Vmax was 3-fold higher (40.3 mumol/min per mg protein). Phosphoethanolamine, phosphomonomethylethanolamine and phosphodimethylethanolamine were competitive inhibitors of the cytidylyltransferase when phosphocholine was used as substrate with Ki values of 18.5 mM, 9.3 mM and 1.5 mM, respectively. The results show that the cytidylyltransferase is highly specific for phosphocholine.  相似文献   

9.
We have studied the binding of CTP: phosphocholine cytidylyltransferase from HeLa cell cytosol to large unilamellar vesicles of egg phosphatidylcholine (PC) or HeLa cell phospholipids that contain various amounts of oleic acid. A fatty acid/phospholipid molar ratio exceeding 10% was required for CTP: phosphocholine cytidylyltransferase binding to liposomes. At a fatty acid/phospholipid molar ratio of 1; 85% of the cytosolic CTP: phosphocholine cytidylyltransferase was bound. The enzyme also bound to liposomes with at least 20 mol% palmitic acid, monoolein, diolein or oleoylacetylglycerol. Oleoyl-CoA did not promote enzyme binding to liposomes. Binding to oleate-PC vesicles was blocked by Triton X-100 but not by 1 M KCl, and was reversed by incubation of the vesicles with bovine serum albumin. Cytidylyltransferase bound to egg PC vesicles that contained 33 mol% oleic acid equally well at 4 degrees C and 37 degrees C. The enzyme also bound to dimyristoyl- and dipalmitoylphosphatidylcholine vesicles containing oleic acid at temperatures below the phase transition for these liposomes. Binding of the cytidylyltransferase to egg PC vesicles containing oleic acid, monoolein, oleoylacetylglycerol or diolein resulted in enzyme activation, as did binding to dipalmitoylPC-oleic acid vesicles. However, binding to egg PC-palmitic acid vesicles did not fully activate the transferase. Various mechanisms for cytidylyltransferase interaction with membranes are discussed.  相似文献   

10.
In addition to suppressing cholesterol synthesis and uptake, oxysterols also activate glycerophospholipid and SM (sphingomyelin) synthesis, possibly to buffer cells from excess sterol accumulation. In the present study, we investigated the effects of oxysterols on the CDP-choline pathway for PtdCho (phosphatidylcholine) synthesis using wild-type and sterol-resistant CHO (Chinese-hamster ovary) cells expressing a mutant of SCAP [SREBP (sterol-regulatory-element-binding protein) cleavage-activating protein] (CHO-SCAP D443N). [(3)H]Choline-labelling experiments showed that 25OH (25-hydroxycholesterol), 22OH (22-hydroxycholesterol) and 27OH (27-hydroxycholesterol) increased PtdCho synthesis in CHO cells as a result of CCTalpha (CTP:phosphocholine cytidylyltransferase alpha) translocation and activation at the NE (nuclear envelope). These oxysterols also activate PtdCho synthesis in J774 macrophages. in vitro, CCTalpha activity was stimulated 2- to 2.5-fold by liposomes containing 5 mol% 25OH, 22OH or 27OH. Inclusion of up to 5 mol% cholesterol did not further activate CCTalpha. 25OH activated CCTalpha in CHO-SCAP D443N cells leading to a transient increase in PtdCho synthesis and accumulation of CDP-choline. CCTalpha translocation to the NE and intranuclear tubules in CHO-SCAP D443N cells was complete after 1 h exposure to 25OH compared with only partial translocation by 4-6 h in CHO-Mock cells. These enhanced responses in CHO-D443N cells were sterol-dependent since depletion with cyclodextrin or lovastatin resulted in reduced sensitivity to 25OH. However, the lack of effect of cholesterol on in vitro CCT activity indicates an indirect relationship or involvement of other sterols or oxysterol. We conclude that translocation and activation of CCTalpha at nuclear membranes by side-chain hydroxylated sterols are regulated by the cholesterol status of the cell.  相似文献   

11.
A new model system for the study of phosphatidylcholine biosynthesis is presented. Young rats were fed a diet that contained 5% cholesterol and 2% cholate. After 6 days there was a 2-fold increase in the concentration of plasma phospholipid (243 mg/dl compared to 132 mg/dl for control animals) and a 3-fold increase in the concentration of plasma phosphatidylcholine. The rate of phosphatidylcholine biosynthesis was measured after injection of [Me-3H]choline into the portal veins. The incorporation of tritium into choline, phosphocholine and betaine by liver was similar for experimental and control animals, whereas there was a 3-fold increased incorporation into phosphatidylcholine of the cholesterol/cholate-fed rats. The activities of the enzymes of phosphatidylcholine biosynthesis in cytosol and microsomes were assayed. The only change detected was in the cytosolic and microsomal activities of CTP: phosphocholine cytidylyltransferase which were increased more than 2-fold in specific activity. When total cytidylyltransferase activity per liver was determined, a dramatic translocation of the enzyme to microsomes was observed. The control livers had 24% of the cytidylyltransferase activity associated with microsomes, whereas this value was 61% in the livers from cholesterol/cholate-fed rats. When the cytosolic cytidylyltransferase was assayed in the presence of phospholipid, the enzyme was stimulated several-fold and the difference in specific activity between control and cholesterol/cholate-fed rats was abolished. The increased activity in cytosol appears to be the result of a 2-fold increase in the amount of phospholipid in the cytosol from cholesterol/cholate-fed rats. The data strongly support the hypothesis that the special diet stimulates phosphatidylcholine biosynthesis by causing a translocation of the cytidylyltransferase from cytosol to microsomes where it is activated.  相似文献   

12.
The reaction catalyzed by CTP:phosphocholine cytidylyltransferase in the reverse direction, i.e. the formation of CTP and phosphocholine from CDP-choline and pyrophosphate, is slightly faster than the reaction in the forward direction. The reverse reaction is optimal at 2 mM pyrophosphate and 6 mM Mg2+, in both fetal and adult preparations. The apparent substrate Km values for phosphocholine, CDP-choline, and pyrophosphate are similar in the fetal and adult forms of the enzyme. The enzyme activity is separated into two forms by gel filtration. The enzyme from adult lung exists as a high molecular weight species, ranging in size from 5 X 10(6) to 50 X 10(6). The enzyme from fetal lung exists as a 190,000 molecular weight species and is totally dependent upon added anionic phospholipid for activity in both the forward and reverse direction. The addition of phosphatidylglycerol gives maximal activity, while phosphatidylinositol or cardiolipin produce about 60 to 70% of the maximal activity. Enzyme activation is accompanied by an aggregation of the enzyme. A sonicated preparation of phosphatidylglycerol is a more efficient activator than a preparation mixed on a Vortex mixer (KA = 30 micronM) and also converts a larger proportion of enzyme from fetal lung into a high molecular weight species. The enzyme from adult lung can be dissociated into a form in fetal lung. The dissociated species can be converted back to a high molecular weight form in the presence of phosphatidylglycerol.  相似文献   

13.
The purpose of these studies was to determine the properties of the membrane-bound cytidylyltransferase in adult lung and to assess the relationship between the microsomal enzyme and the two forms of cytidylyltransferase in cytosol. Microsomes, isolated by glycerol density centrifugation, contained significantly less cytidylyltransferase than microsomes isolated by differential centrifugation (11.6 +/- 3.2 vs. 30 +/- 11 nmol/min per g lung). The released activity was recovered as H-form cytidylyltransferase. Cytidylyltransferase activity was not removed from microsomes by washing of the microsomal pellet with homogenizing buffer. Triton X 100 extracted all of the cytidylyltransferase from microsomes. The extracted activity was similar to H-form. Chlorpromazine dissociated microsomal enzyme to L-form. Chlorpromazine has been shown previously to dissociate H-form to L-form. These results suggested that microsomal cytidylyltransferase existed in a form similar if not identical to cytosolic H-form. In vitro translocation experiments demonstrated that the L-form of cytidylyltransferase was the species which binds to microsomal membranes. Triton X 100 extraction of microsomes from translocations experiments removed the bound enzyme activity. Glycerol density fractionation indicated that the activity in the Triton extract was H-form cytidylyltransferase. We concluded that the active lipoprotein form of cytidylyltransferase (H-form) is the membrane-associated form of cytidylyltransferase in adult lung; that it is formed after the L-form binds to microsomal membranes and that cytosolic H-form is released from the membrane.  相似文献   

14.
CTP:phosphocholine cytidylyltransferase (CCT) regulates the biosynthesis of phosphatidylcholine in mammalian cells. In order to understand the mechanism by which this enzyme controls phosphatidylcholine synthesis, we have initiated studies of CCT from the model genetic system, the yeast Saccharomyces cerevisiae. The yeast CCT gene was isolated from genomic DNA using the polymerase chain reaction and was found to encode tyrosine at position 192 instead of histidine, as originally reported. Levels of expression of yeast CCT activity in Escherichia coli or in the yeast, Pichia pastoris, were somewhat low. Expression of yeast CCT in a baculovirus system as a 6x-His-tag fusion protein was higher and was used to purify yeast CCT by a procedure that included delipidation. Kinetic characterization revealed that yeast CCT was activated approximately 20-fold by 20 microM phosphatidylcholine:oleate vesicles, a level 5-fold lower than that necessary for maximal activation of rat CCT. The k(cat) value was 31.3 s(-1) in the presence of lipid and 1.5 s(-1) in the absence of lipid. The K(m) values for the substrates CTP and phosphocholine did not change significantly upon activation by lipids; K(m) values in the presence of lipid were 0.80 mM for phosphocholine and 1.4 mM for CTP while K(m) values in the absence of lipid were 1.2 mM for phosphocholine and 0.8 mM for CTP. Activation of yeast CCT, therefore, appears to be due to an increase in the k(cat) value upon lipid binding.  相似文献   

15.
CTP:phosphocholine cytidylyltransferase (CCT) is an enzyme critical for cellular phosphatidylcholine (PC) synthesis, converting phosphocholine and cytidine 5'-triphosphate (CTP) to CDP-choline. We have isolated a cDNA encoding an isoform of CCT from Drosophila melanogaster and expressed the recombinant native and 6 x -His-tagged forms using a baculovirus expression system in Spodoptera frugiperda (Sf9) insect cells. Immunoblot using anti-phospho amino acid antibodies reveals the enzyme is phosphorylated on serine and threonine residues, but not tyrosine. The purified native enzyme exhibits a V(max) value of 1352+/-159 nmol CDP-choline/min/mg, a K(m) value of 0.50+/-0.09 mM for phosphocholine, and a K' (Hill constant) value of 0.72+/-0.10 mM for CTP. The 6 x -His-tagged enzyme has similar properties with a V(max) value of 2254+/-253 nmol CDP-choline/min/mg, a K(m) value of 0.63+/-0.13 mM for phosphocholine and a K' for CTP equal to 0.81+/-0.20 mM. Each form of the enzyme was activated to a similar extent by synthetic PC vesicles containing 50 mol% oleate. The efficiency of lipid activation was greatest using PC vesicles containing diphosphatidylglycerol (DPG), significantly less efficient activation was seen when phosphatidylserine (PS) and phosphatidylinositol (PI) were incorporated into vesicles, and PC alone or PC vesicles containing phosphatidylethanolamine were the least efficient enzyme activators.  相似文献   

16.
The effects of Ca2+, ionophore A23187, and vasopressin on CTP:phosphocholine cytidylyltransferase were investigated. Cytidylyltransferase is present in the cytosol and in a membrane-bound form on the microsomes. Digitonin treatment caused release of the cytosolic form rapidly. Addition of 7 mM Ca2+ to hepatocyte medium resulted in a 3-fold decrease in cytidylyltransferase released by digitonin treatment (1.7 +/- 0.1 nmol/min per mg compared to 5.1 +/- 0.2 nmol/min per mg in the control). Verapamil, a calcium channel blocker, partially overcame this effect of Ca2+. Ionophore A23187 and vasopressin both mimicked the effect of Ca2+ and resulted in a decrease in cytidylyltransferase release (2.4 +/- 0.1 nmol/min per mg and 2.5 +/- 0.2 nmol/min per mg, respectively) compared to control (3.4 +/- 0.1 nmol/min per mg). In agreement with the digitonin experiments, incubation with 7 mM Ca2+ resulted in a decrease in cytidylyltransferase in the cytosol (from 4.0 to 1.2 mol/min per mg) and a corresponding increase in the microsomes (from 0.6 to 2.4 nmol/min per mg). Verapamil partially blocked this translocation caused by Ca2+. Ionophore A23187 and vasopressin also caused translocation of the cytidylyltransferase from the cytosol to the microsomes. The addition of Ca2+ also resulted in an increase in PC synthesis. With 7 mM Ca2+ in the medium, the label associated with PC increased to 3.8 +/- 0.1.10(6) dpm/dish from 2.7 +/- 0.1.10(6) dpm/dish after 10 min. PC degradation was also affected, since 7 mM Ca2+ in the medium resulted in an increase in LPC formation both in the cell and the medium. We conclude that high concentrations of calcium in the hepatocyte medium can cause a stimulation of CTP:phosphocholine cytidylyltransferase and PC synthesis in cultured hepatocytes.  相似文献   

17.
18.
Phosphatidylcholine (PC) synthesis in animal cells is generally controlled by cytidine 5'-triphosphate (CTP):phosphocholine cytidylyltransferase (CCT). This enzyme is amphitropic, that is, it can interconvert between a soluble inactive form and a membrane-bound active form. The membrane-binding domain of CCT is a long amphipathic alpha helix that responds to changes in the physical properties of PC-deficient membranes. Binding of this domain to membranes activates CCT by relieving an inhibitory constraint in the catalytic domain. This leads to stimulation of PC synthesis and maintenance of membrane PC content. Surprisingly, the major isoform, CCT alpha, is localized in the nucleus of many cells. Recently, a new level of its regulation has emerged with the discovery that signals that stimulate PC synthesis recruit CCT alpha from an inactive nuclear reservoir to a functional site on the endoplasmic reticulum.  相似文献   

19.
We investigated the effects of tumor necrosis factor alpha (TNFalpha), a key cytokine involved in inflammatory lung disease, on phosphatidylcholine (PtdCho) biosynthesis in a murine alveolar type II epithelial cell line (MLE-12). TNFalpha significantly inhibited [(3)H]choline incorporation into PtdCho after 24 h of exposure. TNFalpha reduced the activity of CTP:phosphocholine cytidylyltransferase (CCT), the rate-regulatory enzyme within the CDP-choline pathway, by 40% compared with control, but it did not alter activities of choline kinase or cholinephosphotransferase. Immunoblotting revealed that TNFalpha inhibition of CCT activity was associated with a uniform decrease in the mass of CCTalpha in total cell lysates, cytosolic, microsomal, and nuclear subfractions of MLE cells. Northern blotting revealed no effects of the cytokine on steady-state levels of CCTalpha mRNA, and CCTbeta mRNA was not detected. Incorporation of [(35)S]methionine into immunoprecipitable CCTalpha protein in pulse and pulse-chase studies revealed that TNFalpha did not alter de novo synthesis of enzyme, but it substantially accelerated turnover of CCTalpha. Addition of N-acetyl-Leu-Leu-Nle-CHO (ALLN), the calpain I inhibitor, or lactacystin, the 20 S proteasome inhibitor, blocked the inhibition of PtdCho biosynthesis mediated by TNFalpha. TNFalpha-induced degradation of CCTalpha protein was partially blocked by ALLN or lactacystin. CCT was ubiquitinated, and ubiquitination increased after TNFalpha exposure. m-Calpain degraded both purified CCT and CCT in cellular extracts. Thus, TNFalpha inhibits PtdCho synthesis by modulating CCT protein stability via the ubiquitin-proteasome and calpain-mediated proteolytic pathways.  相似文献   

20.
The nucleoplasmic reticulum (NR), a nuclear membrane network implicated in signaling and transport, is formed by the biosynthetic and membrane curvature-inducing properties of the rate-limiting enzyme in phosphatidylcholine synthesis, CTP:phosphocholine cytidylyltransferase (CCT) alpha. The NR is formed by invagination of the nuclear envelope and has an underlying lamina that may contribute to membrane tubule formation or stability. In this study we investigated the role of lamins A and B in NR formation in response to expression and activation of endogenous and fluorescent protein-tagged CCTalpha. Similarly to endogenous CCTalpha, CCT-green fluorescent protein (GFP) reversibly translocated to nuclear tubules projecting from the NE in response to oleate, a lipid promoter of CCT membrane binding. Coexpression and RNA interference experiments revealed that both CCTalpha and lamin A and B were necessary for NR proliferation. Expression of CCT-GFP mutants with compromised membrane-binding affinity produced fewer nuclear tubules, indicating that the membrane-binding function of CCTalpha promotes the expansion of the NR. Proliferation of atypical bundles of nuclear membrane tubules by a CCTalpha mutant that constitutively associated with membranes revealed that expansion of the double-bilayer NR requires the coordinated assembly of an underlying lamin scaffold and induction of membrane curvature by CCTalpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号