首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complement activity in mammalian serum is fundamentally based on three homologous components C3b, C4b and C5. During systemic infection, the gastrointestinal pathogen Salmonella enterica disseminates within host phagocytic cells but also extracellularly. Consequently, systemic Salmonella transiently confronts the complement system. We show here that the surface protease PgtE of S. enterica proteolytically cleaves C3b, C4b and C5 and that the expression of PgtE enhances bacterial resistance to human serum. Degradation of C3b was further enhanced by PgtE-mediated plasminogen activation.  相似文献   

2.
Caenorhabditis elegans has previously been proposed as an alternative host for models of infectious disease caused by human pathogens. When exposed to some human pathogenic bacteria, the life span of nematodes is significantly reduced. We have shown that mutations in the age-1, and/or age-2 genes of C. elegans, that normally enhance life expectancy, can also increase resistance to killing by the bacterial pathogens Pseudomonas aeruginosa, Salmonella enterica var. Typhimurium, Burkholderia cepacia or Yersinia pseudotuberculosis. We also found that the rate at which wild-type C. elegans was killed by the bacterial pathogens tested increased as nematodes aged. In the case of P. aeruginosa infection, the difference in life span of wild type and age-1 mutants of C. elegans was not due to differences in the level of bacterial colonisation of the gut.  相似文献   

3.
Only three pathogenic bacterial species, Salmonella enterica, Clostridium perfringens, and Listeria monocytogenes, are able to utilize both ethanolamine and 1,2-propanediol as a sole carbon source. Degradation of these substrates, abundant in food and the gut, depends on cobalamin, which is synthesized de novo only under anaerobic conditions. Although the eut, pdu, and cob-cbi gene clusters comprise 40 kb, the conditions under which they confer a selection advantage on these food-borne pathogens remain largely unknown. Here we used the luciferase reporter system to determine the response of the Salmonella enterica serovar Typhimurium promoters P(eutS), P(pocR), P(pduF), and P(pduA) to a set of carbon sources, to egg yolk, to whole milk, and to milk protein or fat fractions. Depending on the supplements, specific inductions up to 3 orders of magnitude were observed for P(eutS) and P(pduA), which drive the expression of most eut and pdu genes. To correlate these significant expression data with growth properties, nonpolar deletions of pocR, regulating the pdu and cob-cbi genes, and of eutR, involved in eut gene activation, were constructed in S. Typhimurium strain 14028. During exponential growth of the mutants 14028ΔpocR and 14028ΔeutR, 2- to 3-fold-reduced proliferation in milk and egg yolk was observed. Using the Caenorhabditis elegans infection model, we could also demonstrate that the proliferation of S. Typhimurium in the nematode is supported by an active ethanolamine degradation pathway. Taking these findings together, this study quantifies the differential expression of eut and pdu genes under distinct conditions and provides experimental evidence that the ethanolamine utilization pathway allows salmonellae to occupy specific metabolic niches within food environments and within their host organisms.  相似文献   

4.
Although Escherichia coli and Salmonella enterica inhabit similar niches and employ similar genetic regulatory programmes, we find that they differ significantly in their DNA supercoiling responses to environmental and antibiotic challenges. Whereas E. coli demonstrates large dynamic transitions in supercoiling in response to growth phase, osmotic pressure and novobiocin treatment, supercoiling levels are much less variable in S. enterica. The FIS protein is a global regulator of supercoiling in E. coli, but it was found to have less influence over supercoiling control in S. enterica. These inter-species differences fine-tune gene promoters to endogenous supercoiling and FIS levels. Transferring a Salmonella virulence gene promoter (P(ssrA) ) into a new enteric host (E. coli) caused aberrant expression in response to stimulatory signals. Reciprocal horizontal transfer of topA promoters, which control expression of topoisomerase I, between E. coli and S. enterica revealed how these orthologous promoters have evolved to respond differentially to FIS and supercoiling levels in their cognate species. This also identified a previously unrecognized osmoregulation of topA expression that is independent of FIS and supercoiling in both E. coli and S. enterica. These findings suggest that E. coli and S. enterica may be unexpectedly divergent in their global regulation of cellular physiology.  相似文献   

5.
Compared to mammals, insects, and plants, relatively little is known about innate immune responses in the nematode Caenorhabditis elegans. Previous work showed that Salmonella enterica serovars cause a persistent infection in the C. elegans intestine that triggers gonadal programmed cell death (PCD) and that C. elegans cell death (ced) mutants are more susceptible to Salmonella-mediated killing. To further dissect the role of PCD in C. elegans innate immunity, we identified both C. elegans and S. enterica factors that affect the elicitation of Salmonella-induced PCD. Salmonella-elicited PCD was shown to require the C. elegans homolog of the mammalian p38 mitogen-activated protein kinase (MAPK) encoded by the pmk-1 gene. Inactivation of pmk-1 by RNAi blocked Salmonella-elicited PCD, and epistasis analysis showed that CED-9 lies downstream of PMK-1. Wild-type Salmonella lipopolysaccharide (LPS) was also shown to be required for the elicitation of PCD, as well as for persistence of Salmonella in the C. elegans intestine. However, a presumptive C. elegans TOLL signaling pathway did not appear to be required for the PCD response to Salmonella. These results establish a PMK-1-dependant PCD pathway as a C. elegans innate immune response to Salmonella.  相似文献   

6.
7.
Salmonella can cause a typhoid fever like disease in genetically susceptible mice. In contrast to in vitro cell culture models, most host cells in infected tissues contain only one or two Salmonella, but a small subpopulation of infected host cells contains many Salmonella. It has been proposed that these various subpopulations have differential relevance during infection but to test this, methods for isolating such Salmonella will be required. We developed a method to purify differentially infected host cells by flow cytometry using Salmonella expressing the green fluorescent protein (GFP). Critical parameters for this method were sufficient GFP expression to detect infected cells against strong host cell autofluorescence, and low variation in GFP content of individual Salmonella. We evaluated more than hundred different GFP-constructs but only one single-copy chromosomal P(sifB)-gfp fusion met these criteria and enabled differentiation of weakly and highly infected cells based on total GFP fluorescence. Confocal microscopy of sorted cells confirmed the successful separation of these subpopulations. In addition to isolation of infected cells, our method also enabled enumeration of the subpopulations and phenotypic characterization by staining with antibodies to surface markers. Surprisingly, a small subpopulation of highly infected host cells contained the majority of Salmonella but based on MHC II and ICAM I expression, this subpopulation was not more strongly activated than weakly infected cells. Our method will facilitate future characterization of the different subpopulations and the identification of bacterial and host factors that control Salmonella load and proliferation in vivo.  相似文献   

8.
Sensing and responding to environmental cues is a fundamental characteristic of bacterial physiology and virulence. Here we identify polyamines as novel environmental signals essential for virulence of Salmonella enterica serovar Typhimurium, a major intracellular pathogen and a model organism for studying typhoid fever. Central to its virulence are two major virulence loci Salmonella Pathogenicity Island 1 and 2 (SPI1 and SPI2). SPI1 promotes invasion of epithelial cells, whereas SPI2 enables S. Typhimurium to survive and proliferate within specialized compartments inside host cells. In this study, we show that an S. Typhimurium polyamine mutant is defective for invasion, intracellular survival, killing of the nematode Caenorhabditis elegans and systemic infection of the mouse model of typhoid fever. Virulence of the mutant could be restored by genetic complementation, and invasion and intracellular survival could, as well, be complemented by the addition of exogenous putrescine and spermidine to the bacterial cultures prior to infection. Interestingly, intracellular survival of the polyamine mutant was significantly enhanced above the wild type level by the addition of exogenous putrescine and spermidine to the bacterial cultures prior to infection, indicating that these polyamines function as an environmental signal that primes S. Typhimurium for intracellular survival. Accordingly, experiments addressed at elucidating the roles of these polyamines in infection revealed that expression of genes from both of the major virulence loci SPI1 and SPI2 responded to exogenous polyamines and was reduced in the polyamine mutant. Together our data demonstrate that putrescine and spermidine play a critical role in controlling virulence in S. Typhimurium most likely through stimulation of expression of essential virulence loci. Moreover, our data implicate these polyamines as key signals in S. Typhimurium virulence.  相似文献   

9.
10.
Quantitative data on Salmonella gene expression in infected hosts are largely lacking because of technical problems. One attractive reporter, the green fluorescent protein (GFP), is widely used in vitro but is difficult to quantify in infected tissues because of the preponderance of background particles with similar fluorescence. Here, bacterial GFP emission was spectrally distinguished from host autofluorescence by two-colour flow cytometry. Using this technique, the in vivo activity of three well-characterized promoters (PsicA, PssaH and PpagC) was determined. Their spatial and temporal activity patterns are in close agreement with predictions based on previous data and the colonization defects of corresponding deletion strains. To identify additional Salmonella promoters that are induced in infected animals, a genomic library was sorted by flow cytometry yielding four independent promoters. Genes expressed from PpibB and PsifA contribute to virulence, and chorismate mutase expressed from ParoQ might participate in aromatic acid biosynthesis, which is also required for virulence. Promoter P3g appears to be part of a mobile genetic element that is lacking in the completely sequenced strain LT2.  相似文献   

11.
The ability of enteric pathogens to perceive and adapt to distinct environments within the metazoan intestinal tract is critical for pathogenesis; however, the preponderance of interactions between microbe- and host-derived factors remain to be fully understood. Salmonella enterica serovar Typhimurium is a medically important enteric bacterium that colonizes, proliferates and persists in the intestinal lumen of the nematode Caenorhabditis elegans. Several Salmonella virulence factors important in murine and tissue culture models also contribute to worm mortality and intestinal persistence. For example, PhoP and the virulence plasmid pSLT are virulence factors required for resistance to the C. elegans antimicrobial peptide SPP-1. To uncover additional determinants required for Salmonella typhimurium pathogenesis in vivo, we devised a genetic screen to identify bacterial mutants defective in establishing a persistent infection in the intestine of C. elegans. Here we report on identification of 14 loci required for persistence in the C. elegans intestine and characterization of KdpD, a sensor kinase of a two-component system in S. typhimurium pathogenesis. We show that kdpD mutants are profoundly attenuated in intestinal persistence in the nematode and in macrophage survival. These findings may be attributed to the essential role KdpD plays in promoting resistance to osmotic, oxidative and antimicrobial stresses.  相似文献   

12.
Genetic analysis of host-pathogen interactions has been hampered by the lack of genetically tractable models of such interactions. We showed previously that the human opportunistic pathogen Pseudomonas aeruginosa kills Caenorhabditis elegans, that P. aeruginosa and C. elegans genes can be identified that affect this killing, and that most of these P. aeruginosa genes are also important for mammalian pathogenesis. Here, we show that Salmonella typhimurium as well as other Salmonella enterica serovars including S. enteritidis and S. dublin can also kill C. elegans. When C. elegans is placed on a lawn of S. typhimurium, the bacteria accumulate in the lumen of the worm intestine and the nematodes die over the course of several days. This killing requires contact with live bacterial cells. The worms die with similar kinetics when placed on a lawn of S. typhimurium for a relatively short time (3-5 hours) before transfer to a lawn of E. coli. After the transfer to E. coli, a high titer of S. typhimurium persists in the C. elegans intestinal lumen for the rest of the worms' life. Furthermore, feeding for 5 hours on a 1:1000 mixture of S. typhimurium and E. coli followed by transfer to 100% E. coli, also led to death after several days. This killing correlated with an increase in the titer of S. typhimurium in the C. elegans lumen, which reached 10,000 bacteria per worm. These data indicate that, in contrast to P. aeruginosa, a small inoculum of S. typhimurium can proliferate in the C. elegans intestine and establish a persistent infection. S. typhimurium mutated in the PhoP/PhoQ signal transduction system caused significantly less killing of C. elegans.  相似文献   

13.
A massive neutrophil influx in the intestine is the histopathological hallmark of Salmonella enterica serovar Typhimurium-induced enterocolitis in humans. Two major hypotheses on the mechanism leading to neutrophil infiltration in the intestinal mucosa have emerged. One hypothesis suggests that S. enterica serovar Typhimurium takes an active role in triggering this host response by injecting proteins, termed effectors, into the host cell cytosol which induce a proinflammatory gene expression profile in the intestinal epithelium. The second hypothesis suggests a more passive role for the pathogen by proposing that bacterial invasion stimulates the innate pathways of inflammation because the pathogen-associated molecular patterns of S. enterica serovar Typhimurium are recognized by pathogen recognition receptors on cells in the lamina propria. A review of the current literature reveals that, while pathogen recognition receptors are clearly involved in eliciting neutrophil influx during S. enterica serovar Typhimurium infection, a direct contribution of effectors in triggering proinflammatory host cell responses cannot currently be ruled out.  相似文献   

14.
The human pathogen Salmonella typhimurium can colonize, proliferate and persist in the intestine causing enteritis in mammals and mortality in the nematode Caenorhabditis elegans. Using C. elegans as a model, we determined that the Salmonella pathogenicity islands-1 and -2 (SPI-1 and SPI-2), PhoP and the virulence plasmid are required for the establishment of a persistent infection. We observed that the PhoP regulon, SPI-1, SPI-2 and spvR are induced in C. elegans and isogenic strains lacking these virulence factors exhibited significant defects in the ability to persist in the worm intestine. Salmonella infection also leads to induction of two C. elegans antimicrobial genes, abf-2 and spp-1, which act to limit bacterial proliferation. The SPI-2, phoP and Delta pSLT mutants are more sensitive to the cationic peptide polymyxin B, suggesting that resistance to worm's antimicrobial peptides might be necessary for Salmonella to persist in the C. elegans intestine. Importantly, we showed that the persistence defects of the SPI-2, phoP and Delta pSLT mutants could be rescued in vivo when expression of C. elegans spp-1 was reduced by RNAi. Together, our data suggest that resistance to host antimicrobials in the intestinal lumen is a key mechanism for Salmonella persistence.  相似文献   

15.
Systems allowing tightly regulated expression of prokaryotic genes in vivo are important for performing functional studies of bacterial genes in host-pathogen interactions and establishing bacteria-based therapies. We integrated a regulatory control circuit activated by acetyl salicylic acid (ASA) in attenuated Salmonella enterica that carries an expression module with a gene of interest under control of the XylS2-dependent Pm promoter. This resulted in 20-150-fold induction ex vivo. The regulatory circuit was also efficiently induced by ASA when the bacteria resided in eukaryotic cells, both in vitro and in vivo. To validate the circuit, we administered Salmonella spp., carrying an expression module encoding the 5-fluorocytosine-converting enzyme cytosine deaminase in the bacterial chromosome or in a plasmid, to mice with tumors. Induction with ASA before 5-fluorocytosine administration resulted in a significant reduction of tumor growth. These results demonstrate the usefulness of the regulatory control circuit to selectively switch on gene expression during bacterial infection.  相似文献   

16.
Salmonella enterica serovar typhimurium contaminated vegetables and fruits are considerable sources of human infections. Bacteria present in raw plant-derived nutrients cause salmonellosis, the world wide most spread food poisoning. This facultative endopathogen enters and replicates in host cells and actively suppresses host immune responses. Although Salmonella survives on plants, the underlying bacterial infection mechanisms are only poorly understood. In this report we investigated the possibility to use Arabidopsis thaliana as a genetically tractable host system to study Salmonella-plant interactions. Using green fluorescent protein (GFP) marked bacteria, we show here that Salmonella can infect various Arabidopsis tissues and proliferate in intracellular cellular compartments. Salmonella infection of Arabidopsis cells can occur via intact shoot or root tissues resulting in wilting, chlorosis and eventually death of the infected organs. Arabidopsis reacts to Salmonella by inducing the activation of mitogen-activated protein kinase (MAPK) cascades and enhanced expression of pathogenesis related (PR) genes. The induction of defense responses fails in plants that are compromised in ethylene or jasmonic acid signaling or in the MKK3-MPK6 MAPK pathway. These findings demonstrate that Arabidopsis represents a true host system for Salmonella, offering unique possibilities to study the interaction of this human pathogen with plants at the molecular level for developing novel drug targets and addressing current safety issues in human nutrition.  相似文献   

17.
Salmonella remains the major cause of food-borne diseases worldwide, with chickens known to be the main reservoir for this zoonotic pathogen. Among the many approaches to reducing Salmonella colonization of broilers, bacteriophage offers several advantages. In this study, three bacteriophages (UAB_Phi20, UAB_Phi78, and UAB_Phi87) obtained from our collection that exhibited a broad host range against Salmonella enterica serovar Enteritidis and Salmonella enterica serovar Typhimurium were characterized with respect to morphology, genome size, and restriction patterns. A cocktail composed of the three bacteriophages was more effective in promoting the lysis of S. Enteritidis and S. Typhimurium cultures than any of the three bacteriophages alone. In addition, the cocktail was able to lyse the Salmonella enterica serovars Virchow, Hadar, and Infantis. The effectiveness of the bacteriophage cocktail in reducing the concentration of S. Typhimurium was tested in two animal models using different treatment schedules. In the mouse model, 50% survival was obtained when the cocktail was administered simultaneously with bacterial infection and again at 6, 24, and 30 h postinfection. Likewise, in the White Leghorn chicken specific-pathogen-free (SPF) model, the best results, defined as a reduction of Salmonella concentration in the chicken cecum, were obtained when the bacteriophage cocktail was administered 1 day before or just after bacterial infection and then again on different days postinfection. Our results show that frequent treatment of the chickens with bacteriophage, and especially prior to colonization of the intestinal tract by Salmonella, is required to achieve effective bacterial reduction over time.  相似文献   

18.
A Caenorhabditis elegans-Salmonella enterica host-pathogen model was used to identify both novel and previously known S. enterica virulence factors (HilA, HilD, InvH, SptP, RhuM, Spi4-F, PipA, VsdA, RepC, Sb25, RfaL, GmhA, LeuO, CstA, and RecC), including several related to the type III secretion system (TTSS) encoded in Salmonella pathogenicity island 1 (SPI-1). Mutants corresponding to presumptive novel virulence-related genes exhibited diminished ability to invade epithelial cells and/or to induce polymorphonuclear leukocyte migration in a tissue culture model of mammalian enteropathogenesis. When expressed in C. elegans intestinal cells, the S. enterica TTSS-exported effector protein SptP inhibited a conserved p38 MAPK signaling pathway and suppressed the diminished pathogenicity phenotype of an S. enterica sptP mutant. These results show that C. elegans is an attractive model to study the interaction between Salmonella effector proteins and components of the innate immune response, in part because there is a remarkable overlap between Salmonella virulence factors required for human and nematode pathogenesis.  相似文献   

19.
20.
Intestinal inflammation induces alterations of the gut microbiota and promotes overgrowth of the enteric pathogen Salmonella enterica by largely unknown mechanisms. Here, we identified a host factor involved in this process. Specifically, the C-type lectin RegIIIβ is strongly upregulated during mucosal infection and released into the gut lumen. In vitro, RegIIIβ kills diverse commensal gut bacteria but not Salmonella enterica subspecies I serovar Typhimurium (S. Typhimurium). Protection of the pathogen was attributable to its specific cell envelope structure. Co-infection experiments with an avirulent S. Typhimurium mutant and a RegIIIβ-sensitive commensal E. coli strain demonstrated that feeding of RegIIIβ was sufficient for suppressing commensals in the absence of all other changes inflicted by mucosal disease. These data suggest that RegIIIβ production by the host can promote S. Typhimurium infection by eliminating inhibitory gut microbiota.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号