首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sun G  Budde RJ 《Biochemistry》1999,38(17):5659-5665
In addition to a magnesium ion needed to form the ATP-Mg complex, we have previously determined that at least one more free Mg2+ ion is essential for the activation of the protein tyrosine kinase, Csk [Sun, G., and Budde, R. J. A. (1997) Biochemistry 36, 2139-2146]. In this paper, we report that several divalent metal cations, such as Mn2+, Co2+, Ni2+, and Zn2+ bind to the second Mg2+-binding site of Csk with up to 13200-fold higher affinity than Mg2+. This finding enabled us to substitute the free Mg2+ at this site with Mn2+, Co2+, Ni2+, or Zn2+ while keeping ATP saturated with Mg2+ to study the role of the free metal cation in Csk catalysis. Substitution by these divalent metal cations resulted in varied levels of Csk activity, with Mn2+ even more effective than Mg2+. Co2+ and Ni2+ supports reduced levels of Csk activity compared to Mg2+. Zn2+ has the highest affinity for the second Mg2+-binding site of Csk at 0.65 microM, but supports no kinase activity, acting as a dead-end inhibitor. The inhibition by Zn2+ is reversible and competitive against free Mg2+, noncompetitive against ATP-Mg, and mixed against the phosphate accepting substrate, polyE4Y, significantly increasing the affinity for this substrate. Substitution of the free Mg2+ with Mn2+, Co2+, or Ni2+ also results in lower Km values for the peptide substrate. These results suggest that the divalent metal activator is an important element in determining the affinity between Csk and the phosphate-accepting substrate.  相似文献   

2.
D Sondhi  P A Cole 《Biochemistry》1999,38(34):11147-11155
Csk (C-terminal Src kinase) is a protein tyrosine kinase that phosphorylates Src family member C-terminal tails, resulting in downregulation of Src family members. It is composed of three principal domains: an SH3 (Src homology 3) domain, an SH2 (Src homology 2) domain, and a catalytic domain. The impact of the noncatalytic domains on kinase catalysis was investigated. The Csk catalytic domain was expressed in Escherichia coli as a recombinant glutathione S-transferase-fusion protein and demonstrated to have 100-fold reduced catalytic efficiency. Production of the catalytic domain by proteolysis of full-length Csk afforded a similar rate reduction. This suggested that the reduction in catalytic efficiency of the recombinant catalytic domain was intrinsic to the sequence and not an artifact related to faulty expression. This rate reduction was similar for peptide and protein substrates and was due almost entirely to a reduced k(cat) rather than to effects on substrate K(m)s. Viscosity experiments on the catalytic fragment kinase reaction demonstrated that the chemical (phosphoryl transfer) step had a reduced rate. While the Csk SH2 domain had no intermolecular effect on the kinase activity of the Csk catalytic domain, the SH3 domain and SH3-SH2 fragment led to a partial rescue (4-5-fold) of the lost kinase activity. This rescue was not achieved with two other SH3 domains (lymphoid cell kinase, Abelson kinase). The extrapolated K(d) of interaction for the Csk catalytic domain with the Csk SH3 domain was 2.2 microM and that of the Csk catalytic domain with the Csk SH3-SH2 fragment was 8.8 microM. Taken together, these findings suggest that there is likely an intramolecular interaction between the catalytic and SH3 domains in full-length Csk that is important for efficient catalysis. By employing a Csk SH3 specific type II polyproline helix peptide and carrying out site-directed mutagenesis, it was established that the SH3 surface that interacts with the catalytic domain was distinct from the surface that binds type II polyproline helix peptides. This finding suggests a novel mode of protein-protein interaction for an SH3 domain. The implications for Csk substrate selectivity, regulation, and function are discussed.  相似文献   

3.
The protein tyrosine kinase (PTK) Csk is a potent negative regulator of several signal transduction processes, as a consequence of its exquisite ability to inactivate Src-related PTKs. This function requires not only the kinase domain of Csk, but also its Src homology 3 (SH3) and SH2 regions. We showed previously that the Csk SH3 domain mediates highly specific associations with two members of the PEP family of nonreceptor protein tyrosine phosphatases (PTPs), PEP and PTP-PEST. In comparison, the Csk SH2 domain interacts with several tyrosine phosphorylated molecules, presumed to allow targetting of Csk to sites of Src family kinase activation. Herein, we attempted to understand better the regulation of Csk by identifying ligands for its SH2 domain. Using a modified yeast two-hybrid screen, we uncovered the fact that Csk associates with PTP-HSCF, the third member of the PEP family of PTPs. This association was documented not only in yeast cells but also in a heterologous mammalian cell system and in cytokine-dependent hemopoietic cells. Surprisingly, the Csk-PTP-HSCF interaction was found to be mediated by the Csk SH2 domain and two putative sites of tyrosine phosphorylation in the noncatalytic portion of PTP-HSCF. Transfection experiments indicated that Csk and PTP-HSCF synergized to inhibit signal transduction by Src family kinases and that this cooperativity was dependent on the domains mediating their association. Finally, we obtained evidence that PTP-HSCF inactivated Src-related PTKs by selectively dephosphorylating the positive regulatory tyrosine in their kinase domain. Taken together, these results demonstrate that part of the function of the Csk SH2 domain is to mediate an inducible association with a PTP, thereby engineering a more efficient inhibitory mechanism for Src-related PTKs. Coupled with previously published observations, these data also establish that Csk forms complexes with all three known members of the PEP family.  相似文献   

4.
Protein tyrosine kinases are key enzymes of mammalian signal transduction. Substrate specificity is a fundamental property that determines the specificity and fidelity of signaling by protein tyrosine kinases. However, how protein tyrosine kinases recognize the protein substrates is not well understood. C-terminal Src kinase (Csk) specifically phosphorylates Src family kinases on a C-terminal Tyr residue, which down-regulates their activities. We have previously determined that Csk recognizes Src using a substrate-docking site away from the active site. In the current study, we identified the docking determinants in Src recognized by the Csk substrate-docking site and demonstrated an interaction between the docking determinants of Src and the Csk substrate-docking site for this recognition. A similar mechanism was confirmed for Csk recognition of another Src family kinase, Yes. Although both Csk and MAP kinases used docking sites for substrate recognition, their docking sites consisted of different substructures in the catalytic domain. These results helped establish a docking-based substrate recognition mechanism for Csk. This model may provide a framework for understanding substrate recognition and specificity of other protein tyrosine kinases.  相似文献   

5.
Lin X  Ayrapetov MK  Lee S  Parang K  Sun G 《Biochemistry》2005,44(5):1561-1567
Protein tyrosine kinases (PTKs) are important regulators of mammalian cell function and their own activities are tightly regulated. Underlying their tight regulation, all PTKs contain multiple regulatory domains in addition to a catalytic domain. C-terminal Src kinase (Csk) contains a catalytic domain and a regulatory region, consisting of an SH3 and an SH2 domain. In this study, we probed the communication between the regulatory and catalytic domains of Csk. First, kinetic characterization of SH3 and SH2 domain deletion mutants demonstrated that the SH3 and SH2 domains were crucial in maintaining the full activity of Csk, but were not directly involved in Csk recognition of its physiological substrate, Src. Second, highly conserved Trp188, corresponding to a key residue in domain-domain communication in other PTKs, was found to be important for maintaining the active structure of Csk by the presence of the regulatory region, but not required for Csk activation triggered by a phosphopeptide binding to the SH2 domain. Third, structural alignment indicated that the presence of the regulatory domains modulated the conformation of multiple substructures in the catalytic domain, some directly and others remotely. Mutagenic and kinetic studies supported this assignment. This report extended previous studies of Csk domain-domain communication, and provided a foundation for further detailed investigation of this communication.  相似文献   

6.
Protein tyrosine kinases are critical enzymes in cell signal transduction but relatively little is known about the molecular recognition of the tyrosine substrate by these enzymes. Details of tyrosine substrate specificity within the context of a short peptide were investigated for protein tyrosine kinase Csk. It was found that aryl ring functional group substitutions the size of methyl group or smaller were generally well tolerated by the protein tyrosine kinase Csk whereas larger groups caused a decline in substrate efficiency. Extension of the phenol from the peptide backbone by a single methylene was acceptable for phosphorylation whereas removal of a methylene nearly abolished reactivity. Only the L-tyrosine derivative was processed. A negative charge ortho to the phenol hydroxyl was incompatible with substrate reactivity, consistent with previous pH rate profiles which indicated the importance of the neutral phenol. Overall, these studies confirmed the interpretation of a previous linear free energy relationship analysis which suggested that the enzyme followed a dissociative transition state mechanism.  相似文献   

7.
Lee S  Lin X  McMurray J  Sun G 《Biochemistry》2002,41(40):12107-12114
Csk is a soluble protein tyrosine kinase that phosphorylates and negatively regulates protein tyrosine kinases of the Src family. The spectral properties of the intrinsic Trp fluorescence of Csk and their underlying structural features were investigated in combination with urea denaturation and site-specific mutagenesis. It was found that W352 contributed approximately 35% of the total Trp fluorescence of Csk even though seven other Trp residues were present. The enhanced contribution by W352 to Csk fluorescence was due to an interaction between its indole ring and the positively charged guanidino group of R318. W352 is located on the peptide substrate binding P+1 loop, and R318 is located on the catalytic loop. The W352-R318 interaction, called a cation-pi interaction, uniquely couples the two loops in the active site. Mutations that disrupted this coupling resulted in varying levels of decreases in Csk activity, and consistent and significant increases in K(m) values for its physiological substrate, Src protein tyrosine kinase. These results indicated that structural coupling between the two loops by the cation-pi interaction played an important role in Csk substrate binding. Since both R318 and W352 are highly conserved among protein tyrosine kinases, this cation-pi interaction is likely a signature structural feature of most, if not all, PTKs. These studies elucidated the roles of two conserved signature residues in Csk and formed a baseline for further structure-function studies of Csk and other PTKs.  相似文献   

8.
The effect of a matrix of concentrations of Ca2+ (0.01, 0.1, 0.5, 5 mM), Mg2+ (0.2, 0.5, 1, 2, 5, 10 mM), and Na+ (50, 100, 150 mM) on the phosphorylation of histone H-1 by protein kinase C was measured in the presence of 5 mol % diacylglycerol and Mg-ATP in both phosphatidylserine micelles and liposomes formed from a 1:4 mixture of phosphatidylserine and phosphatidylcholine. Monovalent cations (150 mM) reduced activity by 60 and 84% in the micelle and liposome assay systems, respectively. Inhibition was also observed with 5 mM Ca2+ and 10 mM Mg2+. The phosphorylating activity was compared with computer calculations of the negative electrostatic potentials (psi o) of the phospholipid membranes in the presence of the cations.  相似文献   

9.
Summary This mini review is primarily concerned with the monovalent and divalent cation activation of pyruvate kinase. All preparations of pyruvate kinase from vertebrate tissue which have been examined require monovalent cations such as K+ for catalysis. However, several microbial preparations are not activated by monovalent cations. In fact,E. coli synthesizes depending on growth conditions, 2 different forms of the enzyme; one form is not activated while the other is activated by monovalent cations. The monovalent cation was shown by NMR techniques to bind within 4–8 ? of the divalent cation activat or and apparently plays a direct role in the catalytic process. As with all kinases, pyruvate kinase requires a divalent cation for catalysis. Mg+2 is optimal for the physiological reaction, however, Co+2, Mn+2, and Ni+2 also activate. The divalent cation activation of several non-physiological reactions catalyzed by pyruvate kinase are reviewed. Several lines of evidence suggest that 2 moles of the divalent cation are required in the catalytic event. However, the specific role of both atoms in the catalytic event have not been thoroughly elucidated.  相似文献   

10.
A synthetic peptide of 18 amino acids corresponding to the inhibitory domain of the heat-stable protein kinase inhibitor was synthesized and shown to inhibit both the C alpha and C beta isoforms of the catalytic (C) subunit of cAMP-dependent protein kinase. Extracts from cells transfected with expression vectors coding for the C alpha or the C beta isoform of the C subunit required 200 nM protein kinase inhibitor peptide for half-maximal inhibition of kinase activity in extracts from these cells. An affinity column was constructed using this synthetic peptide, and the column was incubated with protein extracts from cells overexpressing C alpha or C beta. Elution of the affinity column with arginine allowed single step isolation of purified C alpha and C beta subunits. The C alpha and C beta proteins were enriched 200-400-fold from cellular extracts by this single step of affinity chromatography. No residual inhibitory peptide activity could be detected in the purified protein. The purified C subunit isoforms were used to demonstrate preferential antibody reactivity with the C alpha isoform by Western blot analysis. Furthermore, preliminary characterization showed both isoforms have similar apparent Km values for ATP (4 microM) and for Kemptide (5.6 microM). These results demonstrate that a combination of affinity chromatography employing peptides derived from the heat-stable protein kinase inhibitor protein and the use of cells overexpressing C subunit related proteins may be an effective means for purification and characterization of the C subunit isoforms. Furthermore, this method of purification may be applicable to other kinases which are known to be specifically inhibited by small peptides.  相似文献   

11.
Significant efforts are put into the design of large-scale purification processes of proteins due to great demands regarding cost efficiency and safety. In order to design an effective purification scheme the unit operations need to be reduced to a minimum. In this review we are discussing proteinaceous ligands as well as small synthetic mimics for use in affinity chromatography for large-scale applications. Different advantages as well as drawbacks of the two approaches are outlined.  相似文献   

12.
Cytosolic sulfotransferases (STs), traditionally viewed as Phase II drug-metabolizing or detoxifying enzymes, are increasingly being implicated in the metabolism of endogenous biologically-active molecules. Except for studies on changes in their levels of expression and activity in the early stage of development in mammals, very little is known about how these enzymes are regulated. In this study, the regulatory effects of divalent metal cations on the activity of human cytosolic STs were quantitatively evaluated. Results obtained indicate that all nine human cytosolic STs examined are partially or completely inhibited/stimulated by the ten divalent metal cations tested at 10 mM concentration. Compared with the other metal cations, the inhibitory or stimulatory effect of Mg2+ and Ca2+ on the activities of the human cytosolic STs appeared to be relatively smaller. Concentration-dependent effects of the divalent metal cations were further examined. The IC50 or EC50 values determined for different divalent metal cations were mostly above their normal physiological concentration ranges. In a few cases, however, IC50 values close to the physiological concentrations of certain divalent metal cations were observed. Using the monoamine (M)-form phenol ST (PST) as a model, it was demonstrated that the K(m) for dopamine changed only slightly with increasing concentrations of Cd2+, whereas the V(max) was dramatically decreased.  相似文献   

13.
Several salts of alkali, alkaline earth metal and organic ammonium cations of a complex anion [ML2]2− {Where L = dipicolinato dianion, M = copper(II), nickel(II) and zinc(II)} are prepared. The coordination effect of [ML2]2− with the cations such as sodium, potassium, calcium, magnesium, and organic cations namely diammonium cation of 1,5-pentanediamine, diammonium cation of 1,8-octyldiamine, mono ammonium cation of 4-aminobenzylamine are studied by determining their X-ray crystal structures. Depending on the nature of cations, four different types of structures are obtained. When calcium is the cation a polymeric structure with calcium ions bridging the [ML2]2− is observed. The salts having sodium and potassium cations form polymeric chain like structures by oxo and aqua bridges. In the case of magnesium, the hydrated form of magnesium cations coordinates to [ML2]2−. The organic ammonium salts of [ML2]2− have the structural features of conventional ionic complexes. These salts easily exchange cations. The organic ammonium salts of [ML2]2− decomposes to give the corresponding metal oxides at relatively low temperature range 300-450 °C.  相似文献   

14.
Protein tyrosine phosphatases are not considered to be metalloenzymes. Yet, they are inhibited by zinc cations and metal and non-metal oxyanions that are chemical analogues of phosphate, e.g. vanadate. Metal inhibition is generally not recognized as these enzymes are purified, supplied, and assayed with buffers containing chelating and reducing agents. We screened a series of cations and anions for their capacity to inhibit protein tyrosine phosphatase 1B and discuss the ensuing general issues with inhibition constants reported in the scientific literature. In contrast to zinc, which binds to the phosphocysteine intermediate in the closed conformation of protein tyrosine phosphatase 1B when the catalytic aspartate has moved into the active site, other divalent cations such as cadmium and copper may also bind to the enzyme in the open conformation. Inhibition by both anions and cations, conditions such as pH, the presence of metal ligands such as glutathione, and the existence of multiple conformational states of protein tyrosine phosphatases in the reaction cycle establish a complex pattern of inhibition of these important regulatory enzymes with implications for the physiology, pharmacology and toxicology of metal ions.  相似文献   

15.
In this paper, we report that three species of Salinispora, S. arenicola, S. tropica, and S. pacifica, require magnesium and calcium, for growth, with S. pacifica having the most stringent growth requirement for these ions. Interaction between these ions in supporting the growth of Salinispora was observed. We also demonstrated that the absolute requirement of sodium to support the growth of Salinispora has not been established as all three species of Salinispora can use either potassium or lithium to replace sodium to support maximum growth. While lithium can replace sodium to support maximum growth of Salinispora, it is more toxic to S. arenicola than S. tropica and S. pacifica, inhibiting the growth of S. arenicola at 189 mM but without effect on the growth of S. tropica and S. pacifica. Using both sodium chloride-based and lithium chloride-based media, we showed that Salinispora has a growth requirement for divalent ions, magnesium and calcium as well as growth requirement for ionic strength (8.29 to 15.2 mS/cm). S. arenicola has a lower growth requirement for ionic strength than S. tropica and S. pacifica.  相似文献   

16.
Tyrosine kinase Csk is essential for mouse embryonic development. Csk knock-out mice died at early stages of embryogenesis (around embryonic day 10). The molecular mechanism for this defect is not completely understood. Here we report that Csk deficiency in mouse embryonic fibroblast cells blocked cell migration induced by lysophosphatidic acid through G protein-coupled receptors, by platelet-derived growth factor and epidermal growth factor through receptor tyrosine kinases, and by serum. Re-expression of Csk in these Csk-deficient cells rescued the migratory phenotype. Furthermore, deletion of Csk did not interfere with Rac activation and lamellipodia formation, but impaired the focal adhesions. Our data demonstrate a critical role for Csk in cell migration.  相似文献   

17.
Influence of divalent cations in protein crystallization.   总被引:3,自引:2,他引:1       下载免费PDF全文
We have tested the effect of several cations in attempts to crystallize the ligand-bound forms of the leucine/isoleucine/valine-binding protein (LIVBP) (M(r) = 36,700) and leucine-specific binding protein (LBP) (M(r) = 37,000), which act as initial periplasmic receptors for the high-affinity osmotic-shock-sensitive active transport system in bacterial cells. Success was achieved with Cd2+ promoting the most dramatic improvement in crystal size, morphology, and diffraction quality. This comes about 15 years after the ligand-free proteins were crystallized. Nine other different divalent cations were tried as additives in the crystallization of LIVBP with polyethylene glycol 8000 as precipitant, and each showed different effects on the crystal quality and morphology. Cd2+ produced large hexagonal prism crystals of LIVBP, whereas a majority of the cations resulted in less desirable needle-shaped crystals. Zn2+ gave crystals that are long rods with hexagonal cross sections, a shape intermediate between the hexagonal prism and needle forms. The concentration of Cd2+ is critical. The best crystals of the LIVBP were obtained in the presence of 1 mM CdCl2, whereas those of LBP, with trigonal prism morphology, were obtained at a much higher concentration of 100 mM. Both crystals diffract to at least 1.7 A resolution using a conventional X-ray source.  相似文献   

18.
The release of divalent cations (Ca2+ and Sr2+) from rat liver mitochondria after membrane depolarization with protonophore (carbonyl cyanide m-chlorophenyl hydrazone, CCCP), sodium azide and K(+)-ionophore (valinomycin) was studied. It is stated that membrane depolarization itself is not sufficient for cations release from mitochondrial matrix (provided that mitochondrial permeability transition pore is blocked by cyclosporin A). Complete delivering of divalent cations is observed only after protonophore (CCCP) addition to suspension of deenergized mitochondria. The data show that membrane permeabilisation to hydrogen ions (H+) is necessary for complete cation release from the mitochondrial matrix. The enhancement in K(+)-conductivity of mitochondrial membrane (by valinomycin), on the contrary, is not able to provide complete delivering of cations from mitochondria. It is shown that quantity of divalent metal cation released from mitochondria (depolarized and permeabilized for K+ as well) is proportional to the concentration of protonophore (but not K(+)-ionophore) introduced in the incubation medium. The data obtained lead to the conclusion that H(+)-permeabilization of the mitochondrial membrane is necessary for the complete release of Ca2+ and Sr2+ from mitochondria after membrane depolarization. The possible mechanism of divalent metal cations release from deenergized mitochondria is discussed.  相似文献   

19.
Among the proteins that are synthesized only in interferon-treated human cells, a Mr = 67,000 protein has been previously identified by its binding to guanylate agaroses. After a 24-h treatment of human diploid fibroblasts with 200 units/ml of interferon-gamma, about 3 X 10(5) molecules of guanylate-binding protein (GBP) accumulate in each cell. We have developed a one-step purification procedures for GBP using guanylate affinity chromatography. To further elucidate the specific binding of this protein to guanylates, we have used a photoactive probe, 8-azidoguanosine [alpha 32P] triphosphate for the labeling of the GBP. Photolysis of the 8-azido-[alpha-32P]GTP in the presence of GBP results in the covalent attachment of the 32P-guanylate to the GBP. This photolabeling reaction can be inhibited only by guanylates but cannot be inhibited by other nucleotides, suggesting a specific association of GBP to guanylates. Using the purified GBP as an immunogen, we have successfully made rabbit antiserum for GBP. Both the GBP antigen and its guanylate-binding activity are detected only in the cytoplasm of interferon-treated human fibroblasts. The synthesis of the mRNA of GBP is also found in mice exposed to endogenous interferon and in interferon-treated human lymphocytes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号