首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oncogene-induced reactive oxygen species (ROS) have been proposed to be signaling molecules that mediate proliferative cues. However, ROS may also cause DNA damage and proliferative arrest. How these apparently opposite roles can be reconciled, especially in the context of oncogene-induced cellular senescence, which is associated both with aberrant mitogenic signaling and DNA damage response (DDR)-mediated arrest, is unclear. Here, we show that ROS are indeed mitogenic signaling molecules that fuel oncogene-driven aberrant cell proliferation. However, by their very same ability to mediate cell hyperproliferation, ROS eventually cause DDR activation. We also show that oncogenic Ras-induced ROS are produced in a Rac1 and NADPH oxidase (Nox4)-dependent manner. In addition, we show that Ras-induced ROS can be detected and modulated in a living transparent animal: the zebrafish. Finally, in cancer we show that Nox4 is increased in both human tumors and a mouse model of pancreatic cancer and specific Nox4 small-molecule inhibitors act synergistically with existing chemotherapic agents.  相似文献   

2.
Free radical scavenging effects of the cellular protein extracts from two strains of Deinococcus radiodurans and Escherichia coli against O2-, H2O2 and *OH were investigated by chemiluminescence (CL) methods. The cellular protein extracts of D. radiodurans R1 and KD8301 showed higher scavenging effects on O2- than that of E. coli. D. radiodurans R1 and KD8301 also strongly scavenged H2O2 with an EC50 (50% effective concentration) of 0.12 and 0.2 mg/mL, respectively, compared to that of E. coli (EC50 = 3.56 mg/mL). The two strains of D. radiodurans were effective in scavenging *OH generated by the Fenton reaction, with EC50 of 0.059 and 0.1 mg/mL, respectively, compared to that of E. coli (EC50 > 1 mg/mL). Results from the chemiluminescence assay of *OH-induced DNA damage and the plasmid pUC18 DNA double-strand break (DSB) model in vitro showed that D. radiodurans had remarkably inhibitory effect on the *OH-induced oxidative damage of DNA. The scavenging effects of D. radiodurans on reactive oxygen species (ROS) played an important role in the response to oxidation stress and preventing against DNA oxidative damage, and may be attributed to intracellular scavenging proteins, including superoxide dismutase (SOD) and catalase.  相似文献   

3.
Cyclo(phenylalanine‐proline) is produced by various organisms such as animals, plants, bacteria and fungi. It has diverse biological functions including anti‐fungal activity, anti‐bacterial activity and molecular signalling. However, a few studies have demonstrated the effect of cyclo(phenylalanine‐proline) on the mammalian cellular processes, such as cell growth and apoptosis. In this study, we investigated whether cyclo(phenylalanine‐proline) affects cellular responses associated with DNA damage in mammalian cells. We found that treatment of 1 mM cyclo(phenylalanine‐proline) induces phosphorylation of H2AX (S139) through ATM‐CHK2 activation as well as DNA double strand breaks. Gene expression analysis revealed that a subset of genes related to regulation of reactive oxygen species (ROS) scavenging and production is suppressed by the cyclo(phenylalanine‐proline) treatment. We also found that cyclo(phenylalanine‐proline) treatment induces perturbation of the mitochondrial membrane, resulting in increased ROS, especially superoxide, production. Collectively, our study suggests that cyclo(phenylalanine‐proline) treatment induces DNA damage via elevation of ROS in mammalian cells. Our findings may help explain the mechanism underlying the bacterial infection‐induced activation of DNA damage response in host mammalian cells.  相似文献   

4.
Isolated mitochondria respiring on physiological substrates, both in state 4 and 3, are reported to be or not to be a source of reactive oxygen species (ROS). The cause of these discrepancies has been investigated. As protein concentration was raised in in vitro assays at 37°C, the rate of H2O2 release by rat heart mitochondria supplemented with pyruvate/malate or with succinate (plus rotenone) was shown to increase (0.03–0.15?mg?protein/ml), to decrease (0.2–0.5?mg?protein/ml) and to be negligible (over 0.5?mg?protein/ml). The inhibition of mitochondrial respiration (with rotenone or antimycin A) or the increase in the oxygen concentration dissolved in the assay medium allowed an enhancement of ROS production rate throughout the studied range of protein concentrations. In mitochondria respiring in state 3 on pyruvate/malate or on succinate (plus rotenone), ROS release vanished for protein concentrations over 0.5 or 0.2?mg/ml, respectively. However, ROS production rates measured with low protein concentrations (below 0.1?mg/ml) or in oxygen-enriched media were similar or even slightly higher in the active respiratory state 3 than in the resting state 4 for both substrates. Consequently, these findings indicate that isolated mitochondria, respiring in vitro under conditions of forward electron transport, release ROS with Complex I- and II-linked substrates in the resting condition (state 4) and when energy demand is maximal (state 3), provided that there is sufficient oxygen dissolved in the medium.  相似文献   

5.
Isolated mitochondria respiring on physiological substrates, both in state 4 and 3, are reported to be or not to be a source of reactive oxygen species (ROS). The cause of these discrepancies has been investigated. As protein concentration was raised in in vitro assays at 37°C, the rate of H2O2 release by rat heart mitochondria supplemented with pyruvate/malate or with succinate (plus rotenone) was shown to increase (0.03-0.15 mg protein/ml), to decrease (0.2-0.5 mg protein/ml) and to be negligible (over 0.5 mg protein/ml). The inhibition of mitochondrial respiration (with rotenone or antimycin A) or the increase in the oxygen concentration dissolved in the assay medium allowed an enhancement of ROS production rate throughout the studied range of protein concentrations. In mitochondria respiring in state 3 on pyruvate/malate or on succinate (plus rotenone), ROS release vanished for protein concentrations over 0.5 or 0.2 mg/ml, respectively. However, ROS production rates measured with low protein concentrations (below 0.1 mg/ml) or in oxygen-enriched media were similar or even slightly higher in the active respiratory state 3 than in the resting state 4 for both substrates. Consequently, these findings indicate that isolated mitochondria, respiring in vitro under conditions of forward electron transport, release ROS with Complex I- and II-linked substrates in the resting condition (state 4) and when energy demand is maximal (state 3), provided that there is sufficient oxygen dissolved in the medium.  相似文献   

6.
Incubation of calf thymus DNA in the presence of rifamycin SV induces a decrease in the absorbance of DNA at 260 nm. The effect, was found to be proportional to the antibiotic concentration and enhanced by copper(II) ions. In the presence of rifamycin SV and copper(II), a significant increase in thiobarbituric acid-reactive (TBA-reactive) material is also observed. This effect is inhibited to different degrees by the following antioxidants: catalase 77%; thiourea 72%; glutathione (GSH) 62%; ethanol 52%; and DMSO 34%, suggesting that both hydrogen peroxide (H2O2) and hydroxyl radicals (OH·) are involved in DNA damage. Rifamycin SV-copper(II) mixtures were also found to induce the production of peroxidation material from deoxyribose and, in this case, glutathione and ethanol were the most effective antioxidant substrates with inhibition rates of 91% and 88% respectively.

Electrophoretic studies show that calf thymus DNA becomes damaged after 20 min. incubation in the presence of both agents together and that the damaged fragments run with migration rates similar to those obtained by the metal chelating agent 1,10-phenanthroline. Normal DNA electrophoretic pattern was found to be preserved by catalase, and GSH at physiological concentrations and by thiourea. No protection is observed in the presence of ethanol or DMSO. The results obtained indicate the involvement of different reactive species in the degradation process of DNA due to rifamycin SV-copper(II) complex and emphasize the role of reduced glutathione as an oxygen free radical scavenger.  相似文献   

7.
Oxidative stress may be an important factor in the development of diabetic complications. Advanced glycation end-products have drown attention as potential sources of oxidative stress in diabetes. We investigated the protective effects of fluvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, on oxidative DNA damage from reactive oxygen species or advanced glycation end-products in vitro, as well as effects of main fluvastatin metabolites and other inhibitors of the same enzyme, pravastatin and simvastatin. Protective effects were assessed in terms of the DNA breakage rate in a single-stranded phage DNA system in vitro. DNA was exposed to either reactive oxygen species or advanced glycation end-products. Fluvastatin and its metabolites showed a strong protective effect comparable to those seen with thiourea and mannitol, though pravastatin and simvastatin did not exert clear protective effects. Furthermore, fluvastatin reduced the mutagenesis by reactive oxygen species or advanced glycation end-products in Salmonella typhimurium test strains. Both pravastatin and simvastatin still lacked protective activity. Fluvastatin and its metabolites protect against oxidative DNA damage and may reduce risk of consequent diabetic complications.  相似文献   

8.
Previous studies indicate that ascorbic acid, when combined with copper or iron cleaves several viral DNA. ln this study, we generated the ascorbate radical anion electrochemically in a simple chemical environment without the participation of a metal ion. This solution possesses viral DNA scission activity. Ohe absence of catalytic metal ions [Fe (III) and Cu(II)] in the incubation medium was evidenced by metal chelating agents such as desferrioxamine and EDTA. Ohe radical quenching at high EDTA concentration was attributed to ionic strength of EDTA rather than metal chelation. Ohe effects of antioxidants, radical scavangers, catalase, superoxide dismutase and some proteins on DNA cleavage have been tested. Cleavage may not arise directly from ascorbate free radical but the reaction of the radical form of ascorbate with oxygen may produce the actual reactive species. Aerobic oxidation of ascorbate itself strictly requires transition metal catalysts, however electrochemically produced ascorbyl radical avoided the kinetic barrier that prevented direct oxidation of ascorbic acid with oxygen and eliminated the need for the transition metal ion catalysts.  相似文献   

9.
Plants often face the challenge of severe environmental conditions, which include various biotic and abiotic stresses that exert adverse effects on plant growth and development. During evolution, plants have evolved complex regulatory mechanisms to adapt to various environmental stressors. One of the consequences of stress is an increase in the cellular concentration of reactive oxygen species (ROS), which are subsequently converted to hydrogen peroxide (H2O2). Even under normal conditions, higher plants produce ROS during metabolic processes. Excess concentrations of ROS result in oxidative damage to or the apoptotic death of cells. Development of an antioxidant defense system in plants protects them against oxidative stress damage. These ROS and, more particularly, H2O2, play versatile roles in normal plant physiological processes and in resistance to stresses. Recently, H2O2 has been regarded as a signaling molecule and regulator of the expression of some genes in cells. This review describes various aspects of H2O2 function, generation and scavenging, gene regulation and cross-links with other physiological molecules during plant growth, development and resistance responses.  相似文献   

10.
Bordetella bronchiseptica can establish prolonged airway infection consistent with a highly developed ability to evade mammalian host immune responses. Upon initial interaction with the host upper respiratory tract mucosa, B. bronchiseptica are subjected to antimicrobial reactive nitrogen species (RNS) and reactive oxygen species (ROS), effector molecules of the innate immune system. However, the responses of B. bronchiseptica to redox species at physiologically relevant concentrations (nM-microM) have not been investigated. Using predicted physiological concentrations of nitric oxide (NO), superoxide and hydrogen peroxide (H2O2) on low numbers of CFU of B. bronchiseptica, all redox active species displayed dose-dependent antimicrobial activity. Susceptibility to individual redox active species was significantly increased upon introduction of a second species at subantimicrobial concentrations. An increased bacteriostatic activity of NO was observed relative to H2O2. The understanding of Bordetella responses to physiologically relevant levels of exogenous RNS and ROS will aid in defining the role of endogenous production of these molecules in host innate immunity against Bordetella and other respiratory pathogens.  相似文献   

11.
Reactive oxygen species are toxic to cells but they may also have active roles in transducing apoptotic events. To study the role of reactive oxygen species in growth factor depletion induced apoptosis of human primary CD4+ T cells, we used a synthetic manganese porphyrin superoxide dismutase mimetic to detoxify superoxide anions formed during apoptosis. Apoptosis of primary CD4+ T cells was characterized by generation of superoxide anions, plasma membrane phosphatidyl-serine translocation, loss of mitochondrial membrane potential, activation of caspase 3, condensation of chromatin, as well as DNA degradation. The detoxification of superoxide anions did not influence plasma membrane phosphatidyl-serine translocation, or chromatin condensation, and only marginally inhibited the loss of mitochondrial membrane potential and the formation of DNA strand breaks. In contrast, the detoxification of superoxide anions significantly reduced caspase 3 activity and almost completely inhibited the apoptotic decrease in total cellular DNA content as measured by propidium iodide staining. Our results indicate that reactive oxygen anions induce signals leading to efficient DNA degradation after the initial formation of DNA strand breaks. Thus, reactive oxygen anions have active roles in signaling that lead to the apoptotic events.  相似文献   

12.
Many environmental, physiological and genetic factors have been implicated in defective sperm function, the most common cause of infertility. In addition, sperm preparation techniques such as centrifugation, used prior to in vitro fertilization, are associated with the generation of reactive oxygen species (ROS) and an increase in the level of DNA damage. Factors that can offer spermatozoa protection are, therefore, of great importance. This study was designed to examine in vitro the effect of a Chilean propolis ethanolic extract on human spermatozoa treated with benzo[a]pyrene and exogenous reactive oxygen species. Our experimental evidence demonstrated that the natural drug under investigation is able to protect genomic DNA by damage induced by benzo[a]pyrene, hydrogen peroxide (H2O2) and hydrogen peroxide in combination with adenosine 5'-diphosphate (ADP) and ferrous sulfate (FeSO4), determining a significant reduction of the intracellular oxidants. An increase in membrane damage, measured by monitoring the formation of thiobarbituric acid-reactive substances (TBARS) and lactic dehydrogenase (LDH) release, was observed only in sperm treated with H2O2, ADP and FeSO4. The propolis extract was shown to possess the capacity to protect sperm membrane from the deleterious action of oxidative attack, reducing TBARS formation and LDH release. In summary, our results evidence that the protective effect exhibited by this natural compound in human spermatozoa is correlated, at least in part, to the antioxidant capacity of its active components, and suggest that propolis may have a role in protection against male infertility.  相似文献   

13.
To study the structure-function relationship of the oxidative-damage effect of ascorbic acid, we have focused on the interaction between plasmid DNA pUC19 and a series of ascorbic acid derivatives modified on different OH groups in the presence of transition metal ions. Some ascorbic acid derivatives can selectively cleave plasmid DNA from Form I to Form II in the presence of low concentration of Cu2+ just like ascorbic acid itself, while other derivatives oxidatively damage plasmid DNA slightly. We found that those derivatives with unattached 2-OH and 3-OH groups retain the ability to cleave the plasmid DNA. The derivatives that have been methylated on 2-OH or 3-OH can only cleave plasmid DNA softly, and those derivatives that have been protected on both 2-OH and 3-OH can hardly exert an oxidative damage on plasmid DNA under the same condition. Form these results, we can draw the conclusion that 2-OH and 3-OH groups of the ascorbic acid molecule contribute most to this biological activity.  相似文献   

14.
The capability for physical injury or heat stress to elicit the production of reactive oxygen species was examined in four species of gorgonian corals. The sea plumes Pseudopterogorgia elisabethae, Pseudopterogorgia americana, the sea rod Eunicea fusca and the azooxanthellate red branching gorgonian Lophogorgia chilensis were physically injured using sonic sound cavitations and heat shocked by incubation in 33°C sea water. The pharmacological probe, diphenylene iodonium chloride (DPI), an inhibitor of NAD(P)H oxidase and peroxidases was used to identify an enzymatic surrogate of the oxidative burst. Both injury and heat stress were capable of inducing the release of reactive oxygen species (ROS) in all gorgonians tested, yet the kinetics and amplitude of ROS release varied among genera. In both the treatments, P. americana demonstrated the largest oxidative burst among the other corals tested.  相似文献   

15.
Chilling-enhanced photooxidation is the light- and oxygen-dependent bleaching of photosynthetic pigments that occurs upon the exposure of chilling-sensitive plants to temperatures below approximately 10 °C. The oxidants responsible for the bleaching are the reactive oxygen species (ROS) singlet oxygen (1O2), superoxide anion radical (O 2 ,hydrogen peroxide (H2O2), the hydroxyl radical (OH·), and the monodehydroascorbate radical (MDA) which are generated by a leakage of absorbed light energy from the photosynthetic electron transport chain. Cold temperatures slow the energy-consuming Calvin-Benson Cycle enzymes more than the energy-transducing light reactions, thus causing leakage of energy to oxygen. ROS and MDA are removed, in part, by the action of antioxidant enzymes of the Halliwell/Foyer/Asada Cycle. Chloroplasts also contain high levels of both lipid- and water-soluble antioxidants that act alone or in concert with the HFA Cycle enzymes to scavenge ROS. The ability of chilling-resistant plants to maintain active HFA Cycle enzymes and adequate levels of antioxidants in the cold and light contributes to their ability to resist chilling-enhanced photooxidation. The absence of this ability in chilling-sensitive species makes them susceptible to chilling-enhanced photooxidation. Chloroplasts may reduce the generation of ROS by dissipating the absorbed energy through a number of quenching mechanisms involving zeaxanthin formation, state changes and the increased usage of reducing equivalents by other anabolic pathways found in the stroma. During chilling in the light, ROS produced in chilling-sensitive plants lower the redox potential of the chloroplast stroma to such a degree that reductively-activated regulatory enzymes of the Calvin Cycle, sedohepulose 1,7 bisphosphatase (EC 3.1.3.37) and fructose 1,6 bisphosphatase (EC 3.1.3.11), are oxidatively inhibited. This inhibition is reversible in vitro with a DTT treatment indicating that the enzymes themselves are not permanently damaged. The inhibition of SBPase and FBPase may fully explain the inhibition in whole leaf gas exchange seen upon the rewarming of chilling-sensitive plants chilled in the light. Methods for the study of ROS in chilling-enhanced photooxidation and challenges for the future are discussed.Abbreviations ASP ascorbate-specific peroxidase - -TH reduced -tocopherol - DTT dithiothreitol - FBP fructose 1,6 bisphosphate - FBPase fructose 1,6 bisphosphatase (EC 3.1.3.11) - HFA Cycle the Halliwell/Foyer/Asada Cycle responsible for the enzymatic removal of ROS in the chloroplast stroma - MDA monodehydroascorbate radical - MDAR monodehydroascorbate reductase - ROS reactive oxygen species - SBP sedohepulose 1,7 bisphosphate - SBPase sedohepulose 1,7 bisphosphatase (EC 3.1.3.37) - SOD superoxide dismutase  相似文献   

16.
Free radical reactions are believed to play an important role in the mechanism of Cr(VI)-induced carcinogenesis. Most studies concerning the role of free radical reactions have been limited to soluble Cr(VI). Various studies have shown that solubility is an important factor contributing to the carcinogenic potential of Cr(VI) compounds. Here, we report that reduction of insoluble PbCrO4 by glutathione reductase in the presence of NADPH as a cofactor generated hydroxyl radicals (OH) and caused DNA damage. The OH radicals were detected by electron spin resonance (ESR) using 5,5-dimethyl-N-oxide as a spin trap. Addition of catalase, a specific H2O2 scavenger, inhibited the OH radical generation, indicating the involvement of H2O2 in the mechanism of Cr(VI)-induced OH generation. Catalase reduced OH radicals measured by electron spin resonance and reduced DNA strand breaks, indicating OH radicals are involved in the damage measured. The H2O2 formation was measured by change in fluorescence of scopoletin in the presence of horseradish peroxidase. Molecular oxygen was used in the system as measured by oxygen consumption assay. Chelation of PbCrO4 impaired the generation of OH radical. The results obtained from this study show that reduction of insoluble PbCrO4 by glutathione reductase/NADPH generates OH radicals. The mechanism of OH generation involves reduction of molecular oxygen to H2O2, which generates OH radicals through a Fenton-like reaction. The OH radicals generated by PbCrO4 caused DNA strand breakage.  相似文献   

17.
An association between exposure to ambient particulate matter (PM) and increased incidence of mortality and morbidity due to lung cancer and cardiovascular diseases has been demonstrated by recent epidemiological studies. Reactive oxygen species (ROS), especially hydroxyl radicals, generated by PM, have been suggested by many studies as an important factor in the oxidative damage of DNA by PM. The purpose of this study was to characterize quantitatively hydroxyl radical generation by various transition metals in the presence of H2O2 in aqueous buffer solution (pH 7.4) and hydroxylation of 2'-deoxyguanosine (dG) to 8-hydroxy-2'-deoxyguanosine (8-OHdG) under similar conditions. The order of metals' redox reactivity and hydroxyl radical production was Fe(II), V(IV), Cu(I), Cr(III), Ni(II), Co(II), Pb(II), Cd(II). Then, we investigated the generation of hydroxyl radicals in the presence of H2O2 by various airborne PM samples, such as total suspended particulate (TSP), PM10, PM2.5 (PM with aerodynamic diameter 10 and 2.5 μm), diesel exhaust particles (DEP), gasoline exhaust particles (GEP) and woodsmoke soot under the same conditions. When suspensions of PMs were incubated with H2O2 and dG at pH 7.4, all particles induced hydroxylation of dG and formation of 8-OHdG in a dose-dependent increase. Our findings demonstrated that PM's hydroxyl radical (HO√) generating ability and subsequent dG hydroxylation is associated with the concentration of water-soluble metals, especially Fe and V and other redox or ionizable transition metals and not their total metal content, or insoluble metal oxides, via a Fenton-driven reaction of H2O2 with metals. Additionally, we observed, by Electron paramagnetic resonance (EPR), that PM suspensions in the presence of H2O2 generated radical species with dG, which were spin-trapped by 2-methyl-2-nitroso-propane (MNP).  相似文献   

18.
曹慧  施蔡雷  贾秀英 《生态学报》2012,32(13):4199-4206
重金属镉对精巢发育、呼吸及神经系统信号转导等途径均有不良影响,被认为是造成两栖动物种群数量急剧下降的重要原因之一。然而,有关镉对精巢损伤的分子机理还不清楚。通过对镉暴露后的黑斑蛙精巢活性氧自由基(ROS)、蛋白质羰基(PCO)以及DNA蛋白质交联(DPC)等指标的系统分析,探讨了镉对精巢毒害的分子作用机理。随镉浓度的增加,黑斑蛙精巢细胞线粒体ROS随镉暴露浓度的增加而升高,0.5、1.0 mg/L镉染毒组与对照组比较有显著性差异(P<0.05);精巢组织PCO和DPC也随镉暴露浓度的增加而逐渐上升,且均呈明显的浓度-效应关系。结果表明:镉诱导机体产生ROS,进而导致蛋白质氧化损伤以及DNA损伤,说明精巢组织ROS的产生是镉致雄性生殖毒效应机制的重要因素之一。  相似文献   

19.
An aqueous extract of Kefir, fermented milk originally produced in the Caucasus mountains, suppressed morphological changes of human melanoma HMV-1 and SK-MEL cells and human normal fibroblastTIG-1 cells caused by UVC-irradiation, suggesting that UV damage can be suppressed by the Kefir extract. The addition of the Kefir extract after UVC-irradiation of HVM-1 cells resulted in a remarkable decrease in intracellular reactive oxygen species (ROS) which had been increased by UVC irradiation. The Kefir extract also stimulated unscheduled DNA synthesis and suppressed UVC-induced apoptosis of HMV-1 cells. A colony formation assay revealed that the Kefir extract rescued HMV-1 cells from cell death caused by UVC irradiation. The Kefir extract, as well as methyl methanethiosulfonate which is known to enhance the nucleotide excision repair (NER) activity, exhibited strong thymine dimer repair-enhancing activity. Epigalocatechin exhibited a weak NER activity but vitamins A, C, and E and catechin showed no NER activity. The thymine dimer repair-enhancing factors in the Kefir extract were heat-stable and assumed to be molecules with a molecular weight of less than 5000. The treatment of HMV-1 cells with the Kefir extract during or before UVC- irradiation also prevented the generation of ROS and thymine dimmer, and suppressed the apoptosis of HMV-1 cells, suggesting that application of Kefir can prevent UV damage. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
In this work, the effects of H2O2 at concentrations of 10?8–10?2 mol/l on the neutrophil ability to generate reactive oxygen and chlorine species (ROCS) and to secrete myeloperoxidase (MPO) were studied, as well as the H2O2 damaging action on neutrophils. It was found that H2O2 at concentrations of 2 × 10?3–10?2 mol/l led to disturbances of neutrophil membrane barrier properties and to a lactate dehydrogenase release. Incubation of neutrophils with an addition of 10?4–10?7 mol/l H2O2 was accompanied by an increase of the cell ability to generate ROCS during phagocytosis and a decrease of neutrophil ability to secrete MPO and ROCS into the extracellular medium during adhesion. Mechanisms of the H2O2 action are coupled with arachidonic acid metabolism. Inhibition of the 5-lipoxygenase or cyclooxygenase metabolism pathways produced an enhancement of the H2O2 destructive effect. Block of 5-lipoxygenase pathway led to elimination of the H2O2 action on MPO and ROCS secretion and to an enhancement of the H2O2 effect on the neutrophil ability to generate ROCS during phagocytosis. The obtained data indicate a high blood neutrophil resistance to the H2O2 destructive action and confirm the H2O2 regulatory role with respect to the neutrophil functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号