首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Mammalianras genes may naturally acquire oncogenic transformation potential through some point mutations which result in the impairment of the normalras protein functions, and which are localised in codons 12, 13 or 61. Mutationally activatedras alleles were found in a wide variety of human and carcinogen (including radiation)-induced animal malignancies. In man, myeloid leukemias are often associated with the presence of a mutationally activatedras gene (for review, see Bos JL (1989), Cancer Res 49:4682–4689). However, we failed till now in our attempts to detect oncogenicras mutations in radiation-induced mouse myeloid leukemias. We thus have the feeling thatras might perhaps participate to tumorigenesis through another mechanism provoking a deregulation of theras protein functions. In order to help evaluate such a possibility, we give here a very concise overview of the properties of theras proteins and of their regulation by a variety of still hypothetical molecular switches. This overview does not include bibliographic references. Indeed, we gathered much of the information described below at the Cold Spring Harbor Symposium on Function and Evolution ofras Proteins, May 9–13, 1990. Communications presented at Cold Spring Harbor Symposia may contain preliminary data and should not be cited in bibliographies. Another voluntary omission in this overview is that, for the sake of simplicity, we do not mention whether the data were obtained from experiments performed on H-, K- or N-ras. Details can be found in the published book of abstracts.  相似文献   

2.
Differentiation of T lymphocytes is a complex and finely tuned process. Here we show that treatment of mouse fetal thymus organ cultures with agents activating the cAMP-dependent signalling pathway results in the block of thymocyte differentiation. This is due to severe impairment of maturation beyond the CD4-/CD8- stage. In addition, rearrangements at the TCR alpha gene locus, but not at the TCR beta locus, are completely inhibited. The cAMP effect is reversible and is restricted to TCR alpha beta+ cells. cAMP acts both by triggering apoptosis and by inducing cell-cycle block in thymocytes. Thus, activation of the cAMP pathway provides a mechanism to modulate thymic function for hormones and ligands whose receptors are coupled to adenylate cyclase.  相似文献   

3.
The role of Ras in the transduction of signals that control cell growth is undisputed. However, the identity of the Ras signalling pathway remains unknown. Evidence is mounting that Ras can receive signals from different cell surface receptors most likely via a common intermediate, GAP. A new insight into the possible function of Ras is provided by the recent findings that certain ligands can induce the coordinated redistribution of Ras and cell surface receptors. The next challenge is to identify the specific targets for the action of Ras.  相似文献   

4.
The neural factor agrin induces the aggregation of acetylcholine receptors (AChRs) and other synaptic molecules on cultured myotubes. This aggregating activity can be mimicked by experimental manipulations that include treatment with neuraminidase or elevated calcium. We report evidence that neuraminidase and calcium act through the agrin signal transduction pathway. The effects of neuraminidase and calcium on AChR clustering are additive with that of agrin at low concentrations and cosaturating at high concentrations. In addition, like agrin, both neuraminidase and calcium cause rapid tyrosine phosphorylation of the muscle-specific kinase (MuSK) and the AChR-beta subunit. Our results argue that all three agents act directly on components of the same signal transduction complex. We suggest that sialic acids on components of the complex inhibit interactions necessary for signal transduction and that disinhibition can result in activation. In such a model, agrin could activate signal transduction by disinhibition or by circumventing the inhibition.  相似文献   

5.
Ras plays an important role in a variety of cellular functions, including growth, differentiation, and oncogenic transformation. For instance, Ras participates in the activation of Raf, which phosphorylates and activates mitogen-activated protein kinase kinase (MEK), which then phosphorylates and activates extracellular signal-regulated kinase (ERK), a mitogen-activated protein (MAP) kinase. Activation of MAP kinase appears to be essential for propagating a wide variety of extracellular signals from the plasma membrane to the nucleus. N17Ras, a GDP-bound dominant negative mutant, is used widely as an interfering mutant to assess Ras function in vivo. Surprisingly, we observed that expression of N17Ras inhibited the activity and phosphorylation of Elk-1, a physiological substrate of MAP kinases, in response to phorbol myristate acetate. The activity and phosphorylation of the MAP kinase hemagglutinin epitope (HA)-ERK1 were not affected by N17Ras in response to the same stimulus. Additionally, expression of N17Ras, but not L61S186Ras, a GTP-bound interfering mutant, inhibited MEK-induced Elk-1 phosphorylation, suggesting that inhibition of Elk-1 may be unique to GDP-bound Ras mutants. Finally, we observed that V12Ras-induced focus formation in NIH3T3 cells is inhibited by coexpression of GDP-bound Ras mutants, such as N17, A15, and N17N69. Therefore, N17Ras and V12 Ras may be codominant with respect to Elk-1 activation and cellular transformation. These results indicate that N17Ras appears to have at least two distinguishable functions: interference with endogenous Ras activation and inhibition of Elk-1 and transfomation. Furthermore, our data imply the possibility that GDP-bound Ras, like N17Ras, may have a direct role in signal transduction.  相似文献   

6.
7.
The neural factor agrin induces the aggregation of acetylcholine receptors (AChRs) and other synaptic molecules on cultured myotubes. This aggregating activity can be mimicked by experimental manipulations that include treatment with neuraminidase or elevated calcium. We report evidence that neuraminidase and calcium act through the agrin signal transduction pathway. The effects of neuraminidase and calcium on AChR clustering are additive with that of agrin at low concentrations and cosaturating at high concentrations. In addition, like agrin, both neuraminidase and calcium cause rapid tyrosine phosphorylation of the muscle‐specific kinase (MuSK) and the AChR‐β subunit. Our results argue that all three agents act directly on components of the same signal transduction complex. We suggest that sialic acids on components of the complex inhibit interactions necessary for signal transduction and that disinhibition can result in activation. In such a model, agrin could activate signal transduction by disinhibition or by circumventing the inhibition. © 1999 John Wiley & Sons, Inc. J Neurobiol 40: 356–365, 1999  相似文献   

8.
The p38 signalling transduction pathway, a Mitogen-activated protein (MAP) kinase pathway, plays an essential role in regulating many cellular processes including inflammation, cell differentiation, cell growth and death. Activation of p38 often through extracellular stimuli such as bacterial pathogens and cytokines, mediates signal transduction into the nucleus to turn on the responsive genes. p38 also transduces signals to other cellular components to execute different cellular responses. In this review, we summarize the characteristics of the major components of the p38 signalling transduction pathway and highlight the targets of this pathway and the physiological function of the p38 activation.  相似文献   

9.
The activity of gamma-glutamyltransferase (GGT) is frequently upregulated in tumor cells after oxidative stress and may thus increase the availability of amino acids needed for biosynthesis of the antioxidant glutathione. As gamma-radiation of tumor cells can result in oxidative stress, we investigated whether such treatments modulate the enzyme level in colon carcinoma CC531 cells. Radiation of these cells blocked cell proliferation, increased cellular size, initiated apoptosis and upregulated GGT activity and protein levels in a dose- and time-related manner. A slight but significant increase in the cellular level of reactive oxygen species (ROS) was found directly after radiation but appeared not to cause the GGT elevation. Thus, other mechanisms than cellular oxidative stress appear to be responsible for the radiation-induced upregulation of GGT. Stable transfection of activated Ras in a human colon carcinoma cell line expressing wild-type Ras resulted in an increased GGT level, while a reduced enzyme level was demonstrated in another cell line with constitutively activated Ras after stably transfection with a dominant-negative Ras mutant. Moreover, addition of specific protein kinase inhibitors that blocked downstream targets PI-3K and MEK1/2 of Ras, prior to and after radiation, attenuated the radiation-induced activation of GGT. These results support a role for Ras, being frequently activated after radiation, in regulating the level of GGT and also indicate that GGT participates in radioresistance.  相似文献   

10.
We have demonstrated before that exposure of neuronal cultures to poisoning by iodoacetic acid (IAA) followed by "reperfusion" (IAA-R insult), results in severe cytotoxicity, which could be markedly attenuated by prior activation of the adenosine A1 receptors. We also have demonstrated that adenosine activates a signal transduction pathway (STP), which involves activation of PKC epsilon and opening of KATP channels. Here, we provide proof for the involvement also of phospholipase C (PLC) in the neuronal protective adenosine-activated STP. R-PIA, a specific A1 adenosine receptor agonist, was found to enhance neuronal PLC activity and protect against the IAA-R insult. The PLC inhibitor U73122, abrogated both R-PIA-induced effects. These results demonstrate that activation of PLC is a vital step in the neuronal protective adenosine-induced STP.  相似文献   

11.
Nod factor is a critical signalling molecule in the establishment of the legume/rhizobial symbiosis. The Nod factor of Sinorhizobium meliloti carries O-sulphate, O-acetate and C16:2 N-acyl attachments that define its activity and host specificity. Here we assess the relative importance of these modifications for the induction of calcium spiking in Medicago truncatula. We find that Nod factor structures lacking the O-sulphate, structures lacking the O-acetate and N-acyl groups, and structures lacking the O-acetate combined with a C18:1 N-acyl group all show calcium spiking when applied at high concentrations. These calcium responses are blocked in dmi1 and dmi2 mutants, suggesting that they function through the Nod factor signal transduction pathway. The dmi3 mutant, which is proposed to function in the Nod factor signal transduction pathway downstream of calcium spiking, shows increased sensitivity to Nod factor. This increased sensitivity is only active with wild-type Nod factor and was not present when the plants were treated with mutant Nod factor structures. We propose that the Nod factor signal transduction pathway is under negative feedback regulation that is activated at or downstream of DMI3 and requires structural components of the Nod factor molecule for activity.  相似文献   

12.
13.
Pathogenic microorganisms must precisely regulate morphogenesis to survive and proliferate within an infected host. This regulation is often controlled by conserved signal transduction pathways that direct morphological changes in varied species. One such pathway, whose components include Ras proteins and the PAK kinase Ste20, allows the human fungal pathogen Cryptococcus neoformans to grow at high temperature. Previously, we found that Ras1 signalling is required for differentiation, thermotolerance and pathogenesis in C. neoformans. We show here that the guanine nucleotide exchange factor Cdc24 is a Ras1 effector in C. neoformans to mediate the ability of this fungus to grow at high temperature and to cause disease. In addition, we provide evidence that the Ras1-Cdc24 signalling cascade functions specifically through one of the three Cdc42/Rac1 homologues in C. neoformans. In conclusion, our studies illustrate how components of conserved signalling cascades can be specialized for different downstream functions, such as pathogenesis.  相似文献   

14.
15.
Benzothiadiazole (BTH) is a novel chemical activator of disease resistance in tobacco, wheat and other important agricultural plants. In this report, it is shown that BTH works by activating SAR in Arabidopsis thaliana. BTH-treated plants were resistant to infection by turnip crinkle virus, Pseudomonas syringae pv ‘tomato’ DC3000 and Peronospora parasitica. Chemical treatment induced accumulation of mRNAs from the SAR-associated genes, PR-1, PR-2 and PR-5. BTH treatment induced both PR-1 mRNA accumulation and resistance against P. parasitica in the ethylene response mutants, etr1 and ein2, and in the methyl jasmonate-insensitive mutant, jar1, suggesting that BTH action is independent of these plant hormones. BTH treatment also induced both PR-1 mRNA accumulation and P. parasitica resistance in transgenic Arabidopsis plants expressing the nahG gene, suggesting that BTH action does not require salicylic acid accumulation. However, because BTH-treatment failed to induce either PR-1 mRNA accumulation or P. parasitica resistance in the non-inducible immunity mutant, nim1, it appears that BTH activates the SAR signal transduction pathway.  相似文献   

16.
Inhalation of tumour necrosis factor-alpha (TNF-alpha) induced a bronchial hyperreactivity to contractile agonists. However, the mechanisms of TNF-alpha involved in the pathogenesis of bronchial hyperreactivity were not completely understood. Therefore, we investigated the effect of TNF-alpha on bradykinin (BK)-induced inositol phosphate (IP) accumulation and Ca(2+) mobilization, and up-regulation of BK receptor density in canine cultured tracheal smooth muscle cells (TSMCs). Pretreatment of TSMCs with TNF-alpha potentiated BK-induced IP accumulation and Ca(2+) mobilization. However, there was no effect on the IP response induced by endothelin-1 (ET-1), 5-hydroxytryptamine (5-HT), and carbachol. Pretreatment with PDGF B-chain homodimer (PDGF-BB) also enhanced BK-induced IP response. These enhancements induced by TNF-alpha and PDGF-BB might be due to an increase in BK B(2) receptor density (B(max)), since [3H]BK binding to TSMCs was inhibited by the B(2) selective agonist and antagonist, BK and Hoe 140, but not by the B(1) selective reagents. The enhancing effects of TNF-alpha and PDGF-BB were attenuated by PD98059 (an inhibitor of activation of MAPK kinase, MEK) and cycloheximide (an inhibitor of protein synthesis), suggesting that TNF-alpha may share a common signalling pathway with PDGF-BB via protein(s) synthesis in TSMCs. Furthermore, overexpression of dominant negative mutants, H-Ras-15A and Raf-N4, significantly suppressed p42/p44 mitogen-activated protein kinase (MAPK) activation induced by TNF-alpha and PDGF-BB and attenuated the effect of TNF-alpha on BK-induced IP response, indicating that Ras and Raf may be required for activation of these kinases. These results suggest that the augmentation of BK-induced responses produced by TNF-alpha might be, at least in part, mediated through activation of Ras/Raf/MEK/MAPK pathway in TSMCs.  相似文献   

17.
18.
We have investigated the relationship between hydrolysis of phosphatidylcholine (PC) and activation of the Raf-1 protein kinase in Ras-mediated transduction of mitogenic signals. As previously reported, cotransfection of a PC-specific phospholipase C (PC-PLC) expression plasmid bypassed the block to cell proliferation resulting from expression of the dominant inhibitory mutant Ras N-17. In contrast, PC-PLC failed to bypass the inhibitory effect of dominant negative Raf mutants, suggesting that PC-PLC functions downstream of Ras but upstream of Raf. Consistent with this hypothesis, treatment of quiescent cells with exogenous PC-PLC induced Raf activation, even when normal Ras function was blocked by Ras N-17 expression. Further, activation of Raf in response to mitogenic growth factors was blocked by inhibition of endogenous PC-PLC. Taken together, these results indicate that hydrolysis of PC mediates Raf activation in response to mitogenic growth factors.  相似文献   

19.
The retinoid-inducible gene 1 (RIG1) protein is a retinoid-inducible growth regulator. Previous studies have shown that the RIG1 protein inhibits the signaling pathways of Ras/mitogen-activated protein kinases. However, neither the mode of action nor the site of inhibition of RIG1 is known. This study investigated the effects of RIG1, and the mechanisms responsible for these effects, on the activation of Ras proteins in HtTA cervical cancer cells. RIG1 reduced the levels of activated Ras (Ras-GTP) and total Ras protein in cells transfected with mutated H-, N-, or K-Ras(G12V), or in cells transfected with the wild type H- or N-Ras followed by stimulation with epidermal growth factor. The half-life of Ras protein decreased from more than 36 h in control cells to 18 h in RIG1-transfected cells. RIG1 immunoprecipitated with the Ras protein in co-transfected cellular lysates. In contrast to the predominant plasma membrane localization in control cells, the H-Ras fusion protein EGFP-H-Ras was localized within a discrete cytoplasmic compartment where it co-localized with RIG1. RIG1 inhibited more than 93% of the Elk- and CHOP-mediated transactivation induced by H- or K-Ras(G12V). However, RIG1 did not inhibit the transactivation induced by MEK1 or MEK3, and failed to suppress the phosphorylation of extracellular signal-regulated kinases 1 and 2 induced by the constitutively activated B-Raf(V599E). The RIG1 with carboxyl terminal truncation (RIG1DeltaC) did not immunoprecipitate with Ras and had no effect on Ras activation or transactivation of the downstream signal pathways. These data indicate that RIG1 exerts its inhibitory effect at the level of Ras activation, which is independent of Ras subtype but dependent on the membrane localization of the RIG1 protein. This inhibition of Ras activation may be mediated through downregulation of Ras levels and alteration of Ras subcellular distribution.  相似文献   

20.
JunD mediates survival signaling by the JNK signal transduction pathway   总被引:10,自引:0,他引:10  
The c-Jun NH(2)-terminal kinase (JNK) can cause cell death by activating the mitochondrial apoptosis pathway. However, JNK is also capable of signaling cell survival. The mechanism that accounts for the dual role of JNK in apoptosis and survival signaling has not been established. Here we demonstrate that JNK-stimulated survival signaling can be mediated by JunD. The JNK/JunD pathway can collaborate with NF-kappaB to increase antiapoptotic gene expression. This observation accounts for the ability of JNK to cause either survival or apoptosis in different cellular contexts. Furthermore, these data illustrate the general principal that signal transduction pathway integration is critical for the ability of cells to mount an appropriate biological response to a specific challenge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号