首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of oral administration of sodium orthovanadate for three weeks on polyol pathway in renal cortex and medulla was studied in control and alloxan diabetic rats. An enhancement in aldose reductase in cortex and medulla and sorbitol dehydrogenase in cortex was observed in alloxan diabetic rats. Despite depressed insulin secretion, vanadate treatment to diabetic rats counteracted hyperglycemia, normalized elevated enzyme activities and glucose level, prevented medullary sorbitol accumulation and markedly checked increase in kidney weight. These results show that vanadate causes marked improvement in renal hypertrophy and has an antidiabetogenic effect on polyol pathway in diabetic kidney.  相似文献   

2.
We report here the effects of chronic ethanol consumption on the antioxidant defense system in rat kidney. Thirty-two male Wistar rats were randomly divided in two identical groups and were treated as follows: control group (water for fluid) and the ethanol-fed group (2 g/kg body weight/24 h). The animals were sacrificed after 10 weeks, and respectively 30 weeks of ethanol consumption, and the renal tissue was isolated and analyzed. Results revealed that kidney alcohol dehydrogenase activities increased significantly after ethanol administration, but the electrophoretic pattern of alcohol dehydrogenase isoforms was unmodified. The SDS polyacrylamidegel electrophoretic study of kidney proteins has revealed the appearance of two new protein bands after long-term ethanol consumption. The kidney reduced glutathione/oxidized glutathione ratio decreased, indicating an oxidative stress response due to ethanol ingestion. The malondialdehyde contents and xanthine oxidase activities were unchanged. The antioxidant enzymatic defense system showed a different response during the two periods of ethanol administration. After 10 weeks, catalase, glutathione peroxidase, glutathione reductase, and glucose-6-phosphate dehydrogenase were activated, while superoxide dismutase, glutathione transferase, and gamma-glutamyltranspeptidase levels were stationary. After 30 weeks, superoxide dismutase and glutathione peroxidase activities were unmodified, but catalase, glutathione transferase, gamma-glutamyltranspeptidase, glutathione reductase, and glucose-6-phosphate dehydrogenase activities were significantly increased. Remarkable changes have been registered after 30 weeks of ethanol administration for glutathione reductase and glucose-6-phosphate dehydrogenase activities, including an increase by 106 and 216' of control values, respectively. These results showed specific changes in rat kidney antioxidant system and glutathione status as a consequence of long-term ethanol administration.  相似文献   

3.
The activity and hormonal regulation of NAD- and NADP-linked isocitrate dehydrogenase (EC.1.1.1.41 and EC.1.1.1.42, respectively) in the brain, liver and kidney cortex of female rats of various ages was investigated. The activity of NAD-ICDH of brain was greater than extramitochondrial (-c) or intramitochondrial (-m) NADP-ICDH. In contrast, liver c-NADP-ICDH was much higher than NAD- or m-NADP-ICDH, whereas in kidney cortex the activity of m-NADP-ICDH is dominant over both NAD- and c-NADP-ICDH in all the age group of rats studied. The activity of the NAD-ICDH of brain and all the enzymes of liver and kidney cortex increases until adulthood (33-weeks) and decreases thereafter in old rats (85-weeks). In brain c-NADP-ICDH was much higher in immature (6-weeks) rats and decreases with increasing age of the animal, whereas m-NADP-ICDH showed no significant change with the age of the rats. Bilateral ovariectomy decreases the level of all the three forms of enzyme in all the tissues of 6-, 13- and 33-week rats but failed to show any significant effect in 85-week old rats. Exogenous administration of estradiol induces all the three forms of enzyme in all the tissues of ovariectomized rats. The degree of response is tissue- and age-specific.  相似文献   

4.
Acute single dose administration of lanthanum chloride (250 mg/kg body wt, ip) to chicks have been found to alter the levels of enzymes of the antioxidant defence system of chick renal cortex fractions. Such changes involved significant decrease in activities of glucose-6-phosphate dehydrogenase, glutathione reductase, glutathione peroxidase and catalase of kidney epithelial cells. However glutathione-S-transferase activity was not altered. Glutathione and total thiol contents were decreased while lipoperoxidative reactions in kidney-cortex was significantly enhanced. The data indicate that amelioration of lanthanum toxicity condition by methionine supplementation may be due to the methionine serving as a precursor of glutathione.  相似文献   

5.
1. 3-Hydroxybutyrate dehydrogenase (EC 1.1.1.30) activities in sheep kidney cortex, rumen epithelium, skeletal muscle, brain, heart and liver were 177, 41, 38, 33, 27 and 17μmol/h per g of tissue respectively, and in rat liver and kidney cortex the values were 1150 and 170 respectively. 2. In sheep liver and kidney cortex the 3-hydroxybutyrate dehydrogenase was located predominantly in the cytosol fractions. In contrast, the enzyme was found in the mitochondria in rat liver and kidney cortex. 3. Laurate, myristate, palmitate and stearate were not oxidized by sheep liver mitochondria, whereas the l-carnitine esters were oxidized at appreciable rates. The free acids were readily oxidized by rat liver mitochondria. 4. During oxidation of palmitoyl-l-carnitine by sheep liver mitochondria, acetoacetate production accounted for 63% of the oxygen uptake. No 3-hydroxybutyrate was formed, even after 10min anaerobic incubation, except when sheep liver cytosol was added. With rat liver mitochondria, half of the preformed acetoacetate was converted into 3-hydroxybutyrate after anaerobic incubation. 5. Measurement of ketone bodies by using specific enzymic methods (Williamson, Mellanby & Krebs, 1962) showed that blood of normal sheep and cattle has a high [3-hydroxybutyrate]/[acetoacetate] ratio, in contrast with that of non-ruminants (rats and pigeons). This ratio in the blood of lambs was similar to that of non-ruminants. The ratio in sheep blood decreased on starvation and rose again on re-feeding. 6. The physiological implications of the low activity of 3-hydroxybutyrate dehydrogenase in sheep liver and the fact that it is found in the cytoplasm in sheep liver and kidney cortex are discussed.  相似文献   

6.
Glucose-6-phosphate dehydrogenase (G-6-PD) is one of the important enzymes, which is responsible for the production of NADPH and ribose-5-phosphate. NADPH is used for the biosynthetic reactions and protection of the cells from free radicals. We have investigated some properties and kinetic mechanism of the sheep kidney cortex G-6-PD. This enzyme has been purified 1,384-fold with a yield of 16.96% and had a specific activity of 27.69 U/mg protein. The purification procedure consists of 2', 5'-ADP-Sepharose 4B affinity chromatography after ultracentrifugation. The sheep kidney cortex G-6-PD was found to operate according to a Ping Pong Bi Bi mechanism. The kinetic parameters from sheep K(m) values for G-6-P and NADP(+) and V(m) were determined to be 0.041+/-0.0043 mM, 0.0147+/-0.001 mM and 28.23+/-0.86 microMol min(-1) mg protein(-1), respectively. The pH optimum was 7.4 and the optimum temperature was 45 degrees C. In our previous study we have found that lamb kidney cortex G-6-PD enzyme obeys 'Ordered Bi Bi' mechanism. We suggest that kinetic mechanism altered due to the aging since sheep G-6-PD uses a 'ping pong' mechanism.  相似文献   

7.
We report here the effects of chronic ethanol consumption on the antioxidant defense system in rat kidney. Thirty‐two male Wistar rats were randomly divided in two identical groups and were treated as follows: control group (water for fluid) and the ethanol‐fed group (2 g/kg body weight/24 h). The animals were sacrificed after 10 weeks, and respectively 30 weeks of ethanol consumption, and the renal tissue was isolated and analyzed. Results revealed that kidney alcohol dehydrogenase activities increased significantly after ethanol administration, but the electrophoretic pattern of alcohol dehydrogenase isoforms was unmodified. The SDS polyacrylamidegel electrophoretic study of kidney proteins has revealed the appearance of two new protein bands after long‐term ethanol consumption. The kidney reduced glutathione/oxidized glutathione ratio decreased, indicating an oxidative stress response due to ethanol ingestion. The malondialdehyde contents and xanthine oxidase activities were unchanged. The antioxidant enzymatic defense system showed a different response during the two periods of ethanol administration. After 10 weeks, catalase, glutathione peroxidase, glutathione reductase, and glucose‐6‐phosphate dehydrogenase were activated, while superoxide dismutase, glutathione transferase, and γ‐glutamyltranspeptidase levels were stationary. After 30 weeks, superoxide dismutase and glutathione peroxidase activities were unmodified, but catalase, glutathione transferase, γ‐glutamyltranspeptidase, glutathione reductase, and glucose‐6‐phosphate dehydrogenase activities were significantly increased. Remarkable changes have been registered after 30 weeks of ethanol administration for glutathione reductase and glucose‐6‐phosphate dehydrogenase activities, including an increase by 106 and 216' of control values, respectively. These results showed specific changes in rat kidney antioxidant system and glutathione status as a consequence of long‐term ethanol administration. © 2005 Wiley Periodicals, Inc. J Biochem Mol Toxicol 19:386‐395, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20101  相似文献   

8.
The binding of nuclear factor on the promoter region of the regucalcin gene and the expression of regucalcin in the kidney cortex of rats was investigated. Nuclear extracts from kidney cortex were used for oligonucleotide competition gel mobility shift assay. An oligonucleotide between position –523 and –506 in the 5-flanking region of the rat regucalcin gene, which contains a nuclear factor I (NF1) consensus motif TTGGC(N)6CC, competed with the probe for the binding of the nuclear protein from kidney cortex. The mutation of TTGGC in the consensus sequence caused an inhibition of the binding of nuclear factors. The binding of nuclear factor on the 5-flanking region was clearly reduced in the kidney cortex obtained at 1, 2, and 3 days after a single intraperitoneal administration of cisplatin (1.0 mg/100 g body wt) to rats. Moreover, cisplatin administration caused a remarkable decrease in regucalcin mRNA levels and regucalcin concentration in the kidney cortex. Also, serum regucalcin concentration was significantly decreased by cisplatin administration. Meanwhile, serum urea nitrogen concentration was markedly elevated by cisplatin administration. The present study demonstrates that the specific nuclear factor binds to the NF1-like sequence in the promotor region of regucalcin gene in the kidney cortex of rats, and that the nuclear factor binding and regucalcin expression are suppressed by cisplatin administration.  相似文献   

9.
Some properties of lactate dehydrogenase found in human urine   总被引:2,自引:1,他引:1       下载免费PDF全文
1. Urinary lactate dehydrogenase was concentrated and subjected to starchblock electrophoresis. The isoenzyme pattern obtained was shown to be similar to that of the kidney cortex and medulla but different from that of the bladder and kidney pelvis. 2. The values for the relative activity and Michaelis constant of urinary lactate dehydrogenase were similar to those for kidney cortex and medulla but significantly different from those obtained for bladder and kidney pelvis. 3. The molecular weight of urinary lactate dehydrogenase was estimated by thin-layer chromatogtaphy on Sephadex G-200. The values obtained for several samples of urine ranged from 129 000 to 155 000 and were very close to that of the crystalline rabbit-muscle enzyme (140 000). 4. The question of the possible origin of urinary lactate dehydrogenase is discussed and the conclusion drawn that the kidney and not the plasma is the most likely source.  相似文献   

10.
Pinocytosis was induced in rat kidney by exposure to horseradish peroxidase (HRP). Pinocytic vesicle preparations were enriched after homogenization of kidney cortex by differential centrifugation and free-flow electrophoresis with HRP as an exogenous marker. Vesicles were identified by enzymatic analysis and by electron microscopy, including specific staining procedures. Typical brush-border enzymes such as alkaline phosphatase, aminopeptidase, 5'-nucleotidase, lysosomal acid phosphatase, and mitochondrial succinic dehydrogenase were reduced in the vesicular fraction, compared to the kidney cortex homogenate. Glucose-6-phosphatase and Na+-K+-ATPase were only slightly increased in the fraction. These results indicate that preparations of pinocytic vesicles from rat kidney cortex can be enriched. They have biochemical characteristics that differ from those of the cell organelles and membranes previously purified from renal tissue.  相似文献   

11.
The present study was undertaken to separate peroxisomes of the dog kidney cortex by the methods of discontinuous sucrose density gradient and zonal centrifugation. The separation of subcellular particles was evaluated by measuring the activities of reference enzymes, beta-glycerophosphatase for lysosomes, succinate dehydrogenase for mitochondria, glucose-6-phosphatase for microsomes, and catalase and D-amino acid oxidase for peroxisomes. The activities of D-amino acid oxidase and catalase were mainly observed in fractions 1 and 2 (1.6 and 1.7 M sucrose) obtained by discontinuous sucrose density-gradient centrifugation. Small amounts of acid phosphatase and succinate dehydrogenase contaminated these fractions. Considerably higher activity of catalase was determined in the supernatant, while D-amino acid oxidase showed a lower activity. By the method of zonal centrifugation, the highest specific activities of catalase and D-amino acid oxidase were found in fraction 50 (1.73 M sucrose) with no succinate dehydrogenase, acid phosphatase or glucose-6-phosphatase activity. These results suggested that peroxisomes of dog kidney cortex were clearly separated in 1.73 M sucrose from mitochondria, lysosomes and microsomes by zonal centrifugation.  相似文献   

12.
The expression of calcium-binding protein regucalcin mRNA in the kidney cortex of rats was investigated. The change of regucalcin mRNA levels was analyzed by Northern blotting using liver regucalcin complementary DNA (0.9 kb of open-reading frame). Regucalcin mRNA was expressed in the kidney cortex, and this expression was clearly increased by a single intraperitoneal administration of calcium chloride solution (5–15 mg Ca/100 g body weight) in rats; this increase was remarkable at 60–120 min after the administration. Thyroparathyroidectomy (TPTX) caused a slight decrease of regucalcin mRNA levels in the kidney cortex. However, the administration of calcium (10 mg/100 g) in TPTX rats produced a clear increase of regucalcin mRNA levels in the kidney cortex. The subcutaneous administration of calcitonin (10–100 MRC mU/100 g) or parathyroid hormone [1–34] (1–10 U/100 g) in TPTX rats which received calcium (10 mg/100 g) administration did not cause an appreciable alteration of regucalcin mRNA levels in the kidney cortex, suggesting that the mRNA expression is not stimulated by calcium-regulating hormones. The administration of trifluoperazine (TFP; 5 mg/100 g), an inhibitor of Ca2+/calmodulin action, completely blocked the expression of regucalcin mRNA stimulated by calcium administration. Now, calcium content in the kidney cortex was significantly elevated by a single intraperitpneal administration of calcium (10 mg/100 g) in rats. The present study clearly demonstrates that the expression of regucalcin mRNA in the kidney cortex is stimulated by calcium administration in rats. This expression may be mediated through Ca2+/calmodulin action in the kidney cortex.  相似文献   

13.
The suppressive role of endogenous regucalcin (RC), which is a regulatory protein of calcium signaling, in the enhancement of protein phosphatase activity (PPA) in the cytosol and nucleus of kidney cortex in calcium-administered rats was investigated. Calcium content in the kidney cortex was significantly increased at 0.5-5 h after a single intraperitoneal administration of calcium chloride solution (10 mg Ca/100 g body weight) to rats. The analysis with Western blotting of RC protein showed that RC levels in the cytosol and nucleus were significantly increased 0.5-5 h after the administration of calcium (10 mg/100 g). PPA toward phosphotyrosine, phosphoserine, and phosphothreonine was found in the cytosol and nucleus of kidney cortex. PPA toward three phosphoamino acids in the cytosol and nucleus was significantly increased by the administration of calcium (10 mg/100 g). The presence of anti-RC monoclonal antibody (25 ng/ml) in the enzyme reaction caused a significant increase in PPA toward phosphotyrosine, phosphoserine, and phosphothreonine in the cytosol and nucleus of kidney cortex in normal rats. The effect of anti-RC monoclonal antibody (25 ng/ml) in increasing PPA toward three phosphoamino acids in the cytosol and nucleus was significantly enhanced in calcium-administered rats. The effect of anti-RC monoclonal antibody (25 ng/ml) in increasing PPA in the cytosol and nucleus of normal rats and calcium-administered rats was completely abolished by the addition of RC (10(- 6) M) in the enzyme reaction mixture. The present study suggests that endogenous RC suppresses the enhancement of PPA in the cytosol and nucleus of kidney cortex in calcium-administered rats.  相似文献   

14.
An oxidative pathway of glucose-6-phosphate was found in the microsomal fraction of two extra-hepatic tissues: human placenta and pig kidney cortex. Oxidation activity in microsomes, measured by the formation of 14CO2 from [1-14C] glucose-6-phosphate, was observed only after Triton X-100 treatment and in the presence of methylene blue and NADP. Hexose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were present in a latent form and required treatment with detergent for full activation. Our results suggest that these enzymes are located in the luminal space of placental and kidney microsomes, and that, as in the liver, they generate NADPH on the inner side of the endoplasmic reticulum when G6P and NADP are available.  相似文献   

15.
The effects of metabolic acidosis and of hormones on the activity, synthesis, and degradation of renal cytosolic P-enolpyruvate carboxykinase (GTP) (EC 4.1.1.32) were studied in the rat using isotopic -immunochemical procedures. At normal acid-base balance, the synthesis of the enzyme accounted for between 2 and 3.5% of the synthesis of all soluble protein in the kidney cortex. P-enolpyruvate carboxykinase synthesis was selectively stimulated in acute metabolic acidosis, so that the relative rate of synthesis of the enzyme was increased to 7% 13 hours after oral administration of ammonium chloride. The stimulation of P-enolpyruvate carboxykinase synthesis preceded any increase in the assayable activity of the enzyme. The administration of sodium bicarbonate to acutely acidotic rats returned the rate of enzyme synthesis to normal in 8 hours. The effect of acidosis on both the synthesis and the activity of P-enolpyruvate carboxykinase was prevented by actinomycin D, cordycepin, and cycloheximide. The degradation in vivo of pulse-labeled P-enolpyruvate carboxykinase was not affected by acidosis. Thus, the stimulation of P-enolpyruvate carboxykinase synthesis is the major mechanism for the increase in the level of the enzyme observed in metabolic acidosis. The administration of glucocorticoid triamcinolone resulted in an increase in the relative rate of P-enolpyruvate carboxykinase synthesis and a commensurate increase in the activity of the enzyme in the renal cortex. Both changes were abolished by actinomycin D. Fasting was characterized by a high enzyme activity and a rapid rate of enzyme synthesis in the kidney cortex. This high rate of synthesis was reduced after the administration of sodium bicarbonate, but not after glucose feeding. Moreover, the injection of insulin to diabetic rats did not repress P-enolpyruvate carboxykinase synthesis in the renal cortex. Theophylline plus N-6, 0-2'-dibutyryl adenosine 3':5'-monophosphate stimulated P-enolpyruvate carboxykinase synthesis in the kidney of intact rats. However, the latter effect was probably due to glucocorticoid secretion, since it did not occur in adrenalectomized animals. The administration of parathyroid extracts did not result in the induction of the enzyme. Thus, the hormonal regulation of cytosolic P-enolpyruvate carboxykinase synthesis in the kidney differs markedly from that in the liver.  相似文献   

16.
In this article, we report the effects of acute administration of ruthenium complexes, trans-[RuCl(2)(nic)(4)] (nic=3-pyridinecarboxylic acid) 180.7 micromol/kg (complex I), trans-[RuCl(2)(i-nic)(4)] (i-nic=4-pyridinecarboxylic acid) 13.6 micromol/kg (complex II), trans-[RuCl(2)(dinic)(4)] (dinic=3,5-pyridinedicarboxylic acid) 180.7 micromol/kg (complex III) and trans-[RuCl(2)(i-dinic)(4)]Cl (i-dinic=3,4-pyridinedicarboxylic acid) 180.7 micromol/kg (complex IV) on succinate dehydrogenase (SDH) and cytochrome oxidase (COX) activities in brain (hippocampus, striatum and cerebral cortex), heart, skeletal muscle, liver and kidney of rats. Our results showed that complex I inhibited SDH activity in hippocampus, cerebral cortex, heart and liver; and inhibited COX in heart and kidney. Complex II inhibited SDH in heart and hippocampus; COX was inhibited in hippocampus, heart, liver and kidney. SDH activity was inhibited by complex III in heart, muscle, liver and kidney. However, COX activity was increased in hippocampus, striatum, cerebral cortex and kidney. Complex IV inhibited SDH activity in muscle and liver; COX activity was inhibited in kidney and increased in hippocampus, striatum and cerebral cortex. In a general manner, the complexes tested in this work decrease the activities of SDH and COX in heart, skeletal muscle, liver and kidney. In brain, complexes I and II were shown to be inhibitors and complexes III and IV activators of these enzymes. In vitro studies showed that the ruthenium complexes III and IV did not alter COX activity in kidney, but activated the enzyme in hippocampus, striatum and cerebral cortex, suggesting that these complexes present a direct action on COX in brain.  相似文献   

17.
Oral administration of K2Cr2O7 to male albino rats at an acute dose of 1500 mg/kg body wt/day for 3 days brought about sharp decrease in the activities of glucose-6-phosphate dehydrogenase and glutathione reductase of kidney epithelial cells. The scavenging system of kidney epithelium is also affected as evident by the highly significant fall in the activities of glutathione peroxidase, superoxide dismutase and catalase which ultimately leads to the increase in lipid peroxidation value in kidney cortical homogenate. However, glutathione-s-transferase activity in cytosol and glutathione and total thiol content in cortical homogenate were not altered. Chronic oral administration of K2Cr2O7 (300 mg/kg body wt/day) for 30 days to rats lead to elevation in the activities of glutathione peroxidase, glutathione reductase, glutathione-s-transferase, superoxide dismutase and catalase with no change in glucose-6-phosphate dehydrogenase activity in epithelial cells. This might lead to the increase in glutathione and total thiol status and decrease in lipid peroxidation value in whole homogenate system.  相似文献   

18.
A V Sergutina 《Tsitologiia》1991,33(12):67-72
Quantitative cytochemical methods in functionally different rat brain formations (sensomotor cortex, visual cortex, nucleus caudatus, hippocampus) showed the peculiarities of the effect of tuftsin on the activity of some enzymes (the oxidative, neurotransmitter and protein metabolism enzymes) 15 min and 3 days after its single administration. No changes of activity of neurotransmitter metabolism enzymes (monoamine oxidase, acetylcholinesterase) were registered cytochemically. The specificity of the neuro-tropical effect of tuftsin on protein (activity of aminopeptidase and acid phosphatase) and oxidative (activity of glutamate dehydrogenase and glucose-6-phosphate dehydrogenase) metabolism in different functional brain systems is discussed.  相似文献   

19.
We have studied the effects of several different macronutrients on the kinetic behaviour of rat renal glucose 6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH). Rats were meal-fed with high-carbohydrate/low-protein, high-protein/low-carbohydrate and high-fat diets. High-protein increased renal G6PDH and 6PDGH activities by 66 per cent and 70 per cent respectively, without significantly changing the Km values of either and each Hexose monophosphate dehydrogenase activity increased steadily, reaching a significant difference on day 4. A rise in carbohydrate or fat in the diets, produced no significant change in either the activity or the kinetic parameters, Vmax and Km of the two dehydrogenases. In addition, the administration of a high-protein diet for 8 days significantly increased both the pentose phosphate pathway flux (92.6 per cent) and the kidney weigth (35 per cent), whereas no significant changes in these parameters were found when the animals were treated with the other diets. Our results suggest that an increase in the levels of dietary protein induces a rise in the intracellular levels of these enzymes. The possible role of this metabolic pathway in the kidneys under these nutritional conditions is also discussed.  相似文献   

20.
The effect of a long-acting somatostatin analogue on the acute renal hypertrophy following induction of experimental diabetes in the rat has been studied. The kidney weight increase occurring at 2 and 7 days after alloxan injection was significantly lower in the diabetic group receiving somatostatin. Similarly, the previously reported increase in glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (EC 1.1.1.44) found in the kidney at 2 and 7 days of diabetes was less marked in the group receiving SMS 201-995. The fall in renal phosphoribosyl pyrophosphate associated with early diabetic renal hypertrophy (7) was also lessened by administration of SMS 201-995. No effects of the drug were found in the normal rat on the same regimen of treatment. These observations indicate involvement of glucagon and/or growth hormone in the initiation of kidney growth in diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号