首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Escherichia coli purine repressor, PurR, binds to a 16-bp operator sequence and coregulates the genes for de novo synthesis of purine and pyrimidine nucleotides, formation of a one-carbon unit for biosynthesis, and deamination of cytosine. We have characterized the purified repressor. Chemical cross-linking indicates that PurR is dimeric. Each subunit has an N-terminal domain of 52 amino acids for DNA binding and a C-terminal 289-residue domain for corepressor binding. Each domain was isolated after cleavage by trypsin. Sites for dimer formation are present within the corepressor binding domain. The corepressors hypoxanthine and guanine bind cooperatively to distinct sites in each subunit. Competition experiments indicate that binding of one purine abolishes cooperativity and decreases the affinity and the binding of the second corepressor. Binding of each corepressor results in a conformation change in the corepressor binding domain that was detected by intrinsic fluorescence of three tryptophan residues. These experiments characterize PurR as a complex allosteric regulatory protein.  相似文献   

2.
We have examined the interaction of the trp repressor from Escherichia coli with a 20 base-pair synthetic operator. Nonspecific binding was relatively strong (Kd = 2 microM), but only weakly sensitive to the concentration of added salt [d log Kd)/(d log [Na]) = -1). 1H-NMR studies indicate that the structure of the repressor is not greatly altered on forming the complex, and that few if any of the lysine and arginine residues make direct contact with the DNA. However, the mobility of one of the two tyrosine residues is significantly decreased in the complex. The repressor makes close contact with the major grooves of the operator such that the base protons are broadened much more than expected on the basis of increased correlation time. There are large, differential changes in chemical shifts of the imino protons on forming the complex, as well as changes in the rate constants for exchange. The fraying of the ends is greatly diminished, consistent with a target size of about 20 base-pairs. The effects of the repressor on the NMR spectra and relaxation rate constants can be interpreted as a change in the conformation of the operator, possibly a kinking in the centre of the molecule.  相似文献   

3.
In the arginine regulon of Escherichia coli K12 each of the eight operator sites consists of two 18-base-pair-long palindromic sequences called ARG boxes. In the operator sites for the structural genes of the regulon the two ARG boxes are separated by three base-pairs, in the regulatory gene argR they are separated by two base-pairs. The hexameric arginine repressor, the product of argR, binds to the two ARG boxes in an operator in the presence of L-arginine. From the results of various kinds of in vitro footprinting experiments with the ARG boxes of argF and argR (DNase I protection, hydroxyl radical, ethylation and methylation interference, methylation protection) it can be concluded that: (1) the repressor binds simultaneously to two adjacent ARG boxes; (2) that it binds on one face of the double helix; and (3) that it forms contacts with the major and minor grooves of each ARG box, but not with the central three base-pairs. The repressor can bind also to a single ARG box, but its affinity is about 100-fold lower than for two ARG boxes. From gel retardation experiments with 3H-labeled repressor and 32P-labeled argF operator DNA, it is concluded that the retarded DNA-protein complex contains no more than one repressor molecule per operator site and that most likely one hexamer binds to two ARG boxes. The bound repressor was shown to induce bending of argF operator DNA. The bending angle calculated from the results of gel retardation experiments is about 70 degrees and the bending center was located within the region encompassing the ARG boxes. The main features that distinguish the arginine repressor from other repressors studied in E. coli are its hexameric nature and the simultaneous binding of one hexameric molecule to two palindromic ARG boxes that are close to each other.  相似文献   

4.
5.
The positions of interference points between the IclR repressor of the acetate operon of Escherichia coli and its specific operator were examined. The number and nature of nucleotides essential to repressor binding were determined by scanning populations of DNA previously methylated at guanine residues by dimethyl sulfate, or depurinated by treatment with formic acid, or depyrimidated by treatment with hydrazine. A total of 46 nucleotides, distributed almost equally between the two strands of the operator region, were found to be functionally important, although to a varying extent. These are clustered in two successive domains which expand from nucleotide -54 to nucleotide -27 and can organize in a palindrome-like structure containing a large proportion of A and T residues.  相似文献   

6.
From small-angle X-ray scattering experiments on solutions of Escherichia coli lac repressor and repressor tryptic core, we conclude that the domains of repressor that bind to operator DNA lie at the ends of an elongated molecule. The addition of the inducer, isopropyl-β-d-thiogalactoside, to either repressor or core does not produce a measurable structural change, since the radius of gyration of repressor is 40.3 ± 1.9 Å without and 42.2 ± 1.7 Å with isopropyl-β-d-thiogalactoside; the core radius of gyration is 35.4 ± 1.1 Å without ligand and 36.3 ± 1.1 Å with isopropyl-β-d-thiogalactoside. In the context of data from single crystals of repressor and core, the measured radii of gyration are shown to be consistent with a core (or repressor) molecule of dimensional anisotropy 1: (1.5 to 2.0): (3.0 to 4.0). The 5 Å difference in radius of gyration between native and core repressor is interpreted to mean that the amino terminal 59 residues (headpieces) lie at the ends of an elongated repressor molecule. This structure implies that the repressor may have DNA binding sites, consisting of two adjacent headpieces, on each end of the molecule and this binds to the DNA with its long axis perpendicular to the DNA.  相似文献   

7.
8.
The mechanisms of the requirement of glucose for steroidogenesis were investigated by monitoring the uptake of the glucose analogue 2-deoxy-D-glucose by rat testis and tumour Leydig cells. The characteristics of glucose transport in both of these cell types were found to resemble those of the facilitated-diffusion systems for glucose found in most other mammalian cells. The Leydig cells took up 2-deoxy-D-glucose but not L-glucose, and the uptake was inhibited by both cytochalasin B and forskolin. In the presence of luteinizing hormone, the rate of 2-deoxy-D-glucose uptake by both cell types was increased by approx. 50%. In addition to D-glucose, it was shown that the Leydig cells could also utilize 3-hydroxybutyrate or glutamine to maintain steroidogenesis.  相似文献   

9.
Escherichia coli lac repressor is a tetrameric protein composed of 360 amino acid subunits. Considerable attention has focused on its N-terminal region which is isolated by cleavage with proteases yielding N-terminal fragments of 51 to 59 amino acid residues. Because these short peptide fragments bind operator DNA, they have been extensively examined in nuclear magnetic resonance structural studies. Longer N-terminal peptide fragments that bind DNA cannot be obtained enzymatically. To extend structural studies and simultaneously verify proper folding in vivo, the DNA sequence encoding longer N-terminal fragments were cloned into a vector system with the coliphage T7 RNA polymerase/promoter. In addition to the wild-type lacI gene sequence, single amino acid substitutions were generated at positions 3 (Pro3----Tyr) and 61 (Ser61----Leu) as well as the double substitution in a 64 amino acid N-terminal fragment. These mutations were chosen because they increase the DNA binding affinity of the intact lac repressor by a factor of 10(2) to 10(4). The expression of these lac repressor fragments in the cell was verified by radioimmunoassays. Both wild-type and mutant lac repressor N termini bound operator DNA as judged by reduced beta-galactosidase synthesis and methylation protection in vivo. These observations also resolve a contradiction in the literature as to the location of the operator-specific, inducer-dependent DNA binding domain.  相似文献   

10.
The effect of hydrostatic pressure on the conformational properties of the E. coli methionine repressor protein in aqueous solution was investigated by infrared spectroscopy. Changes in hydrostatic pressure produce dramatic changes in the spectral region of the conformation-sensitive amide I band. As the pressure is raised up to 18 kbar, the protein undergoes a rearrangement of alpha-helical segments into beta-type structures; after the pressure is released the beta-strands reconvert into less ordered alpha-helical or random segments.  相似文献   

11.
12.
The electrostatic potential surfaces were characterized for trp repressor models that bind to DNA with sequence specificity, without specificity, and not at all. Comparisons among the surfaces were used to isolate protein surface features likely to be important in DNA binding. Models that differ in protein conformation and tryptophan-analogue binding consistently showed positive potential associated with the protein surfaces that interact with the DNA major groove. However, negative potential is associated with the trp repressor surface that contacts the DNA minor groove. This negative potential is significantly neutralized in the protein conformation that is bound to DNA. Positive potential is also associated with the tryptophan binding-site surface, a consequence of the tryptophan- or tryptophan analogue-induced allosteric change. This protein region is complementary to the strongest negative potential associated with the DNA phosphate backbone and is also present in the isolated protein structure from the protein-DNA complex. The effects of charge-change mutation, pH dependence, and salt dependence on the electrostatic potential surfaces were also examined with regard to their effects on protein-DNA binding constants. A consistent model is formed that defines a role for long-range electrostatics early in the protein-DNA association process and complements previous structural, molecular association, and mutagenesis studies.  相似文献   

13.
The Escherichia coli Trp repressor binds to promoters of very different sequence and intrinsic activity. Its mode of binding to trp operator DNA has been studied extensively yet remains highly controversial. In order to examine the selectivity of the protein for DNA, we have used electromobility shift assays (EMSAs) to study its binding to synthetic DNA containing the core sequences of each of its five operators and of operator variants. Our results for DNA containing sequences of two of the operators, trpEDCBA and aroH are similar to those of previous studies. Up to three bands of lower mobility than the free DNA are obtained which are assigned to complexes of stoichiometry 1 : 1, 2 : 1 and 3 : 1 Trp repressor dimer to DNA. The mtr and aroL operators have not been studied previously in vitro. For DNA containing these sequences, we observe predominantly one retarded band in EMSA with mobility corresponding to 2 : 1 complexes. We have also obtained retardation of DNA containing the trpR operator sequence, which has only been previously obtained with super-repressor Trp mutants. This gives bands with mobilities corresponding to 1 : 1 and 2 : 1 complexes. In contrast, DNA containing containing a symmetrized trpR operator sequence, trpRs, gives a single retarded band with mobility corresponding solely to a 1 : 1 protein dimer-DNA complex. Using trpR operator variants, we show that a change in a single base pair in the core 20 base pairs can alter the number of retarded DNA bands in EMSA and the length of the DNase I footprint observed. This shows that the binding of the second dimer is sequence selective. We propose that the broad selectivity of Trp repressor coupled to tandem 2 : 1 binding, which we have observed with all five operator sequences, enables the Trp repressor to bind to a limited number of sites with diverse sequences. This allows it to co-ordinately control promoters of different intrinsic strength. This mechanism may be of importance in a number of promoters that bind multiple effector molecules.  相似文献   

14.
Summary In the lac operon, the existence of a secondary repressor binding site, inside Z gene, had been inferred from in vitro binding studies (Reznikoff et al., 1974; Gilbert et al., 1975).A serie of deletions have been constructed from a lac transducing bacteriophage. Some of those deleted bacteriophages have still the property of derepressing a chromosomal lac operon, even though they do not contain any more the lac operator. This phenomenon is an indication that the secondary repressor binding site is also active in vivo.  相似文献   

15.
Using gel retardation and DNase I protection techniques, we have demonstrated that the Escherichia coli integration host factor (IHF) stabilizes the interaction between Mu repressor and its cognate operator-binding sites in vitro. These results are discussed in terms of a model in which IHF may commit the phage to the lytic or lysogenic pathway depending on the occupancy of the operator sites by the repressor.  相似文献   

16.
17.
18.
19.
The binding of Escherichia coli Gal repressor to linear DNA fragments containing two binding sites (OE and OI) within the gal operon was analyzed in vitro with quantitative footprint and mobility-shift techniques. In vivo analysis of the regulation of the gal operon [Haber, R., & Adhya, S. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 9683-9687] has suggested the role of a regulatory "looped complex" mediated by the association of Gal repressor dimers bound at OE and OI. The binding of Gal repressor to a single site can be described by a model in which monomer and dimer are in equilibrium and only the dimer binds to DNA. At pH 7.0, 25 mM KCl, and 20 degrees C, the binding and dimerization free energies are comparable, suggesting that the equilibrium governing the formation of dimers may be important to regulation. The two intrinsic binding constants, delta GI and delta GE, and a constant describing cooperativity, delta GIE, were determined by footprint titration analysis as a function of pH, [KCl], and temperature. Only at 4 and 0 degrees C was delta GIE negative, signifying cooperative binding. These results are thought to be due to a weak dimer to tetramer association interface. delta GE and delta GI had maximal values between pH 6 and pH 7. The dependence of these constants on [KCl] corresponded to the displacement of approximately 2 ion equiv. The temperature dependence could be described by a change in the heat capacity, delta Cp, of -2.3 kcal mol-1 deg-1. Mobility-shift titration experiments conducted at 20 and 0 degrees C yielded values for delta GIE that were consistent with those resolved from the footprint analysis. Unique values of delta GIE were determined by analysis of mobility-shift titrations of Gal repressor with wild-type operator subject to the constraint that delta GE = delta GI: a procedure that eliminates the need to simultaneously analyze wild-type titrations with titrations of OE- and OI- operators.  相似文献   

20.
A series of modified trp operator sequences has been prepared by the incorporation of seven different base analogues. Four of the analogues allow the site-specific deletion of functional groups present on the dA-dT and dT-dA base pairs at positions -4/+4 and -5/+5 in the trp operator. The remaining three analogues permit the incorporation of structural analogues of the native dA-dT or dG-dC base pairs. The duplex operator sequences all exhibit Tm values well above ambient temperature (48-70 degrees C), and these values generally correlate very well with the number of interstrand hydrogen bonds present. The affinity between the trp repressor and 14 modified operator sequences was examined using a recently developed alkaline phosphatase protection assay. The results from the analogue sequences used in this study suggest that the structure of the dA-dT or dT-dA base pairs at positions -4/+4 and -5/+5, respectively, has relatively little effect upon the solution binding by the trp repressor, but the protein is very sensitive to the orientation of the amino and carbonyl functional groups at the -4/+4 positions, which are involved in the formation of an interbase hydrogen bond present in the major groove. (The term structure in this case refers to the hydrogen bonding structure of the base pairs. We recognize that the introduction of conservative functional group deletions or reversals may affect other structural criteria such as hydration.) The deletion of individual functional groups from the operator sequence suggests that the carbonyl at dT+4 is critical for formation of the high-affinity sequence-specific complex. Additionally, the thymine methyl group at dT+4 and the N7 nitrogen of dA+5 appear to be critical contacts necessary for high-affinity binding by the repressor. The thymine carbonyl and the adenine N7 nitrogen are each responsible for approximately -1.5 kcal/mol of apparent free energy of binding. The thymine methyl provides a somewhat smaller contribution of -0.7 kcal/mol. Deletion of either of the adenine amino groups at dA-4 or dA+5 results in a sequence that binds to the repressor with a higher affinity than observed with the native sequence; this can be explained in that the functional groups lost are not critical for binding, and the resulting increased flexibility of the operator, or the creation of a more hydrophobic surface at these sites, enhances van der Waals contacts between the protein and the nucleic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号