首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We evaluated the mechanism of oxalate transport in basolateral membrane vesicles isolated from the rabbit renal cortex. An outward HCO3- gradient induced the transient uphill accumulation of oxalate and sulfate, indicating the presence of oxalate/HCO3- exchange and sulfate/HCO3- exchange. For oxalate, sulfate, or 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, the K1/2 value for oxalate/HCO3- exchange was nearly identical to that for sulfate/HCO3- exchange, suggesting that both exchange processes occur via the same transport system. This was further supported by the finding of sulfate/oxalate exchange. Thiosulfate/sulfate exchange and thiosulfate/oxalate exchange were also demonstrated, but a variety of other tested anions including Cl-, p-aminohippurate, and lactate did not exchange for sulfate or oxalate. Na+ did not affect sulfate or oxalate transport, indicating that neither anion undergoes Na+ co-transport or Na+-dependent anion exchange in these membrane vesicles. Finally, we found that the stoichiometry of exchange is 1 sulfate or oxalate per 2 HCO3-, or a thermodynamically equivalent process. We conclude that oxalate, but not other organic or inorganic anions of physiologic importance, can share the sulfate/HCO3- exchanger in renal basolateral membrane vesicles. In series with luminal membrane oxalate/Cl- (formate) exchange, exchange of oxalate for HCO3- or sulfate across the basolateral membrane provides a possible transcellular route for oxalate transport in the proximal tubule.  相似文献   

2.
Current studies were undertaken to characterize the mechanism of short-chain fatty acid (SCFA) transport in isolated human proximal colonic basolateral membrane vesicles (BLMV) utilizing a rapid-filtration n-[(14)C]butyrate uptake technique. Human colonic tissues were obtained from mucosal scrapings from organ donor proximal colons. Our results, consistent with the existence of a HCO(3)(-)/SCFA exchanger in these membranes, are summarized as follows: 1) n-[(14)C]butyrate influx was significantly stimulated into the vesicles in the presence of an outwardly directed HCO(3)(-) and an inwardly directed pH gradient; 2) n-[(14)C]butyrate uptake was markedly inhibited (approximately 40%) by anion exchange inhibitor niflumic acid (1 mM), but SITS and DIDS (5 mM) had no effect; 3) structural analogs e.g., acetate and propionate, significantly inhibited uptake of HCO(3)(-) and pH-gradient-driven n-[(14)C]butyrate; 4) n-[(14)C]butyrate uptake was saturable with a K(m) for butyrate of 17.5 +/- 4.5 mM and a V(max) of 20.9 +/- 1.2 nmol x mg protein(-1) x 5 s(-1); 5) n-[(14)C]butyrate influx into the vesicles demonstrated a transstimulation phenomenon; and 6) intravesicular or extravesicular Cl(-) did not alter the anion-stimulated n-[(14)C]butyrate uptake. Our results indicate the presence of a carrier-mediated HCO(3)(-)/SCFA exchanger on the human colonic basolateral membrane, which appears to be distinct from the previously described anion exchangers in the membranes of colonic epithelia.  相似文献   

3.
Extracellular lactic acid is a major fuel for the mammalian medullary thick ascending limb (MTAL), whereas under anoxic conditions, this nephron segment generates a large amount of lactic acid, which needs to be excreted. We therefore evaluated, at both the functional and molecular levels, the possible presence of monocarboxylate transporters in basolateral (BLMVs) and luminal (LMVs) membrane vesicles isolated from rat MTALs. Imposing an inward H(+) gradient induced the transient uphill accumulation of L-[(14)C]lactate in both types of vesicles. However, whereas the pH gradient-stimulated uptake of L-[(14)C]lactate in BLMVs was inhibited by anion transport blockers such as alpha-cyano-4-hydroxycinnamate, 4,4'-diisothiocyanatostilbene-2, 2'-disulfonic acid (DIDS), and furosemide, it was unaffected by these agents in LMVs, indicating the presence of a L-lactate/H(+) cotransporter in BLMVs, but not in LMVs. Under non-pH gradient conditions, however, the uptake of L-[(14)C]lactate in LMVs was transstimulated 100% by L-lactate, but by only 30% by D-lactate. Furthermore, this L-lactate self-exchange was markedly inhibited by alpha-cyano-4-hydroxycinnamate and DIDS and almost completely by 1 mM furosemide, findings consistent with the existence of a stereospecific carrier-mediated lactate transport system in LMVs. Using immunofluorescence confocal microscopy and immunoblotting, the monocarboxylate transporter (MCT)-2 isoform was shown to be specifically expressed on the basolateral domain of the rat MTAL, whereas the MCT1 isoform could not be detected in this nephron segment. This study thus demonstrates the presence of different monocarboxylate transporters in rat MTALs; the basolateral H(+)/L-lactate cotransporter (MCT2) and the luminal H(+)-independent organic anion exchanger are adapted to play distinct roles in the transport of monocarboxylates in MTALs.  相似文献   

4.
Effect of inorganic anions on p-amino[3H]hippurate transport in renal basolateral membranes has been studied using the vesicles preloaded with unlabeled p-aminohippurate (countertransport condition). The uptake of p-amino[3H]hippurate was stimulated by the outward gradient of unlabeled p-aminohippurate and the labeled substrate was accumulated into the vesicles against its concentration gradient in the presence of Cl-. The substitution of SCN- and SO4(2-) for Cl- in both sides of the vesicles depressed the initial rate and the overshoot magnitude of p-amino[3H]hippurate uptake. These results suggest that Cl- may play an important role for the carrier-mediated transport system of organic anion in renal basolateral membranes.  相似文献   

5.
The time course for development of polarized function and morphological distribution of pH regulatory mechanisms has been examined in a mouse mammary epithelial cell line (31EG4). Monolayers grown on permeable supports had tight junctions when grown 3-4 days in the presence of the lactogenic hormones dexamethasone (D, a synthetic glucocorticoid) and insulin (I), or in D, I, and prolactin (P), but there were no tight junctions in the absence of D. Microspectrofluorimetry of the pH- sensitive dye BCECF was used to measure pH (pHi) in cells mounted in a two-sided perfusion chamber to distinguish pH regulatory activity at the apical and basolateral membranes. Na/H exchange was assayed as the Na-dependent, amiloride-sensitive component of pHi recovery from an acid load induced by a pulse of NH3/NH4-containing solution. When monolayers were grown 3-4 d in the presence of P, D, and I, Na/H exchange was restricted to the basolateral membrane. In contrast, in the absence of P, Na/H exchange was present on both the apical and basolateral membranes. After 5-6 days, in the presence or absence of P, Na/H exchange was present only on the basolateral membrane. An antibody to the NHE-1 isoform of the Na/H exchanger was used to determine its morphological distribution. In all hormone conditions the antibody recognized a protein of approximately 110 kD (Western blot), and confocal immunofluorescence microscopy of this antibody and of an anti- ZO-1 (the marker of the tight junctions) antibody showed that the morphological distribution of the Na/H exchanger was similar to the functional distribution under all hormonal treatments. In addition, a putative Na/HCO3 cotransport system was monitored as a Na-dependent, amiloride-insensitive pHi recovery mechanisms that was inhibited by 200 microM H2DIDS. After treatment with D+I (but not with I alone) cotransport appeared exclusively on the basolateral membrane, and the polarized expression of this transporter was not altered by P. We conclude that when mammary cells are grown in D+I-containing media, the Na/H exchanger is expressed initially (i.e., after 3-4 d) on both the apical and basolateral membranes and later (5-6 d) on only the basolateral membrane. P (in the presence of D+I) selectively speeds this polarization, which is determined by polarized distribution of the exchanger to the apical and/or basal membrane and not by the activation and/or inactivation of transporters.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Regulation of Cl/HCO3 exchange in gastric parietal cells.   总被引:2,自引:0,他引:2       下载免费PDF全文
Microspectrofluorimetry of the fluorescent indicators 2',7'-bis-(2-carboxyethyl)-5(and-6)carboxyfluorescein and 6-methoxy-N-(3-sulfopropyl)-quinolinium was used to measure intracellular pH (pHi), intracellular Cl (Cli), and transmembrane fluxes of HCO3 and Cl in single parietal cells (PC) in isolated rabbit gastric glands incubated in HCO3/CO2-buffered solutions. Steady-state pHi was 7.2 in both resting (50 microM cimetidine) and stimulated (100 microM histamine) PCs. Transmembrane anion (HCO3 or Cl) flux rates during Cl removal from or readdition to the perfusate were the same in resting and stimulated PCs. These rates increased at alkaline pHi, though this pHi dependence was small in the physiological range. Maximum velocity (Vmax) for Cl influx or HCO3 efflux was 80-110 mM/min at pHi 7.6-7.8, and the Km for extracellular concentrations of Cl (Clo) was 25 mM; in the physiological range (pHi 7.1-7.3), Vmax for anion fluxes was approximately 50 mM/min. Steady-state Cli in the unstimulated PC was 62 +/- 5 mM, but on histamine stimulation, Cli decreased rapidly to 25 mM and then increased back to a steady-state level of 44 mM. HCO3 fluxes due to Cl removal or readdition were completely blocked by 0.5 mM 4,4'-diisothiocyanatodihydrostilbene-2,2'-disulfonic acid (H2DIDS), but Cl fluxes were only inhibited by 80%. H2DIDS did not inhibit the decrease in Cli that occurred with histamine treatment. Diphenylamine carboxylate (0.5 mM) inhibited Cl flux by only 50% and caused no additional inhibition of Cl flux when used in conjunction with H2DIDS. Transmembrane anion fluxes during solution Cl removal or readdition occurred 80% through the anion exchanger at the basal membrane and 20% through other pathway(s), presumably the Cl channel in the apical membrane. We conclude that the increase in transport activity via the Cl/HCO3 exchanger that occurs during histamine-induced increases in HCl secretion is due mostly to the decrease in Cli. In the resting cell with Cli = 62 mM, Clo = 120 mM, pHi = 7.2, and extracellular pH = 7.4, the anion exchanger is poised near its thermodynamic equilibrium. During histamine stimulation Cli drops from 62 mM to 44 mM, the thermodynamic equilibrium of the anion exchanger at the basolateral membrane is disturbed, and the anion exchanger then exchanges cellular HCO3 for extracellular Cl. Cli serves a crucial regulatory role in stimulus-secretion coupling in the PC.  相似文献   

7.
The inner stripe of the outer medullary collecting tubule is a major distal nephron segment in urinary acidification. To examine the mechanism of basolateral membrane H+/OH-/HCO3- transport in this segment, cell pH was measured microfluorometrically in the inner stripe of the rabbit outer medullary collecting tubule perfused in vitro using the pH-sensitive fluorescent dye, (2',7')-bis(carboxyethyl)-(5,6)-carboxyfluorescein. Decreasing peritubular pH from 7.4 to 6.8 (changing [HCO3-] from 25 to 5 mM) caused a cell acidification of 0.25 +/- 0.02 pH units, while a similar luminal change resulted in a smaller cell acidification of only 0.04 +/- 0.01 pH units. Total replacement of peritubular Cl- with gluconate caused cell pH to increase by 0.18 +/- 0.04 pH units, an effect inhibited by 100 microM peritubular DIDS and independent of Na+. Direct coupling between Cl- and base was suggested by the continued presence of peritubular Cl- removal-induced cell alkalinization under the condition of a cell voltage clamp (K(+)-valinomycin). In addition, 90% of basolateral membrane H+/OH-/HCO3- permeability was inhibited by complete removal of luminal and peritubular Cl-. Peritubular Cl(-)-induced cell pH changes were inhibited two-thirds by removal of exogenous CO2/HCO3- from the system. The apparent Km for peritubular Cl- determined in the presence of 25 mM luminal and peritubular [HCO3-] was 113.5 +/- 14.8 mM. These results demonstrate that the basolateral membrane of the inner stripe of the outer medullary collecting tubule possesses a stilbene-sensitive Cl-/HCO3- exchanger which mediates 90% of basolateral membrane H+/OH-/HCO3- permeability and may be regulated by physiologic Cl- concentrations.  相似文献   

8.
The proximal duodenum is exposed to extreme elevations of P(CO(2)) because of the continuous mixture of secreted HCO(3)(-) with gastric acid. These elevations (up to 80 kPa) are likely to place the mucosal cells under severe acid stress. Furthermore, we hypothesized that, unlike most other cells, the principal source of CO(2) for duodenal epithelial cells is from the lumen. We hence examined the effect of elevated luminal P(CO(2)) on duodenal HCO(3)(-) secretion (DBS) in the rat. DBS was measured by the pH-stat method. For CO(2) challenge, the duodenum was superfused with a high Pco(2) solution. Intracellular pH (pH(i)) of duodenal epithelial cells was measured by ratio microfluorometry. CO(2) challenge, but not isohydric solutions, strongly increased DBS to approximately two times basal for up to 1 h. Preperfusion of the membrane-permeant carbonic anhydrase inhibitor methazolamide, or continuous exposure with indomethacin, fully inhibited CO(2)-augmented DBS. Dimethyl amiloride (0.1 mM), an inhibitor of the basolateral sodium-hydrogen exchanger 1, also inhibited CO(2)-augumented DBS, although S-3226, a specific inhibitor of apical sodium-hydrogen exchanger 3, did not. DIDS, an inhibitor of basolateral sodium-HCO(3)(-) cotransporter, also inhibited CO(2)-augemented DBS, as did the anion channel inhibitor 5-nitro-2-(3-phenylpropylamino) benzoic acid. CO(2) decreased epithelial cell pH(i), followed by an overshoot after removal of the CO(2) solution. We conclude that luminal CO(2) diffused in the duodenal epithelial cells and was converted to H(+) and HCO(3)(-) by carbonic anhydrase. H(+) initially exited the cell, followed by secretion of HCO(3)(-). Secretion was dependent on a functioning basolateral sodium/proton exchanger, a functioning basolateral HCO(3)(-) uptake mechanism, and submucosal prostaglandin generation and facilitated hydration of CO(2) into HCO(3)(-) and H(+).  相似文献   

9.
SO4(2-) transport by winter flounder intestine in Ussing chambers was characterized. With 50 mM SO4(2-) (physiological level) bathing the lumen, net absorption (lumen to blood) dominated. Under short-circuited conditions, 1 mM SO4(2-) on both sides, net active SO4(2-) secretion occurred (8.55 +/- 0.96 nmol. cm(-2). h(-1)). NaCN (10 mM), ouabain (10(-4) M), and luminal DIDS (0.2 mM) inhibited net secretion. Removal of luminal Cl- and HCO3- together (Cl--HCO3-) or Cl- alone blocked net secretion, whereas removal of luminal HCO3- alone increased net secretion. SO4(2-) uptake into foregut brush-border membrane vesicles was stimulated by a trans-Cl- gradient (in > out) and unaffected by a trans-HCO3- gradient (in > out). Short-circuiting with K+ (in = out) and valinomycin had no effect on Cl--stimulated SO4(2-) uptake, suggesting electroneutral exchange. Satiety (i.e., full stomach) stimulated the unidirectional absorptive flux, eliminating net secretion. It was concluded that the intestine is a site of SO4(2-) absorption in marine teleosts and that active SO4(2-) secretion is in exchange for luminal Cl-.  相似文献   

10.
The aim of this study was to identify the existence of anion-dependent Mg transport systems in cardiac muscle. DIDS-sensitive and anion-dependent (either Cl(-)(o) or NO(-)(3o)) increases in [Mg(2+)](i) occurred during Mg(2+) loading conditions. Much larger elevations of [Mg(2+)](i) occurred under Cl(-)(o)-free conditions with 0.1 mmol l(-1) DIDS, compared to Cl(-)(o) replacement alone. All these effects were abolished in Mg(2+)(o)-free medium. These data suggest a novel Mg(2+)-anion symport for Mg(2+) efflux against the electrochemical gradient that is fueled mostly by the efflux of an endogenous anion (HCO(-)(3)?), but with a small contribution from intracellular Cl(-) probably supplied via the Cl(-)-HCO(-)(3) exchanger.  相似文献   

11.
Studies in Chinese hamster ovary cells demonstrate the presence of an anion exchanger, which has some of the properties of the band 3 transporter in erythrocytes. 1) Extracellular chloride is a competitive inhibitor of sulfate influx and stimulates sulfate efflux, suggesting that the mechanism of uptake is SO2-(4)/Cl- exchange. 2) The anion exchange inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid inhibits sulfate uptake in a dose-dependent manner. Half-maximal inhibition is achieved at 0.06 microM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid. 3) Low extracellular pH markedly stimulates sulfate uptake. A 6-fold decrease in the apparent Km is observed at pHout 5.5 as compared to pHout 7.5. However, studies carried out over a broad range of extracellular SO2-(4) concentrations indicate the presence of three components of this transport activity in Chinese hamster ovary cells: two high affinity low capacity systems, one in the range 0.5 microM less than [SO2-(4)]out less than 50 microM and one in the range 50 microM less than [SO2-(4)]out less than 150 microM, and a low affinity, high capacity system (at [SO2-(4)]out greater than 150 microM). These properties have not been previously reported for the erythroid band 3 transporter. The availability of mutants deficient in these activities has enabled us to carry out studies which suggest that the high affinity systems are functionally independent of the low affinity system, but that all systems are dependent on the same anion exchange protein. Studies in a mutant which lacks all components of the transport activity indicates that the anion exchanger may be instrumental in the regulation of the intracellular pH in Chinese hamster ovary cells.  相似文献   

12.
Biotin transport was studied using brush-border and basolateral membrane vesicles isolated from rabbit kidney cortex. An inwardly directed Na+ gradient stimulated biotin uptake into brush-border membrane vesicles and a transient accumulation of the anion against its concentration gradient was observed. In contrast, uptake of biotin by basolateral membrane vesicles was found to be Na+-gradient insensitive. Generation of a negative intravesicular potential by valinomycin-induced K+ diffusion potentials or by the presence of Na+ salts of anions of different permeabilities enhanced biotin uptake by brush-border membrane vesicles, suggesting an electrogenic mechanism. The Na+ gradient-dependent uptake of biotin into brush-border membrane vesicles was saturable with an apparent Km of 28 microM. The Na+-dependent uptake of tracer biotin was significantly inhibited by 50 microM biotin, and thioctic acid but not by 50 microM L-lactate, D-glucose, or succinate. Finally, the existence in both types of membrane vesicles of a H+/biotin- cotransport system could not be demonstrated. These results are consistent with a model for biotin reabsorption in which the Na+/biotin- cotransporter in luminal membranes provides the driving force for uphill transport of this vitamin.  相似文献   

13.
Transport of the antifolate cancer drug methotrexate was studied in vesicles isolated from the basolateral membrane of rat liver. Transport of methotrexate by basolateral membrane vesicles (BLMVs) was mostly via uptake into an osmotically active intravesicular space, with some binding (approximately 9%), as shown by initial uptake studies and by varying medium osmolarity with increasing concentrations of sucrose. Methotrexate transport was linear for the first 20 s of incubation. Transport was not affected by imposition of a Na+ gradient across the vesicular membrane. Transport of methotrexate displayed a broad pH optimum: at an intravesicular pH of 7.5, the initial rate of uptake was not significantly different at extravesicular pH values ranging from 5.5 to 7.5, but uptake was less at extravesicular pH of 5.0 or 8.0. Methotrexate transport was saturable: Km = 0.15 +/- 0.05 microM and Vmax = 11.4 +/- 1.1 pmol 10 s-1 mg-1 protein. Methotrexate uptake into BLMVs was not inhibited by 5-methyltetrahydrofolate nor by 5-formyltetrahydrofolate but was weakly inhibited by folic acid in a concentration-dependent manner. Uptake was also inhibited by anion-exchange inhibitor 4,4'-diisothio-cyanostilbene-2,2'-disulfonic acid (DIDS), and by the structurally unrelated anions ATP, ADP, Cl-, SO4(2-), and oxalate2-. Adenosine (no negative charge) had no effect on transport. When vesicles were preloaded with anions (ADP, SO4(2-), oxalate2-) such that an anion gradient existed from the intra- to the extravesicular compartment, and methotrexate uptake was measured, no stimulation of uptake was seen. Methotrexate uptake into rat liver BLMVs was electrogenic as shown by stimulation of the initial rate of uptake by a valinomycin-imposed K+ diffusion potential across the vesicular membrane. These results suggest that methotrexate is transported into the hepatocyte across the basolateral membrane by an electrogenic, multispecific anion carrier system.  相似文献   

14.
The renal cortical collecting duct (CCD) plays an important role in systemic acid-base homeostasis. The beta-intercalated cells secrete most of the HCO(-)(3), which is mediated by a luminal, DIDS-insensitive, Cl(-)/HCO(-)(3) exchange. The identity of the luminal exchanger is a matter of debate. Anion exchanger isoform 4 (AE4) cloned from the rabbit kidney was proposed to perform this function (Tsuganezawa H et al. J Biol Chem 276: 8180-8189, 2001). By contrast, it was proposed (Royaux IE et al. Proc Natl Acad Sci USA 98: 4221-4226, 2001) that pendrin accomplishes this function in the mouse CCD. In the present work, we cloned, localized, and characterized the function of the rat AE4. Northern blot and RT-PCR showed high levels of AE4 mRNA in the CCD. Expression in HEK-293 and LLC-PK(1) cells showed that AE4 is targeted to the plasma membrane. Measurement of intracellular pH (pH(i)) revealed that AE4 indeed functions as a Cl(-)/HCO(-)(3) exchanger. However, AE4 activity was inhibited by DIDS. Immunolocalization revealed species-specific expression of AE4. In the rat and mouse CCD and the mouse SMG duct AE4 was in the basolateral membrane. By contrast, in the rabbit, AE4 was in the luminal and lateral membranes. In both, the rat and rabbit CCD AE4 was in alpha-intercalated cells. Importantly, localization of AE4 was not affected by the systemic acid-base status of the rats. Therefore, we conclude that expression and possibly function of AE4 is species specific. In the rat and mouse AE4 functions as a Cl(-)/HCO(-)(3) exchanger in the basolateral membrane of alpha-intercalated cells and may participate in HCO(-)(3) absorption. In the rabbit AE4 may contribute to HCO(-)(3) secretion.  相似文献   

15.
Basolateral membrane vesicles from rat jejunal enterocytes, especially purified of brush-border contamination, were used for Na+ uptake. The basolateral membrane vesicles are osmotically active and under our experimental conditions Na+ binding is much lower than transport. An outwardly directed proton gradient stimulates Na+ uptake at both 5 microM and 5 mM concentrations. The proton gradient effect can be inhibited completely by 2 mM amiloride and partially by either FCCP or NH4Cl (NH3 diffusion). Membrane potential effects can be excluded by having valinomycin plus K+ on both sides of the vesicles. These results suggest that there is an Na+/H+ exchanger in the basolateral membrane of rat enterocytes.  相似文献   

16.
Normal human colonic luminal (NH(4)(+)) concentration ([NH(4)(+)]) ranges from approximately 10 to 100 mM. However, the nature of the effects of NH(4)(+) on transport, as well as NH(4)(+) transport itself, in colonic epithelium is poorly understood. We elucidate here the effects of apical NH(4)(+) on cAMP-stimulated Cl(-) secretion in colonic T84 cells. In HEPES-buffered solutions, 10 mM apical NH(4)(+) had no significant effect on cAMP-stimulated current. In contrast, 10 mM apical NH(4)(+) reduced current within 5 min to 61 +/- 4% in the presence of 25 mM HCO(3)(-). Current inhibition was not simply due to an increase in extracellular K(+)-like cations, in that the current magnitude was 95 +/- 5% with 10 mM apical K(+) and 46 +/- 3% with 10 mM apical NH(4)(+) relative to that with 5 mM apical K(+). We previously demonstrated that inhibition of Cl(-) secretion by basolateral NH(4)(+) occurs in HCO(3)(-)-free conditions and exhibits anomalous mole fraction behavior. In contrast, apical NH(4)(+) inhibition of current in HCO(3)(-) buffer did not show anomalous mole fraction behavior and followed the absolute [NH(4)(+)] in K(+)-NH(4)(+) mixtures, where K(+) concentration + [NH(4)(+)] = 10 mM. The apical NH(4)(+) inhibitory effect was not prevented by 100 microM methazolamide, suggesting no role for apical carbonic anhydrase. However, apical NH(4)(+) inhibition of current was prevented by 10 min of pretreatment of the apical surface with 500 microM DIDS, 100 microM 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS), or 25 microM niflumic acid, suggesting a role for NH(4)(+) action through an apical anion exchanger. mRNA and protein for the apical anion exchangers SLC26A3 [downregulated in adenoma (DRA)] and SLC26A6 [putative anion transporter (PAT1)] were detected in T84 cells by RT-PCR and Northern and Western blots. DRA and PAT1 appear to associate with CFTR in the apical membrane. We conclude that the HCO(3)(-) dependence of apical NH(4)(+) inhibition of secretion is due to the action of NH(4)(+) on an apical anion exchanger.  相似文献   

17.
Cl(-) influx across the basolateral membrane is a limiting step in fluid production in exocrine cells and often involves functionally linked Cl(-)/HCO(3)(-) (Ae) and Na(+)/H(+) (Nhe) exchange mechanisms. The dependence of this major Cl(-) uptake pathway on Na(+)/H(+) exchanger expression was examined in the parotid acinar cells of Nhe1(-/-) and Nhe2(-/-) mice, both of which exhibited impaired fluid secretion. No change in Cl(-)/HCO(3)(-) exchanger activity was detected in Nhe2-deficient mice. Conversely, Cl(-)/HCO(3)(-) exchanger activity increased nearly 4-fold in Nhe1-deficient mice, despite only minimal or any change in mRNA and protein levels of the anion exchanger Ae2. Acetazolamide completely blocked the increase in Cl(-)/HCO(3)(-) exchanger activity in Nhe1-null mice suggesting that increased anion exchange required carbonic anhydrase activity. Indeed, the parotid glands of Nhe1(-/-) mice expressed higher levels of carbonic anhydrase 2 (Car2) polypeptide. Moreover, the enhanced Cl(-)/HCO(3)(-) exchange activity was accompanied by an increased abundance of Car2.Ae2 complexes in the parotid plasma membranes of Nhe1(-/-) mice. Anion exchanger activity was also significantly reduced in Car2-deficient mice, consistent with an important role of a putative Car2.Ae2 HCO(3)(-) transport metabolon in parotid exocrine cell function. Increased abundance of this HCO(3)(-) transport metabolon is likely one of the multiple compensatory changes in the exocrine parotid gland of Nhe1(-/-) mice that together attenuate the severity of in vivo electrolyte and acid-base balance perturbations.  相似文献   

18.
We used the absorbance spectrum of the pH-sensitive dye dimethylcarboxyfluorescein to monitor intracellular pH (pHi) in the isolated perfused S3 segment of the rabbit proximal tubule, and examined the effect on pHi of switching from a HEPES to a CO2/HCO3- buffer in the lumen and/or the bath (i.e., basolateral solution). Solutions were titrated to pH 7.40 at 37 degrees C. With 10 mM acetate present bilaterally (lumen and bath), this causing steady-state pHi to be rather high (approximately 7.45), bilaterally switching the buffer from 32 mM HEPES to 5% CO2/25 mM HCO3- caused a sustained fall in pHi of approximately 0.26. However, with acetate absent bilaterally, this causing steady-state pHi to be substantially lower (approximately 6.9), bilaterally switching to CO2/HCO3- caused a transient pHi fall (due to the influx of CO2), followed by a sustained rise to a level approximately 0.18 higher than the initial one. The remainder of the experiments was devoted to examining this alkalinization in the absence of acetate. Switching to CO2/HCO3- only in the lumen caused a sustained pHi fall of approximately 0.15, whereas switching to CO2/HCO3- only in the bath caused a transient fall followed by a sustained pHi increase to approximately 0.26 above the initial value. This basolateral CO2/HCO3(-)-induced alkalinization was not inhibited by 50 microM DIDS applied shortly after CO2/HCO3- washout, but was slowed approximately 73% by DIDS applied more than 30 min after CO2/HCO3- washout. The rate was unaffected by 100 microM bilateral acetazolamide, although this drug greatly reduced CO2-induced pHi transients. The alkalinization was not blocked by bilateral removal of Na+ per se, but was abolished at pHi values below approximately 6.5. The alkalinization was also unaffected by short-term bilateral removal of Cl- or SO4=. Basolateral CO2/HCO3- elicited the usual pHi increase even when all solutes were replaced, short or long-term (> 45 min), by N-methyl-D- glucammonium/glucuronate (NMDG+/Glr-). Luminal CO2/HCO3- did not elicit a pHi increase in NMDG+/Glr-. Although the sustained pHi increase elicited by basolateral CO2/HCO3- could be due to a basolateral HCO3- uptake mechanism, net reabsorption of HCO3- by the S3 segment, as well as our ACZ data, suggest instead that basolateral CO2/HCO3- elicits the sustained pHi increase either by inhibiting an acid-loading process or stimulating acid extrusion across the luminal membrane (e.g., via an H+ pump).  相似文献   

19.
We have investigated Cl- transport mechanism(s) located in the basolateral membranes of the frog skin epithelium and in particular activation of Cl-/HCO3- exchange following an alkaline load. We found that 87% of the total 36Cl uptake by the epithelial cells occurs across the basolateral membranes (JbCl-) and submitting the epithelium to an alkaline load (HCO3(-)-Ringer solution, pH 8.1) increased JbCl-. Intracellular Cl- activity (aiCl-), measured with ion-sensitive microelectrodes, increased when the Ringer solution bathing the basolateral membranes was changed from a Ringer solution equilibrated in air (pH 7.4) to one containing CO2/HCO3- (pH 7.4). pHi recovery following an alkaline load was dependent on Cl- since it did not occur in serosal Cl(-)-free media, indicating the presence of a Cl(-)-dependent regulatory mechanism. Acid loading of the epithelial cells (5% CO2, HCO3(-)-free Ringer) produced no change in JbCl- but stimulated an amiloride-sensitive 22Na uptake across the basolateral membranes of the epithelium, compatible with an activation of a Na+/H+ exchanger, previously described in this tissue. JbCl- was partially blocked by SITS (5 x 10(-4) mmol/I), niflumic acid (5 x 10(-5) mmol/I), furosemide or bumetanide. Simultaneous addition of furosemide and niflumic acid produced an inhibition of JbCl- which was not different with furosemide alone. Substitution of Na+ by choline had no effect on JbCl- and furosemide did not block the 22Na+ uptake, suggesting that JbCl- is not a Na(+)-dependent process (cotransport). We conclude that a significant Cl- permeability at the basolateral membranes of the epithelial cells is due to the presence of a Cl-/HCO3- exchanger which is essential for the recovery of pHi following an alkaline load.  相似文献   

20.
The present study was designed to investigate Cl- transport across rat ileal basolateral membranes. Basolateral membrane vesicles were prepared by a well-validated technique. The purity of the basolateral membrane vesicles was verified by marker enzyme studies and by studies of d-glucose and calcium uptake. Cl- uptake was studied by a rapid filtration technique. Neither an outwardly directed pH gradient, nor a HCO3- gradient, or their combination could elicit any stimulation of Cl- transport when compared with no gradient. 4,4-Diisothiocyanostilbene-2,2-disulfonic acid at 5 mM concentration did not inhibit Cl- uptake under gradient condition. Similarly, the presence of the combination of outwardly directed Na+ and HCO3- gradients did not stimulate Cl- uptake compared with the combination of K+ and HCO3- gradients or no HCO3- gradient. This is in contrast to our results in the brush border membranes, where an outwardly directed pH gradient caused an increase in Cl- uptake. Cl- uptake was stimulated in the presence of combined Na+ and K+ gradient. Bumetanide at 0.1 mM concentration inhibited the initial rate of Cl- uptake in the presence of combined Na+ and K+ gradients. Kinetic studies of bumetanide-sensitive Cl- uptake showed a Vmax of 5.6 +/- 0.7 nmol/mg protein/5 sec and a Km of 30 +/- 8.7 mM. Cl- uptake was stimulated by an inside positive membrane potential induced by the ionophore valinomycin in the setting of inwardly directed K+ gradient compared with voltage clamp condition. These studies demonstrate two processes for Cl- transport across the rat ileal basolateral membrane: one is driven by an electrogenic diffusive process and the second is a bumetanide-sensitive Na+/K+/2 Cl- process. Cl- uptake is not enhanced by pH gradient, HCO3- gradient, their combination, or outwardly directed HCO3- and Na+ gradients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号